summaryrefslogtreecommitdiffstats
path: root/src/glu/sgi/libnurbs/internals/mapdescv.cc
blob: 35b38b141b7af5c4f8cd64f8f671dbd760c48443 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
*/

/*
 * mapdescv.c++
 *
 */

#include "glimports.h"
#include "mystdio.h"
#include "myassert.h"
#include "mystring.h"
#include "mymath.h"
#include "nurbsconsts.h"
#include "mapdesc.h"

/*--------------------------------------------------------------------------
 * calcPartialVelocity - calculate maximum magnitude of a given partial
 * derivative
 *--------------------------------------------------------------------------
 */
REAL
Mapdesc::calcPartialVelocity (
    REAL *p,
    int	 stride,
    int	 ncols,
    int  partial,
    REAL range )
{
    REAL tmp[MAXORDER][MAXCOORDS];
    REAL mag[MAXORDER];

    assert( ncols <= MAXORDER );

    int j, k, t;
    // copy inhomogeneous control points into temporary array
    for( j=0; j != ncols; j++ ) 
	for( k=0; k != inhcoords; k++ )
	    tmp[j][k] = p[j*stride + k];

    for( t=0; t != partial; t++ ) 
	for( j=0; j != ncols-t-1; j++ ) 
	    for( k=0; k != inhcoords; k++ ) 
		tmp[j][k] = tmp[j+1][k] - tmp[j][k];

    // compute magnitude and store in mag array
    for( j=0; j != ncols-partial; j++ ) {
	mag[j] = 0.0;
	for( k=0; k != inhcoords; k++ )
	    mag[j] += tmp[j][k] * tmp[j][k];
    }

    // compute scale factor
    REAL fac = 1;
    REAL invt = 1.0 / range;
    for( t = ncols-1; t != ncols-1-partial; t-- ) 
	fac *= t * invt;

    // compute max magnitude of all entries in array
    REAL max = 0.0;
    for( j=0; j != ncols-partial; j++ )
	if( mag[j] > max ) max = mag[j];
    max = fac * sqrtf( (float) max );

    return max;
}

/*--------------------------------------------------------------------------
 * calcPartialVelocity - calculate maximum magnitude of a given partial
 * derivative
 *--------------------------------------------------------------------------
 */
REAL
Mapdesc::calcPartialVelocity (
    REAL *dist,
    REAL *p,
    int	 rstride,
    int	 cstride,
    int	 nrows,
    int	 ncols,
    int  spartial,
    int  tpartial,
    REAL srange, 
    REAL trange,
    int  side )
{
    REAL tmp[MAXORDER][MAXORDER][MAXCOORDS];
    REAL mag[MAXORDER][MAXORDER];

    assert( nrows <= MAXORDER );
    assert( ncols <= MAXORDER );

    REAL *tp = &tmp[0][0][0];
    REAL *mp = &mag[0][0];
    const int istride = sizeof( tmp[0]) / sizeof( tmp[0][0][0] );
    const int jstride = sizeof( tmp[0][0]) / sizeof( tmp[0][0][0] );
    /*
    const int kstride = sizeof( tmp[0][0][0]) / sizeof( tmp[0][0][0] );
    */
    const int mistride = sizeof( mag[0]) / sizeof( mag[0][0] );
    const int mjstride = sizeof( mag[0][0]) / sizeof( mag[0][0] );
    const int idist = nrows * istride;
    const int jdist = ncols * jstride;
    /*
    const int kdist = inhcoords * kstride;
    */
    const int id = idist - spartial * istride;
    const int jd = jdist - tpartial * jstride;

    {
	// copy control points
	REAL *ti = tp;
	REAL *qi = p;
	REAL *til = tp + idist;
	for( ; ti != til; ) {
	    REAL *tj = ti;
	    REAL *qj = qi;
	    REAL *tjl = ti + jdist;
	    for( ; tj != tjl;  ) {
		for( int k=0; k != inhcoords; k++ ) {
		    tj[k] = qj[k];
		}
		tj += jstride;
		qj += cstride;
	    }
	    ti += istride;
	    qi += rstride; 
	}
    }

    {
        // compute (s)-partial derivative control points
	REAL *til = tp + idist - istride;
	const REAL *till = til - ( spartial * istride );
	for( ; til != till; til -= istride )
	    for( REAL *ti = tp; ti != til; ti += istride )
		for( REAL *tj = ti, *tjl = tj + jdist; tj != tjl; tj += jstride )
		    for( int k=0; k != inhcoords; k++ )
			tj[k] = tj[k+istride] - tj[k];
    }

    {
        // compute (s,t)-partial derivative control points
	REAL *tjl = tp + jdist - jstride;
	const REAL *tjll = tjl - ( tpartial * jstride );
	for( ; tjl != tjll; tjl -= jstride )
	    for( REAL *tj = tp; tj != tjl; tj += jstride )
		for( REAL *ti = tj, *til = ti + id; ti != til; ti += istride )
		    for( int k=0; k != inhcoords; k++ ) 
			ti[k] = ti[k+jstride] - ti[k];

    }

    REAL max = 0.0;
    {
	// compute magnitude and store in mag array
	memset( (void *) mp, 0, sizeof( mag ) );
	for( REAL *ti = tp, *mi = mp, *til = tp + id; ti != til; ti += istride, mi += mistride )
	    for( REAL *tj = ti, *mj = mi, *tjl = ti + jd; tj != tjl; tj += jstride, mj += mjstride ) {
		for( int k=0; k != inhcoords; k++ )
		   *mj += tj[k] * tj[k];
		if( *mj > max ) max = *mj;
	    }

    }

    int i, j;

    // compute scale factor
    REAL fac = 1.0;
    {
	REAL invs = 1.0 / srange;
	REAL invt = 1.0 / trange;
	for( int s = nrows-1, slast = s-spartial; s != slast; s-- ) 
	    fac *= s * invs;
	for( int t = ncols-1, tlast = t-tpartial; t != tlast; t-- ) 
	    fac *= t * invt;
    }

    if( side == 0 ) {
	// compute max magnitude of first and last column
	dist[0] = 0.0;
	dist[1] = 0.0;
	for( i=0; i != nrows-spartial; i++ ) {
	    j = 0;
	    if( mag[i][j] > dist[0] ) dist[0] = mag[i][j];
    
	    j = ncols-tpartial-1;
	    if( mag[i][j] > dist[1] ) dist[1] = mag[i][j];
	}
	dist[0] = fac * sqrtf( dist[0] );
	dist[1] = fac * sqrtf( dist[1] );
    } else if( side == 1 ) {
	// compute max magnitude of first and last row
	dist[0] = 0.0;
	dist[1] = 0.0;
	for( j=0; j != ncols-tpartial; j++ ) {
	    i = 0;
	    if( mag[i][j] > dist[0] ) dist[0] = mag[i][j];
    
	    i = nrows-spartial-1;
	    if( mag[i][j] > dist[1] ) dist[1] = mag[i][j];
	}
	dist[0] = fac * sqrtf( dist[0] );
	dist[1] = fac * sqrtf( dist[1] );
    }

    max = fac * sqrtf( (float) max );

    return max;
}