summaryrefslogtreecommitdiffstats
path: root/src/intel/compiler/brw_cfg.cpp
blob: 0d6c6fc5f5b145b4ab59bca3f92a55c16faf1bbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "brw_cfg.h"

/** @file brw_cfg.cpp
 *
 * Walks the shader instructions generated and creates a set of basic
 * blocks with successor/predecessor edges connecting them.
 */

static bblock_t *
pop_stack(exec_list *list)
{
   bblock_link *link = (bblock_link *)list->get_tail();
   bblock_t *block = link->block;
   link->link.remove();

   return block;
}

static exec_node *
link(void *mem_ctx, bblock_t *block, enum bblock_link_kind kind)
{
   bblock_link *l = new(mem_ctx) bblock_link(block, kind);
   return &l->link;
}

bblock_t::bblock_t(cfg_t *cfg) :
   cfg(cfg), idom(NULL), start_ip(0), end_ip(0), num(0), cycle_count(0)
{
   instructions.make_empty();
   parents.make_empty();
   children.make_empty();
}

void
bblock_t::add_successor(void *mem_ctx, bblock_t *successor,
                        enum bblock_link_kind kind)
{
   successor->parents.push_tail(::link(mem_ctx, this, kind));
   children.push_tail(::link(mem_ctx, successor, kind));
}

bool
bblock_t::is_predecessor_of(const bblock_t *block,
                            enum bblock_link_kind kind) const
{
   foreach_list_typed_safe (bblock_link, parent, link, &block->parents) {
      if (parent->block == this && parent->kind <= kind) {
         return true;
      }
   }

   return false;
}

bool
bblock_t::is_successor_of(const bblock_t *block,
                          enum bblock_link_kind kind) const
{
   foreach_list_typed_safe (bblock_link, child, link, &block->children) {
      if (child->block == this && child->kind <= kind) {
         return true;
      }
   }

   return false;
}

static bool
ends_block(const backend_instruction *inst)
{
   enum opcode op = inst->opcode;

   return op == BRW_OPCODE_IF ||
          op == BRW_OPCODE_ELSE ||
          op == BRW_OPCODE_CONTINUE ||
          op == BRW_OPCODE_BREAK ||
          op == BRW_OPCODE_DO ||
          op == BRW_OPCODE_WHILE;
}

static bool
starts_block(const backend_instruction *inst)
{
   enum opcode op = inst->opcode;

   return op == BRW_OPCODE_DO ||
          op == BRW_OPCODE_ENDIF;
}

bool
bblock_t::can_combine_with(const bblock_t *that) const
{
   if ((const bblock_t *)this->link.next != that)
      return false;

   if (ends_block(this->end()) ||
       starts_block(that->start()))
      return false;

   return true;
}

void
bblock_t::combine_with(bblock_t *that)
{
   assert(this->can_combine_with(that));
   foreach_list_typed (bblock_link, link, link, &that->parents) {
      assert(link->block == this);
   }

   this->end_ip = that->end_ip;
   this->instructions.append_list(&that->instructions);

   this->cfg->remove_block(that);
}

void
bblock_t::dump(backend_shader *s) const
{
   int ip = this->start_ip;
   foreach_inst_in_block(backend_instruction, inst, this) {
      fprintf(stderr, "%5d: ", ip);
      s->dump_instruction(inst);
      ip++;
   }
}

cfg_t::cfg_t(exec_list *instructions)
{
   mem_ctx = ralloc_context(NULL);
   block_list.make_empty();
   blocks = NULL;
   num_blocks = 0;
   idom_dirty = true;
   cycle_count = 0;

   bblock_t *cur = NULL;
   int ip = 0;

   bblock_t *entry = new_block();
   bblock_t *cur_if = NULL;    /**< BB ending with IF. */
   bblock_t *cur_else = NULL;  /**< BB ending with ELSE. */
   bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */
   bblock_t *cur_do = NULL;    /**< BB starting with DO. */
   bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */
   exec_list if_stack, else_stack, do_stack, while_stack;
   bblock_t *next;

   set_next_block(&cur, entry, ip);

   foreach_in_list_safe(backend_instruction, inst, instructions) {
      /* set_next_block wants the post-incremented ip */
      ip++;

      inst->exec_node::remove();

      switch (inst->opcode) {
      case BRW_OPCODE_IF:
         cur->instructions.push_tail(inst);

	 /* Push our information onto a stack so we can recover from
	  * nested ifs.
	  */
         if_stack.push_tail(link(mem_ctx, cur_if, bblock_link_logical));
         else_stack.push_tail(link(mem_ctx, cur_else, bblock_link_logical));

	 cur_if = cur;
	 cur_else = NULL;
         cur_endif = NULL;

	 /* Set up our immediately following block, full of "then"
	  * instructions.
	  */
	 next = new_block();
         cur_if->add_successor(mem_ctx, next, bblock_link_logical);

	 set_next_block(&cur, next, ip);
	 break;

      case BRW_OPCODE_ELSE:
         cur->instructions.push_tail(inst);

         cur_else = cur;

	 next = new_block();
         assert(cur_if != NULL);
         cur_if->add_successor(mem_ctx, next, bblock_link_logical);

	 set_next_block(&cur, next, ip);
	 break;

      case BRW_OPCODE_ENDIF: {
         if (cur->instructions.is_empty()) {
            /* New block was just created; use it. */
            cur_endif = cur;
         } else {
            cur_endif = new_block();

            cur->add_successor(mem_ctx, cur_endif, bblock_link_logical);

            set_next_block(&cur, cur_endif, ip - 1);
         }

         cur->instructions.push_tail(inst);

         if (cur_else) {
            cur_else->add_successor(mem_ctx, cur_endif, bblock_link_logical);
         } else {
            assert(cur_if != NULL);
            cur_if->add_successor(mem_ctx, cur_endif, bblock_link_logical);
         }

         assert(cur_if->end()->opcode == BRW_OPCODE_IF);
         assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE);

	 /* Pop the stack so we're in the previous if/else/endif */
	 cur_if = pop_stack(&if_stack);
	 cur_else = pop_stack(&else_stack);
	 break;
      }
      case BRW_OPCODE_DO:
	 /* Push our information onto a stack so we can recover from
	  * nested loops.
	  */
         do_stack.push_tail(link(mem_ctx, cur_do, bblock_link_logical));
         while_stack.push_tail(link(mem_ctx, cur_while, bblock_link_logical));

	 /* Set up the block just after the while.  Don't know when exactly
	  * it will start, yet.
	  */
	 cur_while = new_block();

         if (cur->instructions.is_empty()) {
            /* New block was just created; use it. */
            cur_do = cur;
         } else {
            cur_do = new_block();

            cur->add_successor(mem_ctx, cur_do, bblock_link_logical);

            set_next_block(&cur, cur_do, ip - 1);
         }

         cur->instructions.push_tail(inst);

         /* Represent divergent execution of the loop as a pair of alternative
          * edges coming out of the DO instruction: For any physical iteration
          * of the loop a given logical thread can either start off enabled
          * (which is represented as the "next" successor), or disabled (if it
          * has reached a non-uniform exit of the loop during a previous
          * iteration, which is represented as the "cur_while" successor).
          *
          * The disabled edge will be taken by the logical thread anytime we
          * arrive at the DO instruction through a back-edge coming from a
          * conditional exit of the loop where divergent control flow started.
          *
          * This guarantees that there is a control-flow path from any
          * divergence point of the loop into the convergence point
          * (immediately past the WHILE instruction) such that it overlaps the
          * whole IP region of divergent control flow (potentially the whole
          * loop) *and* doesn't imply the execution of any instructions part
          * of the loop (since the corresponding execution mask bit will be
          * disabled for a diverging thread).
          *
          * This way we make sure that any variables that are live throughout
          * the region of divergence for an inactive logical thread are also
          * considered to interfere with any other variables assigned by
          * active logical threads within the same physical region of the
          * program, since otherwise we would risk cross-channel data
          * corruption.
          */
         next = new_block();
         cur->add_successor(mem_ctx, next, bblock_link_logical);
         cur->add_successor(mem_ctx, cur_while, bblock_link_physical);
         set_next_block(&cur, next, ip);
	 break;

      case BRW_OPCODE_CONTINUE:
         cur->instructions.push_tail(inst);

         /* A conditional CONTINUE may start a region of divergent control
          * flow until the start of the next loop iteration (*not* until the
          * end of the loop which is why the successor is not the top-level
          * divergence point at cur_do).  The live interval of any variable
          * extending through a CONTINUE edge is guaranteed to overlap the
          * whole region of divergent execution, because any variable live-out
          * at the CONTINUE instruction will also be live-in at the top of the
          * loop, and therefore also live-out at the bottom-most point of the
          * loop which is reachable from the top (since a control flow path
          * exists from a definition of the variable through this CONTINUE
          * instruction, the top of the loop, the (reachable) bottom of the
          * loop, the top of the loop again, into a use of the variable).
          */
         assert(cur_do != NULL);
         cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical);

	 next = new_block();
	 if (inst->predicate)
            cur->add_successor(mem_ctx, next, bblock_link_logical);

	 set_next_block(&cur, next, ip);
	 break;

      case BRW_OPCODE_BREAK:
         cur->instructions.push_tail(inst);

         /* A conditional BREAK instruction may start a region of divergent
          * control flow until the end of the loop if the condition is
          * non-uniform, in which case the loop will execute additional
          * iterations with the present channel disabled.  We model this as a
          * control flow path from the divergence point to the convergence
          * point that overlaps the whole IP range of the loop and skips over
          * the execution of any other instructions part of the loop.
          *
          * See the DO case for additional explanation.
          */
         assert(cur_do != NULL);
         cur->add_successor(mem_ctx, cur_do, bblock_link_physical);

	 next = new_block();
	 if (inst->predicate)
            cur->add_successor(mem_ctx, next, bblock_link_logical);

	 set_next_block(&cur, next, ip);
	 break;

      case BRW_OPCODE_WHILE:
         cur->instructions.push_tail(inst);

         assert(cur_do != NULL && cur_while != NULL);

         /* A conditional WHILE instruction may start a region of divergent
          * control flow until the end of the loop, just like the BREAK
          * instruction.  See the BREAK case for more details.  OTOH an
          * unconditional WHILE instruction is non-divergent (just like an
          * unconditional CONTINUE), and will necessarily lead to the
          * execution of an additional iteration of the loop for all enabled
          * channels, so we may skip over the divergence point at the top of
          * the loop to keep the CFG as unambiguous as possible.
          */
         if (inst->predicate) {
            cur->add_successor(mem_ctx, cur_do, bblock_link_logical);
         } else {
            cur->add_successor(mem_ctx, cur_do->next(), bblock_link_logical);
         }

	 set_next_block(&cur, cur_while, ip);

	 /* Pop the stack so we're in the previous loop */
	 cur_do = pop_stack(&do_stack);
	 cur_while = pop_stack(&while_stack);
	 break;

      default:
         cur->instructions.push_tail(inst);
	 break;
      }
   }

   cur->end_ip = ip - 1;

   make_block_array();
}

cfg_t::~cfg_t()
{
   ralloc_free(mem_ctx);
}

void
cfg_t::remove_block(bblock_t *block)
{
   foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) {
      /* Remove block from all of its predecessors' successor lists. */
      foreach_list_typed_safe (bblock_link, successor, link,
                               &predecessor->block->children) {
         if (block == successor->block) {
            successor->link.remove();
            ralloc_free(successor);
         }
      }

      /* Add removed-block's successors to its predecessors' successor lists. */
      foreach_list_typed (bblock_link, successor, link, &block->children) {
         if (!successor->block->is_successor_of(predecessor->block,
                                                successor->kind)) {
            predecessor->block->children.push_tail(link(mem_ctx,
                                                        successor->block,
                                                        successor->kind));
         }
      }
   }

   foreach_list_typed_safe (bblock_link, successor, link, &block->children) {
      /* Remove block from all of its childrens' parents lists. */
      foreach_list_typed_safe (bblock_link, predecessor, link,
                               &successor->block->parents) {
         if (block == predecessor->block) {
            predecessor->link.remove();
            ralloc_free(predecessor);
         }
      }

      /* Add removed-block's predecessors to its successors' predecessor lists. */
      foreach_list_typed (bblock_link, predecessor, link, &block->parents) {
         if (!predecessor->block->is_predecessor_of(successor->block,
                                                    predecessor->kind)) {
            successor->block->parents.push_tail(link(mem_ctx,
                                                     predecessor->block,
                                                     predecessor->kind));
         }
      }
   }

   block->link.remove();

   for (int b = block->num; b < this->num_blocks - 1; b++) {
      this->blocks[b] = this->blocks[b + 1];
      this->blocks[b]->num = b;
   }

   this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2;
   this->num_blocks--;
   idom_dirty = true;
}

bblock_t *
cfg_t::new_block()
{
   bblock_t *block = new(mem_ctx) bblock_t(this);

   return block;
}

void
cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip)
{
   if (*cur) {
      (*cur)->end_ip = ip - 1;
   }

   block->start_ip = ip;
   block->num = num_blocks++;
   block_list.push_tail(&block->link);
   *cur = block;
}

void
cfg_t::make_block_array()
{
   blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks);

   int i = 0;
   foreach_block (block, this) {
      blocks[i++] = block;
   }
   assert(i == num_blocks);
}

void
cfg_t::dump(backend_shader *s)
{
   if (idom_dirty)
      calculate_idom();

   foreach_block (block, this) {
      if (block->idom)
         fprintf(stderr, "START B%d IDOM(B%d)", block->num, block->idom->num);
      else
         fprintf(stderr, "START B%d IDOM(none)", block->num);

      foreach_list_typed(bblock_link, link, link, &block->parents) {
         fprintf(stderr, " <%cB%d",
                 link->kind == bblock_link_logical ? '-' : '~',
                 link->block->num);
      }
      fprintf(stderr, "\n");
      if (s != NULL)
         block->dump(s);
      fprintf(stderr, "END B%d", block->num);
      foreach_list_typed(bblock_link, link, link, &block->children) {
         fprintf(stderr, " %c>B%d",
                 link->kind == bblock_link_logical ? '-' : '~',
                 link->block->num);
      }
      fprintf(stderr, "\n");
   }
}

/* Calculates the immediate dominator of each block, according to "A Simple,
 * Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken
 * Kennedy.
 *
 * The authors claim that for control flow graphs of sizes normally encountered
 * (less than 1000 nodes) that this algorithm is significantly faster than
 * others like Lengauer-Tarjan.
 */
void
cfg_t::calculate_idom()
{
   foreach_block(block, this) {
      block->idom = NULL;
   }
   blocks[0]->idom = blocks[0];

   bool changed;
   do {
      changed = false;

      foreach_block(block, this) {
         if (block->num == 0)
            continue;

         bblock_t *new_idom = NULL;
         foreach_list_typed(bblock_link, parent, link, &block->parents) {
            if (parent->block->idom) {
               if (new_idom == NULL) {
                  new_idom = parent->block;
               } else if (parent->block->idom != NULL) {
                  new_idom = intersect(parent->block, new_idom);
               }
            }
         }

         if (block->idom != new_idom) {
            block->idom = new_idom;
            changed = true;
         }
      }
   } while (changed);

   idom_dirty = false;
}

bblock_t *
cfg_t::intersect(bblock_t *b1, bblock_t *b2)
{
   /* Note, the comparisons here are the opposite of what the paper says
    * because we index blocks from beginning -> end (i.e. reverse post-order)
    * instead of post-order like they assume.
    */
   while (b1->num != b2->num) {
      while (b1->num > b2->num)
         b1 = b1->idom;
      while (b2->num > b1->num)
         b2 = b2->idom;
   }
   assert(b1);
   return b1;
}

void
cfg_t::dump_cfg()
{
   printf("digraph CFG {\n");
   for (int b = 0; b < num_blocks; b++) {
      bblock_t *block = this->blocks[b];

      foreach_list_typed_safe (bblock_link, child, link, &block->children) {
         printf("\t%d -> %d\n", b, child->block->num);
      }
   }
   printf("}\n");
}

void
cfg_t::dump_domtree()
{
   printf("digraph DominanceTree {\n");
   foreach_block(block, this) {
      if (block->idom) {
         printf("\t%d -> %d\n", block->idom->num, block->num);
      }
   }
   printf("}\n");
}