1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
|
/*
* Copyright © 2019 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef GEN_MI_BUILDER_H
#define GEN_MI_BUILDER_H
#include "util/bitscan.h"
#include "util/fast_idiv_by_const.h"
#include "util/u_math.h"
#ifndef GEN_MI_BUILDER_NUM_ALLOC_GPRS
/** The number of GPRs the MI builder is allowed to allocate
*
* This may be set by a user of this API so that it can reserve some GPRs at
* the top end for its own use.
*/
#define GEN_MI_BUILDER_NUM_ALLOC_GPRS 16
#endif
/** These must be defined by the user of the builder
*
* void *__gen_get_batch_dwords(__gen_user_data *user_data,
* unsigned num_dwords);
*
* __gen_address_type
* __gen_address_offset(__gen_address_type addr, uint64_t offset);
*
*/
/*
* Start of the actual MI builder
*/
#define __genxml_cmd_length(cmd) cmd ## _length
#define __genxml_cmd_header(cmd) cmd ## _header
#define __genxml_cmd_pack(cmd) cmd ## _pack
#define gen_mi_builder_pack(b, cmd, dst, name) \
for (struct cmd name = { __genxml_cmd_header(cmd) }, \
*_dst = (struct cmd *)(dst); __builtin_expect(_dst != NULL, 1); \
__genxml_cmd_pack(cmd)((b)->user_data, (void *)_dst, &name), \
_dst = NULL)
#define gen_mi_builder_emit(b, cmd, name) \
gen_mi_builder_pack((b), cmd, __gen_get_batch_dwords((b)->user_data, __genxml_cmd_length(cmd)), name)
enum gen_mi_value_type {
GEN_MI_VALUE_TYPE_IMM,
GEN_MI_VALUE_TYPE_MEM32,
GEN_MI_VALUE_TYPE_MEM64,
GEN_MI_VALUE_TYPE_REG32,
GEN_MI_VALUE_TYPE_REG64,
};
struct gen_mi_value {
enum gen_mi_value_type type;
union {
uint64_t imm;
__gen_address_type addr;
uint32_t reg;
};
#if GEN_GEN >= 7 || GEN_IS_HASWELL
bool invert;
#endif
};
#if GEN_GEN >= 9
#define GEN_MI_BUILDER_MAX_MATH_DWORDS 256
#else
#define GEN_MI_BUILDER_MAX_MATH_DWORDS 64
#endif
struct gen_mi_builder {
__gen_user_data *user_data;
#if GEN_GEN >= 8 || GEN_IS_HASWELL
uint32_t gprs;
uint8_t gpr_refs[GEN_MI_BUILDER_NUM_ALLOC_GPRS];
unsigned num_math_dwords;
uint32_t math_dwords[GEN_MI_BUILDER_MAX_MATH_DWORDS];
#endif
};
static inline void
gen_mi_builder_init(struct gen_mi_builder *b, __gen_user_data *user_data)
{
memset(b, 0, sizeof(*b));
b->user_data = user_data;
#if GEN_GEN >= 8 || GEN_IS_HASWELL
b->gprs = 0;
b->num_math_dwords = 0;
#endif
}
static inline void
gen_mi_builder_flush_math(struct gen_mi_builder *b)
{
#if GEN_GEN >= 8 || GEN_IS_HASWELL
if (b->num_math_dwords == 0)
return;
uint32_t *dw = (uint32_t *)__gen_get_batch_dwords(b->user_data,
1 + b->num_math_dwords);
gen_mi_builder_pack(b, GENX(MI_MATH), dw, math) {
math.DWordLength = 1 + b->num_math_dwords - GENX(MI_MATH_length_bias);
}
memcpy(dw + 1, b->math_dwords, b->num_math_dwords * sizeof(uint32_t));
b->num_math_dwords = 0;
#endif
}
#define _GEN_MI_BUILDER_GPR_BASE 0x2600
/* The actual hardware limit on GPRs */
#define _GEN_MI_BUILDER_NUM_HW_GPRS 16
#if GEN_GEN >= 8 || GEN_IS_HASWELL
static inline bool
gen_mi_value_is_gpr(struct gen_mi_value val)
{
return (val.type == GEN_MI_VALUE_TYPE_REG32 ||
val.type == GEN_MI_VALUE_TYPE_REG64) &&
val.reg >= _GEN_MI_BUILDER_GPR_BASE &&
val.reg < _GEN_MI_BUILDER_GPR_BASE +
_GEN_MI_BUILDER_NUM_HW_GPRS * 8;
}
static inline bool
_gen_mi_value_is_allocated_gpr(struct gen_mi_value val)
{
return (val.type == GEN_MI_VALUE_TYPE_REG32 ||
val.type == GEN_MI_VALUE_TYPE_REG64) &&
val.reg >= _GEN_MI_BUILDER_GPR_BASE &&
val.reg < _GEN_MI_BUILDER_GPR_BASE +
GEN_MI_BUILDER_NUM_ALLOC_GPRS * 8;
}
static inline uint32_t
_gen_mi_value_as_gpr(struct gen_mi_value val)
{
assert(gen_mi_value_is_gpr(val));
assert(val.reg % 8 == 0);
return (val.reg - _GEN_MI_BUILDER_GPR_BASE) / 8;
}
static inline struct gen_mi_value
gen_mi_new_gpr(struct gen_mi_builder *b)
{
unsigned gpr = ffs(~b->gprs) - 1;
assert(gpr < GEN_MI_BUILDER_NUM_ALLOC_GPRS);
assert(b->gpr_refs[gpr] == 0);
b->gprs |= (1u << gpr);
b->gpr_refs[gpr] = 1;
return (struct gen_mi_value) {
.type = GEN_MI_VALUE_TYPE_REG64,
.reg = _GEN_MI_BUILDER_GPR_BASE + gpr * 8,
};
}
#endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
/** Take a reference to a gen_mi_value
*
* The MI builder uses reference counting to automatically free ALU GPRs for
* re-use in calculations. All gen_mi_* math functions consume the reference
* they are handed for each source and return a reference to a value which the
* caller must consume. In particular, if you pas the same value into a
* single gen_mi_* math function twice (say to add a number to itself), you
* are responsible for calling gen_mi_value_ref() to get a second reference
* because the gen_mi_* math function will consume it twice.
*/
static inline struct gen_mi_value
gen_mi_value_ref(struct gen_mi_builder *b, struct gen_mi_value val)
{
#if GEN_GEN >= 8 || GEN_IS_HASWELL
if (_gen_mi_value_is_allocated_gpr(val)) {
unsigned gpr = _gen_mi_value_as_gpr(val);
assert(gpr < GEN_MI_BUILDER_NUM_ALLOC_GPRS);
assert(b->gprs & (1u << gpr));
assert(b->gpr_refs[gpr] < UINT8_MAX);
b->gpr_refs[gpr]++;
}
#endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
return val;
}
/** Drop a reference to a gen_mi_value
*
* See also gen_mi_value_ref.
*/
static inline void
gen_mi_value_unref(struct gen_mi_builder *b, struct gen_mi_value val)
{
#if GEN_GEN >= 8 || GEN_IS_HASWELL
if (_gen_mi_value_is_allocated_gpr(val)) {
unsigned gpr = _gen_mi_value_as_gpr(val);
assert(gpr < GEN_MI_BUILDER_NUM_ALLOC_GPRS);
assert(b->gprs & (1u << gpr));
assert(b->gpr_refs[gpr] > 0);
if (--b->gpr_refs[gpr] == 0)
b->gprs &= ~(1u << gpr);
}
#endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
}
static inline struct gen_mi_value
gen_mi_imm(uint64_t imm)
{
return (struct gen_mi_value) {
.type = GEN_MI_VALUE_TYPE_IMM,
.imm = imm,
};
}
static inline struct gen_mi_value
gen_mi_reg32(uint32_t reg)
{
struct gen_mi_value val = {
.type = GEN_MI_VALUE_TYPE_REG32,
.reg = reg,
};
#if GEN_GEN >= 8 || GEN_IS_HASWELL
assert(!_gen_mi_value_is_allocated_gpr(val));
#endif
return val;
}
static inline struct gen_mi_value
gen_mi_reg64(uint32_t reg)
{
struct gen_mi_value val = {
.type = GEN_MI_VALUE_TYPE_REG64,
.reg = reg,
};
#if GEN_GEN >= 8 || GEN_IS_HASWELL
assert(!_gen_mi_value_is_allocated_gpr(val));
#endif
return val;
}
static inline struct gen_mi_value
gen_mi_mem32(__gen_address_type addr)
{
return (struct gen_mi_value) {
.type = GEN_MI_VALUE_TYPE_MEM32,
.addr = addr,
};
}
static inline struct gen_mi_value
gen_mi_mem64(__gen_address_type addr)
{
return (struct gen_mi_value) {
.type = GEN_MI_VALUE_TYPE_MEM64,
.addr = addr,
};
}
static inline struct gen_mi_value
gen_mi_value_half(struct gen_mi_value value, bool top_32_bits)
{
switch (value.type) {
case GEN_MI_VALUE_TYPE_IMM:
if (top_32_bits)
value.imm >>= 32;
else
value.imm &= 0xffffffffu;
return value;
case GEN_MI_VALUE_TYPE_MEM32:
assert(!top_32_bits);
return value;
case GEN_MI_VALUE_TYPE_MEM64:
if (top_32_bits)
value.addr = __gen_address_offset(value.addr, 4);
value.type = GEN_MI_VALUE_TYPE_MEM32;
return value;
case GEN_MI_VALUE_TYPE_REG32:
assert(!top_32_bits);
return value;
case GEN_MI_VALUE_TYPE_REG64:
if (top_32_bits)
value.reg += 4;
value.type = GEN_MI_VALUE_TYPE_REG32;
return value;
}
unreachable("Invalid gen_mi_value type");
}
static inline void
_gen_mi_copy_no_unref(struct gen_mi_builder *b,
struct gen_mi_value dst, struct gen_mi_value src)
{
#if GEN_GEN >= 7 || GEN_IS_HASWELL
/* TODO: We could handle src.invert by emitting a bit of math if we really
* wanted to.
*/
assert(!dst.invert && !src.invert);
#endif
gen_mi_builder_flush_math(b);
switch (dst.type) {
case GEN_MI_VALUE_TYPE_IMM:
unreachable("Cannot copy to an immediate");
case GEN_MI_VALUE_TYPE_MEM64:
case GEN_MI_VALUE_TYPE_REG64:
/* If the destination is 64 bits, we have to copy in two halves */
_gen_mi_copy_no_unref(b, gen_mi_value_half(dst, false),
gen_mi_value_half(src, false));
switch (src.type) {
case GEN_MI_VALUE_TYPE_IMM:
case GEN_MI_VALUE_TYPE_MEM64:
case GEN_MI_VALUE_TYPE_REG64:
/* TODO: Use MI_STORE_DATA_IMM::StoreQWord when we have it */
_gen_mi_copy_no_unref(b, gen_mi_value_half(dst, true),
gen_mi_value_half(src, true));
break;
default:
_gen_mi_copy_no_unref(b, gen_mi_value_half(dst, true),
gen_mi_imm(0));
break;
}
break;
case GEN_MI_VALUE_TYPE_MEM32:
switch (src.type) {
case GEN_MI_VALUE_TYPE_IMM:
gen_mi_builder_emit(b, GENX(MI_STORE_DATA_IMM), sdi) {
sdi.Address = dst.addr;
#if GEN_GEN >= 12
sdi.ForceWriteCompletionCheck = true;
#endif
sdi.ImmediateData = src.imm;
}
break;
case GEN_MI_VALUE_TYPE_MEM32:
case GEN_MI_VALUE_TYPE_MEM64:
#if GEN_GEN >= 8
gen_mi_builder_emit(b, GENX(MI_COPY_MEM_MEM), cmm) {
cmm.DestinationMemoryAddress = dst.addr;
cmm.SourceMemoryAddress = src.addr;
}
#elif GEN_IS_HASWELL
{
struct gen_mi_value tmp = gen_mi_new_gpr(b);
_gen_mi_copy_no_unref(b, tmp, src);
_gen_mi_copy_no_unref(b, dst, tmp);
gen_mi_value_unref(b, tmp);
}
#else
unreachable("Cannot do mem <-> mem copy on IVB and earlier");
#endif
break;
case GEN_MI_VALUE_TYPE_REG32:
case GEN_MI_VALUE_TYPE_REG64:
gen_mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = src.reg;
srm.MemoryAddress = dst.addr;
}
break;
default:
unreachable("Invalid gen_mi_value type");
}
break;
case GEN_MI_VALUE_TYPE_REG32:
switch (src.type) {
case GEN_MI_VALUE_TYPE_IMM:
gen_mi_builder_emit(b, GENX(MI_LOAD_REGISTER_IMM), lri) {
lri.RegisterOffset = dst.reg;
lri.DataDWord = src.imm;
}
break;
case GEN_MI_VALUE_TYPE_MEM32:
case GEN_MI_VALUE_TYPE_MEM64:
gen_mi_builder_emit(b, GENX(MI_LOAD_REGISTER_MEM), lrm) {
lrm.RegisterAddress = dst.reg;
lrm.MemoryAddress = src.addr;
}
break;
case GEN_MI_VALUE_TYPE_REG32:
case GEN_MI_VALUE_TYPE_REG64:
#if GEN_GEN >= 8 || GEN_IS_HASWELL
if (src.reg != dst.reg) {
gen_mi_builder_emit(b, GENX(MI_LOAD_REGISTER_REG), lrr) {
lrr.SourceRegisterAddress = src.reg;
lrr.DestinationRegisterAddress = dst.reg;
}
}
#else
unreachable("Cannot do reg <-> reg copy on IVB and earlier");
#endif
break;
default:
unreachable("Invalid gen_mi_value type");
}
break;
default:
unreachable("Invalid gen_mi_value type");
}
}
/** Store the value in src to the value represented by dst
*
* If the bit size of src and dst mismatch, this function does an unsigned
* integer cast. If src has more bits than dst, it takes the bottom bits. If
* src has fewer bits then dst, it fills the top bits with zeros.
*
* This function consumes one reference for each of src and dst.
*/
static inline void
gen_mi_store(struct gen_mi_builder *b,
struct gen_mi_value dst, struct gen_mi_value src)
{
_gen_mi_copy_no_unref(b, dst, src);
gen_mi_value_unref(b, src);
gen_mi_value_unref(b, dst);
}
static inline void
gen_mi_memset(struct gen_mi_builder *b, __gen_address_type dst,
uint32_t value, uint32_t size)
{
#if GEN_GEN >= 8 || GEN_IS_HASWELL
assert(b->num_math_dwords == 0);
#endif
/* This memset operates in units of dwords. */
assert(size % 4 == 0);
for (uint32_t i = 0; i < size; i += 4) {
gen_mi_store(b, gen_mi_mem32(__gen_address_offset(dst, i)),
gen_mi_imm(value));
}
}
/* NOTE: On IVB, this function stomps GEN7_3DPRIM_BASE_VERTEX */
static inline void
gen_mi_memcpy(struct gen_mi_builder *b, __gen_address_type dst,
__gen_address_type src, uint32_t size)
{
#if GEN_GEN >= 8 || GEN_IS_HASWELL
assert(b->num_math_dwords == 0);
#endif
/* This memcpy operates in units of dwords. */
assert(size % 4 == 0);
for (uint32_t i = 0; i < size; i += 4) {
struct gen_mi_value dst_val = gen_mi_mem32(__gen_address_offset(dst, i));
struct gen_mi_value src_val = gen_mi_mem32(__gen_address_offset(src, i));
#if GEN_GEN >= 8 || GEN_IS_HASWELL
gen_mi_store(b, dst_val, src_val);
#else
/* IVB does not have a general purpose register for command streamer
* commands. Therefore, we use an alternate temporary register.
*/
struct gen_mi_value tmp_reg = gen_mi_reg32(0x2440); /* GEN7_3DPRIM_BASE_VERTEX */
gen_mi_store(b, tmp_reg, src_val);
gen_mi_store(b, dst_val, tmp_reg);
#endif
}
}
/*
* MI_MATH Section. Only available on Haswell+
*/
#if GEN_GEN >= 8 || GEN_IS_HASWELL
/**
* Perform a predicated store (assuming the condition is already loaded
* in the MI_PREDICATE_RESULT register) of the value in src to the memory
* location specified by dst. Non-memory destinations are not supported.
*
* This function consumes one reference for each of src and dst.
*/
static inline void
gen_mi_store_if(struct gen_mi_builder *b,
struct gen_mi_value dst,
struct gen_mi_value src)
{
assert(!dst.invert && !src.invert);
gen_mi_builder_flush_math(b);
/* We can only predicate MI_STORE_REGISTER_MEM, so restrict the
* destination to be memory, and resolve the source to a temporary
* register if it isn't in one already.
*/
assert(dst.type == GEN_MI_VALUE_TYPE_MEM64 ||
dst.type == GEN_MI_VALUE_TYPE_MEM32);
if (src.type != GEN_MI_VALUE_TYPE_REG32 &&
src.type != GEN_MI_VALUE_TYPE_REG64) {
struct gen_mi_value tmp = gen_mi_new_gpr(b);
_gen_mi_copy_no_unref(b, tmp, src);
src = tmp;
}
if (dst.type == GEN_MI_VALUE_TYPE_MEM64) {
gen_mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = src.reg;
srm.MemoryAddress = dst.addr;
srm.PredicateEnable = true;
}
gen_mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = src.reg + 4;
srm.MemoryAddress = __gen_address_offset(dst.addr, 4);
srm.PredicateEnable = true;
}
} else {
gen_mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) {
srm.RegisterAddress = src.reg;
srm.MemoryAddress = dst.addr;
srm.PredicateEnable = true;
}
}
gen_mi_value_unref(b, src);
gen_mi_value_unref(b, dst);
}
static inline void
_gen_mi_builder_push_math(struct gen_mi_builder *b,
const uint32_t *dwords,
unsigned num_dwords)
{
assert(num_dwords < GEN_MI_BUILDER_MAX_MATH_DWORDS);
if (b->num_math_dwords + num_dwords > GEN_MI_BUILDER_MAX_MATH_DWORDS)
gen_mi_builder_flush_math(b);
memcpy(&b->math_dwords[b->num_math_dwords],
dwords, num_dwords * sizeof(*dwords));
b->num_math_dwords += num_dwords;
}
static inline uint32_t
_gen_mi_pack_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
{
struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
.Operand2 = operand2,
.Operand1 = operand1,
.ALUOpcode = opcode,
};
uint32_t dw;
GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
return dw;
}
static inline struct gen_mi_value
gen_mi_value_to_gpr(struct gen_mi_builder *b, struct gen_mi_value val)
{
if (gen_mi_value_is_gpr(val))
return val;
/* Save off the invert flag because it makes copy() grumpy */
bool invert = val.invert;
val.invert = false;
struct gen_mi_value tmp = gen_mi_new_gpr(b);
_gen_mi_copy_no_unref(b, tmp, val);
tmp.invert = invert;
return tmp;
}
static inline uint32_t
_gen_mi_math_load_src(struct gen_mi_builder *b,
unsigned src, struct gen_mi_value *val)
{
if (val->type == GEN_MI_VALUE_TYPE_IMM &&
(val->imm == 0 || val->imm == UINT64_MAX)) {
uint64_t imm = val->invert ? ~val->imm : val->imm;
return _gen_mi_pack_alu(imm ? MI_ALU_LOAD1 : MI_ALU_LOAD0, src, 0);
} else {
*val = gen_mi_value_to_gpr(b, *val);
return _gen_mi_pack_alu(val->invert ? MI_ALU_LOADINV : MI_ALU_LOAD,
src, _gen_mi_value_as_gpr(*val));
}
}
static inline struct gen_mi_value
gen_mi_math_binop(struct gen_mi_builder *b, uint32_t opcode,
struct gen_mi_value src0, struct gen_mi_value src1,
uint32_t store_op, uint32_t store_src)
{
struct gen_mi_value dst = gen_mi_new_gpr(b);
uint32_t dw[4];
dw[0] = _gen_mi_math_load_src(b, MI_ALU_SRCA, &src0);
dw[1] = _gen_mi_math_load_src(b, MI_ALU_SRCB, &src1);
dw[2] = _gen_mi_pack_alu(opcode, 0, 0);
dw[3] = _gen_mi_pack_alu(store_op, _gen_mi_value_as_gpr(dst), store_src);
_gen_mi_builder_push_math(b, dw, 4);
gen_mi_value_unref(b, src0);
gen_mi_value_unref(b, src1);
return dst;
}
static inline struct gen_mi_value
gen_mi_inot(struct gen_mi_builder *b, struct gen_mi_value val)
{
/* TODO These currently can't be passed into gen_mi_copy */
val.invert = !val.invert;
return val;
}
static inline struct gen_mi_value
gen_mi_iadd(struct gen_mi_builder *b,
struct gen_mi_value src0, struct gen_mi_value src1)
{
return gen_mi_math_binop(b, MI_ALU_ADD, src0, src1,
MI_ALU_STORE, MI_ALU_ACCU);
}
static inline struct gen_mi_value
gen_mi_iadd_imm(struct gen_mi_builder *b,
struct gen_mi_value src, uint64_t N)
{
if (N == 0)
return src;
return gen_mi_iadd(b, src, gen_mi_imm(N));
}
static inline struct gen_mi_value
gen_mi_isub(struct gen_mi_builder *b,
struct gen_mi_value src0, struct gen_mi_value src1)
{
return gen_mi_math_binop(b, MI_ALU_SUB, src0, src1,
MI_ALU_STORE, MI_ALU_ACCU);
}
static inline struct gen_mi_value
gen_mi_ult(struct gen_mi_builder *b,
struct gen_mi_value src0, struct gen_mi_value src1)
{
/* Compute "less than" by subtracting and storing the carry bit */
return gen_mi_math_binop(b, MI_ALU_SUB, src0, src1,
MI_ALU_STORE, MI_ALU_CF);
}
static inline struct gen_mi_value
gen_mi_uge(struct gen_mi_builder *b,
struct gen_mi_value src0, struct gen_mi_value src1)
{
/* Compute "less than" by subtracting and storing the carry bit */
return gen_mi_math_binop(b, MI_ALU_SUB, src0, src1,
MI_ALU_STOREINV, MI_ALU_CF);
}
static inline struct gen_mi_value
gen_mi_iand(struct gen_mi_builder *b,
struct gen_mi_value src0, struct gen_mi_value src1)
{
return gen_mi_math_binop(b, MI_ALU_AND, src0, src1,
MI_ALU_STORE, MI_ALU_ACCU);
}
/**
* Returns (src != 0) ? 1 : 0.
*/
static inline struct gen_mi_value
gen_mi_nz(struct gen_mi_builder *b, struct gen_mi_value src)
{
return gen_mi_math_binop(b, MI_ALU_ADD, src, gen_mi_imm(0),
MI_ALU_STOREINV, MI_ALU_ZF);
}
/**
* Returns (src == 0) ? 1 : 0.
*/
static inline struct gen_mi_value
gen_mi_z(struct gen_mi_builder *b, struct gen_mi_value src)
{
return gen_mi_math_binop(b, MI_ALU_ADD, src, gen_mi_imm(0),
MI_ALU_STORE, MI_ALU_ZF);
}
static inline struct gen_mi_value
gen_mi_ior(struct gen_mi_builder *b,
struct gen_mi_value src0, struct gen_mi_value src1)
{
return gen_mi_math_binop(b, MI_ALU_OR, src0, src1,
MI_ALU_STORE, MI_ALU_ACCU);
}
static inline struct gen_mi_value
gen_mi_imul_imm(struct gen_mi_builder *b,
struct gen_mi_value src, uint32_t N)
{
if (N == 0) {
gen_mi_value_unref(b, src);
return gen_mi_imm(0);
}
if (N == 1)
return src;
src = gen_mi_value_to_gpr(b, src);
struct gen_mi_value res = gen_mi_value_ref(b, src);
unsigned top_bit = 31 - __builtin_clz(N);
for (int i = top_bit - 1; i >= 0; i--) {
res = gen_mi_iadd(b, res, gen_mi_value_ref(b, res));
if (N & (1 << i))
res = gen_mi_iadd(b, res, gen_mi_value_ref(b, src));
}
gen_mi_value_unref(b, src);
return res;
}
static inline struct gen_mi_value
gen_mi_ishl_imm(struct gen_mi_builder *b,
struct gen_mi_value src, uint32_t shift)
{
struct gen_mi_value res = gen_mi_value_to_gpr(b, src);
for (unsigned i = 0; i < shift; i++)
res = gen_mi_iadd(b, res, gen_mi_value_ref(b, res));
return res;
}
static inline struct gen_mi_value
gen_mi_ushr32_imm(struct gen_mi_builder *b,
struct gen_mi_value src, uint32_t shift)
{
/* We right-shift by left-shifting by 32 - shift and taking the top 32 bits
* of the result. This assumes the top 32 bits are zero.
*/
if (shift > 64)
return gen_mi_imm(0);
if (shift > 32) {
struct gen_mi_value tmp = gen_mi_new_gpr(b);
_gen_mi_copy_no_unref(b, gen_mi_value_half(tmp, false),
gen_mi_value_half(src, true));
_gen_mi_copy_no_unref(b, gen_mi_value_half(tmp, true), gen_mi_imm(0));
gen_mi_value_unref(b, src);
src = tmp;
shift -= 32;
}
assert(shift <= 32);
struct gen_mi_value tmp = gen_mi_ishl_imm(b, src, 32 - shift);
struct gen_mi_value dst = gen_mi_new_gpr(b);
_gen_mi_copy_no_unref(b, gen_mi_value_half(dst, false),
gen_mi_value_half(tmp, true));
_gen_mi_copy_no_unref(b, gen_mi_value_half(dst, true), gen_mi_imm(0));
gen_mi_value_unref(b, tmp);
return dst;
}
static inline struct gen_mi_value
gen_mi_udiv32_imm(struct gen_mi_builder *b,
struct gen_mi_value N, uint32_t D)
{
/* We implicitly assume that N is only a 32-bit value */
if (D == 0) {
/* This is invalid but we should do something */
return gen_mi_imm(0);
} else if (util_is_power_of_two_or_zero(D)) {
return gen_mi_ushr32_imm(b, N, util_logbase2(D));
} else {
struct util_fast_udiv_info m = util_compute_fast_udiv_info(D, 32, 32);
assert(m.multiplier <= UINT32_MAX);
if (m.pre_shift)
N = gen_mi_ushr32_imm(b, N, m.pre_shift);
/* Do the 32x32 multiply into gpr0 */
N = gen_mi_imul_imm(b, N, m.multiplier);
if (m.increment)
N = gen_mi_iadd(b, N, gen_mi_imm(m.multiplier));
N = gen_mi_ushr32_imm(b, N, 32);
if (m.post_shift)
N = gen_mi_ushr32_imm(b, N, m.post_shift);
return N;
}
}
#endif /* MI_MATH section */
#endif /* GEN_MI_BUILDER_H */
|