summaryrefslogtreecommitdiffstats
path: root/src/glsl/opt_rebalance_tree.cpp
blob: 7ef0d2db39209aa7fbede1da21ee8b316f83ae6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file opt_rebalance_tree.cpp
 *
 * Rebalances a reduction expression tree.
 *
 * For reduction operations (e.g., x + y + z + w) we generate an expression
 * tree like
 *
 *        +
 *       / \
 *      +   w
 *     / \
 *    +   z
 *   / \
 *  x   y
 *
 * which we can rebalance into
 *
 *       +
 *      / \
 *     /   \
 *    +     +
 *   / \   / \
 *  x   y z   w
 *
 * to get a better instruction scheduling.
 *
 * See "Tree Rebalancing in Optimal Editor Time and Space" by Quentin F. Stout
 * and Bette L. Warren.
 *
 * Also see http://penguin.ewu.edu/~trolfe/DSWpaper/ for a very readable
 * explanation of the of the tree_to_vine() (rightward rotation) and
 * vine_to_tree() (leftward rotation) algorithms.
 */

#include "ir.h"
#include "ir_visitor.h"
#include "ir_rvalue_visitor.h"
#include "ir_optimization.h"
#include "main/macros.h" /* for MAX2 */

/* The DSW algorithm generates a degenerate tree (really, a linked list) in
 * tree_to_vine(). We'd rather not leave a binary expression with only one
 * operand, so trivial modifications (the ternary operators below) are needed
 * to ensure that we only rotate around the ir_expression nodes of the tree.
 */
static unsigned
tree_to_vine(ir_expression *root)
{
   unsigned size = 0;
   ir_rvalue *vine_tail = root;
   ir_rvalue *remainder = root->operands[1];

   while (remainder != NULL) {
      ir_expression *remainder_temp = remainder->as_expression();
      ir_expression *remainder_left = remainder_temp ?
         remainder_temp->operands[0]->as_expression() : NULL;

      if (remainder_left == NULL) {
         /* move vine_tail down one */
         vine_tail = remainder;
         remainder = remainder->as_expression() ?
            ((ir_expression *)remainder)->operands[1] : NULL;
         size++;
      } else {
         /* rotate */
         ir_expression *tempptr = remainder_left;
         ((ir_expression *)remainder)->operands[0] = tempptr->operands[1];
         tempptr->operands[1] = remainder;
         remainder = tempptr;
         ((ir_expression *)vine_tail)->operands[1] = tempptr;
      }
   }

   return size;
}

static void
compression(ir_expression *root, unsigned count)
{
   ir_expression *scanner = root;

   for (unsigned i = 0; i < count; i++) {
      ir_expression *child = (ir_expression *)scanner->operands[1];
      scanner->operands[1] = child->operands[1];
      scanner = (ir_expression *)scanner->operands[1];
      child->operands[1] = scanner->operands[0];
      scanner->operands[0] = child;
   }
}

static void
vine_to_tree(ir_expression *root, unsigned size)
{
   int n = size - 1;
   for (int m = n / 2; m > 0; m = n / 2) {
      compression(root, m);
      n -= m + 1;
   }
}

namespace {

class ir_rebalance_visitor : public ir_rvalue_enter_visitor {
public:
   ir_rebalance_visitor()
   {
      progress = false;
   }

   void handle_rvalue(ir_rvalue **rvalue);

   bool progress;
};

struct is_reduction_data {
   ir_expression_operation operation;
   const glsl_type *type;
   unsigned num_expr;
   bool is_reduction;
   bool contains_constant;
};

} /* anonymous namespace */

static bool
is_reduction_operation(ir_expression_operation operation)
{
   switch (operation) {
   case ir_binop_add:
   case ir_binop_mul:
   case ir_binop_bit_and:
   case ir_binop_bit_xor:
   case ir_binop_bit_or:
   case ir_binop_logic_and:
   case ir_binop_logic_xor:
   case ir_binop_logic_or:
   case ir_binop_min:
   case ir_binop_max:
      return true;
   default:
      return false;
   }
}

/* Note that this function does not attempt to recognize that reduction trees
 * are already balanced.
 *
 * We return false from this function for a number of reasons other than an
 * expression tree not being a mathematical reduction. Namely,
 *
 *    - if the tree contains multiple constants that we may be able to combine.
 *    - if the tree contains matrices:
 *       - they might contain vec4's with many constant components that we can
 *         simplify after splitting.
 *       - applying the matrix chain ordering optimization is more than just
 *         balancing an expression tree.
 *    - if the tree contains operations on multiple types.
 *    - if the tree contains ir_dereference_{array,record}, since foo[a+b] + c
 *      would trick the visiting pass.
 */
static void
is_reduction(ir_instruction *ir, void *data)
{
   struct is_reduction_data *ird = (struct is_reduction_data *)data;
   if (!ird->is_reduction)
      return;

   /* We don't want to balance a tree that contains multiple constants, since
    * we'll be able to constant fold them if they're not in separate subtrees.
    */
   if (ir->as_constant()) {
      if (ird->contains_constant) {
         ird->is_reduction = false;
      }
      ird->contains_constant = true;
      return;
   }

   /* Array/record dereferences have subtrees that are not part of the expr
    * tree we're balancing. Skip trees containing them.
    */
   if (ir->ir_type == ir_type_dereference_array ||
       ir->ir_type == ir_type_dereference_record) {
      ird->is_reduction = false;
      return;
   }

   ir_expression *expr = ir->as_expression();
   if (!expr)
      return;

   /* Non-constant matrices might still contain constant vec4 that we can
    * constant fold once split up. Handling matrices will need some more
    * work.
    */
   if (expr->type->is_matrix() ||
       expr->operands[0]->type->is_matrix() ||
       (expr->operands[1] && expr->operands[1]->type->is_matrix())) {
      ird->is_reduction = false;
      return;
   }

   if (ird->type != NULL && ird->type != expr->type) {
      ird->is_reduction = false;
      return;
   }
   ird->type = expr->type;

   ird->num_expr++;
   if (is_reduction_operation(expr->operation)) {
      if (ird->operation != 0 && ird->operation != expr->operation)
         ird->is_reduction = false;
      ird->operation = expr->operation;
   } else {
      ird->is_reduction = false;
   }
}

static ir_rvalue *
handle_expression(ir_expression *expr)
{
   struct is_reduction_data ird;
   ird.operation = (ir_expression_operation)0;
   ird.type = NULL;
   ird.num_expr = 0;
   ird.is_reduction = true;
   ird.contains_constant = false;

   visit_tree(expr, is_reduction, (void *)&ird);

   if (ird.is_reduction && ird.num_expr > 2) {
      ir_constant z = ir_constant(0.0f);
      ir_expression pseudo_root = ir_expression(ir_binop_add, &z, expr);

      unsigned size = tree_to_vine(&pseudo_root);
      vine_to_tree(&pseudo_root, size);

      expr = (ir_expression *)pseudo_root.operands[1];
   }
   return expr;
}

static void
update_types(ir_instruction *ir, void *)
{
   ir_expression *expr = ir->as_expression();
   if (!expr)
      return;

   expr->type =
      glsl_type::get_instance(expr->type->base_type,
                              MAX2(expr->operands[0]->type->components(),
                                   expr->operands[1]->type->components()),
                              1);
}

void
ir_rebalance_visitor::handle_rvalue(ir_rvalue **rvalue)
{
   if (!*rvalue)
      return;

   ir_expression *expr = (*rvalue)->as_expression();
   if (!expr || !is_reduction_operation(expr->operation))
      return;

   ir_rvalue *new_rvalue = handle_expression(expr);

   /* If we failed to rebalance the tree (e.g., because it wasn't a reduction,
    * or some other set of cases) new_rvalue will point to the same root as
    * before.
    *
    * Similarly, if the tree rooted at *rvalue was a reduction and was already
    * balanced, the algorithm will rearrange the tree but will ultimately
    * return an identical tree, so this check will handle that as well and
    * will not set progress = true.
    */
   if (new_rvalue == *rvalue)
      return;

   visit_tree(new_rvalue, NULL, NULL, update_types);

   *rvalue = new_rvalue;
   this->progress = true;
}

bool
do_rebalance_tree(exec_list *instructions)
{
   ir_rebalance_visitor v;

   v.run(instructions);

   return v.progress;
}