summaryrefslogtreecommitdiffstats
path: root/src/glsl/nir/nir_to_ssa.c
blob: 6b6a0779a6d2eb84fe0555d04c1e0937a23618d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Connor Abbott (cwabbott0@gmail.com)
 *
 */

#include "nir.h"
#include "malloc.h"
#include <unistd.h>

/*
 * Implements the classic to-SSA algorithm described by Cytron et. al. in
 * "Efficiently Computing Static Single Assignment Form and the Control
 * Dependence Graph."
 */

/* inserts a phi node of the form reg = phi(reg, reg, reg, ...) */

static void
insert_trivial_phi(nir_register *reg, nir_block *block, void *mem_ctx)
{
   nir_phi_instr *instr = nir_phi_instr_create(mem_ctx);

   instr->dest.reg.reg = reg;
   struct set_entry *entry;
   set_foreach(block->predecessors, entry) {
      nir_block *pred = (nir_block *) entry->key;

      nir_phi_src *src = ralloc(mem_ctx, nir_phi_src);
      src->pred = pred;
      src->src.is_ssa = false;
      src->src.reg.base_offset = 0;
      src->src.reg.indirect = NULL;
      src->src.reg.reg = reg;
      exec_list_push_tail(&instr->srcs, &src->node);
   }

   nir_instr_insert_before_block(block, &instr->instr);
}

static void
insert_phi_nodes(nir_function_impl *impl)
{
   void *mem_ctx = ralloc_parent(impl);

   unsigned *work = calloc(impl->num_blocks, sizeof(unsigned));
   unsigned *has_already = calloc(impl->num_blocks, sizeof(unsigned));

   /*
    * Since the work flags already prevent us from inserting a node that has
    * ever been inserted into W, we don't need to use a set to represent W.
    * Also, since no block can ever be inserted into W more than once, we know
    * that the maximum size of W is the number of basic blocks in the
    * function. So all we need to handle W is an array and a pointer to the
    * next element to be inserted and the next element to be removed.
    */
   nir_block **W = malloc(impl->num_blocks * sizeof(nir_block *));
   unsigned w_start, w_end;

   unsigned iter_count = 0;

   nir_index_blocks(impl);

   foreach_list_typed(nir_register, reg, node, &impl->registers) {
      if (reg->num_array_elems != 0)
         continue;

      w_start = w_end = 0;
      iter_count++;

      struct set_entry *entry;
      set_foreach(reg->defs, entry) {
         nir_instr *def = (nir_instr *) entry->key;
         if (work[def->block->index] < iter_count)
            W[w_end++] = def->block;
         work[def->block->index] = iter_count;
      }

      while (w_start != w_end) {
         nir_block *cur = W[w_start++];
         set_foreach(cur->dom_frontier, entry) {
            nir_block *next = (nir_block *) entry->key;

            /*
             * If there's more than one return statement, then the end block
             * can be a join point for some definitions. However, there are
             * no instructions in the end block, so nothing would use those
             * phi nodes. Of course, we couldn't place those phi nodes
             * anyways due to the restriction of having no instructions in the
             * end block...
             */
            if (next == impl->end_block)
               continue;

            if (has_already[next->index] < iter_count) {
               insert_trivial_phi(reg, next, mem_ctx);
               has_already[next->index] = iter_count;
               if (work[next->index] < iter_count) {
                  work[next->index] = iter_count;
                  W[w_end++] = next;
               }
            }
         }
      }
   }

   free(work);
   free(has_already);
   free(W);
}

typedef struct {
   nir_ssa_def **stack;
   int index;
   unsigned num_defs; /** < used to add indices to debug names */
#ifdef DEBUG
   unsigned stack_size;
#endif
} reg_state;

typedef struct {
   reg_state *states;
   void *mem_ctx;
   nir_instr *parent_instr;
   nir_if *parent_if;
   nir_function_impl *impl;

   /* map from SSA value -> original register */
   struct hash_table *ssa_map;

   /* predicate for this instruction */
   nir_src *predicate;
} rewrite_state;

static nir_ssa_def *get_ssa_src(nir_register *reg, rewrite_state *state)
{
   unsigned index = reg->index;

   if (state->states[index].index == -1) {
      /*
       * We're using an undefined register, create a new undefined SSA value
       * to preserve the information that this source is undefined
       */
      nir_ssa_undef_instr *instr = nir_ssa_undef_instr_create(state->mem_ctx);
      nir_ssa_def_init(&instr->instr, &instr->def,
                       reg->num_components, NULL);

      /*
       * We could just insert the undefined instruction before the instruction
       * we're rewriting, but we could be rewriting a phi source in which case
       * we can't do that, so do the next easiest thing - insert it at the
       * beginning of the program. In the end, it doesn't really matter where
       * the undefined instructions are because they're going to be ignored
       * in the backend.
       */
      nir_instr_insert_before_cf_list(&state->impl->body, &instr->instr);
      return &instr->def;
   }

   return state->states[index].stack[state->states[index].index];
}

static bool
rewrite_use(nir_src *src, void *_state)
{
   rewrite_state *state = (rewrite_state *) _state;

   if (src->is_ssa)
      return true;

   unsigned index = src->reg.reg->index;

   if (state->states[index].stack == NULL)
      return true;

   src->is_ssa = true;
   src->ssa = get_ssa_src(src->reg.reg, state);

   if (state->parent_instr)
      _mesa_set_add(src->ssa->uses, _mesa_hash_pointer(state->parent_instr),
                  state->parent_instr);
   else
      _mesa_set_add(src->ssa->if_uses, _mesa_hash_pointer(state->parent_if),
                  state->parent_if);
   return true;
}

static bool
rewrite_def_forwards(nir_dest *dest, void *_state)
{
   rewrite_state *state = (rewrite_state *) _state;

   if (dest->is_ssa)
      return true;

   nir_register *reg = dest->reg.reg;
   unsigned index = reg->index;

   if (state->states[index].stack == NULL)
      return true;

   nir_alu_instr *csel = NULL;
   if (state->predicate) {
         /*
          * To capture the information that we may or may not overwrite this
          * register due to the predicate, we need to emit a conditional select
          * that takes the old version of the register and the new version.
          * This is basically a watered-down version of the Psi-SSA
          * representation, without any of the optimizations.
          *
          * TODO: do we actually need full-blown Psi-SSA?
          */
      csel = nir_alu_instr_create(state->mem_ctx, nir_op_bcsel);
      csel->dest.dest.reg.reg = dest->reg.reg;
      csel->dest.write_mask = (1 << dest->reg.reg->num_components) - 1;
      csel->src[0].src = nir_src_copy(*state->predicate, state->mem_ctx);
      /* Splat the condition to all channels */
      memset(csel->src[0].swizzle, 0, sizeof csel->src[0].swizzle);
      csel->src[2].src.is_ssa = true;
      csel->src[2].src.ssa = get_ssa_src(dest->reg.reg, state);
   }

   dest->is_ssa = true;

   char *name = NULL;
   if (dest->reg.reg->name)
      name = ralloc_asprintf(state->mem_ctx, "%s_%u", dest->reg.reg->name,
                             state->states[index].num_defs);

   nir_ssa_def_init(state->parent_instr, &dest->ssa,
                    reg->num_components, name);

   /* push our SSA destination on the stack */
   state->states[index].index++;
   assert(state->states[index].index < state->states[index].stack_size);
   state->states[index].stack[state->states[index].index] = &dest->ssa;
   state->states[index].num_defs++;

   _mesa_hash_table_insert(state->ssa_map, &dest->ssa, reg);

   if (state->predicate) {
      csel->src[1].src.is_ssa = true;
      csel->src[1].src.ssa = &dest->ssa;

      nir_instr *old_parent_instr = state->parent_instr;
      nir_src *old_predicate = state->predicate;
      state->parent_instr = &csel->instr;
      state->predicate = NULL;
      rewrite_def_forwards(&csel->dest.dest, state);
      state->parent_instr = old_parent_instr;
      state->predicate = old_predicate;

      nir_instr_insert_after(state->parent_instr, &csel->instr);
   }

   return true;
}

static void
rewrite_alu_instr_forward(nir_alu_instr *instr, rewrite_state *state)
{
   state->parent_instr = &instr->instr;
   state->predicate = instr->has_predicate ? &instr->predicate : NULL;

   nir_foreach_src(&instr->instr, rewrite_use, state);

   nir_register *reg = instr->dest.dest.reg.reg;
   unsigned index = reg->index;

   if (state->states[index].stack == NULL)
      return;

   unsigned write_mask = instr->dest.write_mask;
   if (write_mask != (1 << instr->dest.dest.reg.reg->num_components) - 1) {
      /*
       * Calculate the number of components the final instruction, which for
       * per-component things is the number of output components of the
       * instruction and non-per-component things is the number of enabled
       * channels in the write mask.
       */
      unsigned num_components;
      if (nir_op_infos[instr->op].output_size == 0) {
         unsigned temp = (write_mask & 0x5) + ((write_mask >> 1) & 0x5);
         num_components = (temp & 0x3) + ((temp >> 2) & 0x3);
      } else {
         num_components = nir_op_infos[instr->op].output_size;
      }

      char *name = NULL;
      if (instr->dest.dest.reg.reg->name)
         name = ralloc_asprintf(state->mem_ctx, "%s_%u",
                                reg->name, state->states[index].num_defs);

      instr->dest.write_mask = (1 << num_components) - 1;
      instr->dest.dest.is_ssa = true;
      nir_ssa_def_init(&instr->instr, &instr->dest.dest.ssa,
                       num_components, name);

      if (nir_op_infos[instr->op].output_size == 0) {
         /*
          * When we change the output writemask, we need to change the
          * swizzles for per-component inputs too
          */
         for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
            if (nir_op_infos[instr->op].input_sizes[i] != 0)
               continue;

            unsigned new_swizzle[4] = {0, 0, 0, 0};

            /*
             * We keep two indices:
             * 1. The index of the original (non-SSA) component
             * 2. The index of the post-SSA, compacted, component
             *
             * We need to map the swizzle component at index 1 to the swizzle
             * component at index 2.
             */

            unsigned ssa_index = 0;
            for (unsigned index = 0; index < 4; index++) {
               if (!((write_mask >> index) & 1))
                  continue;

               new_swizzle[ssa_index] = instr->src[i].swizzle[index];
               ssa_index++;
            }

            for (unsigned j = 0; j < 4; j++)
               instr->src[i].swizzle[j] = new_swizzle[j];
         }
      }

      nir_op op;
      switch (reg->num_components) {
      case 2: op = nir_op_vec2; break;
      case 3: op = nir_op_vec3; break;
      case 4: op = nir_op_vec4; break;
      default: assert(0); break;
      }

      nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, op);

      vec->dest.dest.reg.reg = reg;
      vec->dest.write_mask = (1 << reg->num_components) - 1;

      nir_ssa_def *old_src = get_ssa_src(reg, state);
      nir_ssa_def *new_src = &instr->dest.dest.ssa;

      unsigned ssa_index = 0;
      for (unsigned i = 0; i < reg->num_components; i++) {
         vec->src[i].src.is_ssa = true;
         if ((write_mask >> i) & 1) {
            vec->src[i].src.ssa = new_src;
            if (nir_op_infos[instr->op].output_size == 0)
               vec->src[i].swizzle[0] = ssa_index;
            else
               vec->src[i].swizzle[0] = i;
            ssa_index++;
         } else {
            vec->src[i].src.ssa = old_src;
            vec->src[i].swizzle[0] = i;
         }
      }

      vec->has_predicate = instr->has_predicate;
      if (instr->has_predicate)
         vec->predicate = nir_src_copy(instr->predicate, state->mem_ctx);

      nir_instr_insert_after(&instr->instr, &vec->instr);

      state->parent_instr = &vec->instr;
      state->predicate = vec->has_predicate ? &vec->predicate : NULL;
      rewrite_def_forwards(&vec->dest.dest, state);
   } else {
      rewrite_def_forwards(&instr->dest.dest, state);
   }
}

static void
rewrite_phi_instr(nir_phi_instr *instr, rewrite_state *state)
{
   state->parent_instr = &instr->instr;
   state->predicate = NULL;
   rewrite_def_forwards(&instr->dest, state);
}

static nir_src *
get_instr_predicate(nir_instr *instr)
{
   nir_alu_instr *alu_instr;
   nir_load_const_instr *load_const_instr;
   nir_intrinsic_instr *intrinsic_instr;
   nir_tex_instr *tex_instr;

   switch (instr->type) {
   case nir_instr_type_alu:
      alu_instr = nir_instr_as_alu(instr);
      if (alu_instr->has_predicate)
         return &alu_instr->predicate;
      else
         return NULL;

   case nir_instr_type_load_const:
      load_const_instr = nir_instr_as_load_const(instr);
      if (load_const_instr->has_predicate)
         return &load_const_instr->predicate;
      else
         return NULL;

   case nir_instr_type_intrinsic:
      intrinsic_instr = nir_instr_as_intrinsic(instr);
      if (intrinsic_instr->has_predicate)
         return &intrinsic_instr->predicate;
      else
         return NULL;

   case nir_instr_type_tex:
      tex_instr = nir_instr_as_tex(instr);
      if (tex_instr->has_predicate)
         return &tex_instr->predicate;
      else
         return NULL;

   default:
      break;
   }

   return NULL;
}

static void
rewrite_instr_forward(nir_instr *instr, rewrite_state *state)
{
   if (instr->type == nir_instr_type_alu) {
      rewrite_alu_instr_forward(nir_instr_as_alu(instr), state);
      return;
   }

   if (instr->type == nir_instr_type_phi) {
      rewrite_phi_instr(nir_instr_as_phi(instr), state);
      return;
   }

   state->parent_instr = instr;
   state->predicate = get_instr_predicate(instr);

   nir_foreach_src(instr, rewrite_use, state);
   nir_foreach_dest(instr, rewrite_def_forwards, state);
}

static void
rewrite_phi_sources(nir_block *block, nir_block *pred, rewrite_state *state)
{
   nir_foreach_instr(block, instr) {
      if (instr->type != nir_instr_type_phi)
         break;

      nir_phi_instr *phi_instr = nir_instr_as_phi(instr);

      state->parent_instr = instr;

      foreach_list_typed(nir_phi_src, src, node, &phi_instr->srcs) {
         if (src->pred == pred) {
            rewrite_use(&src->src, state);
            break;
         }
      }
   }
}

static bool
rewrite_def_backwards(nir_dest *dest, void *_state)
{
   rewrite_state *state = (rewrite_state *) _state;

   if (!dest->is_ssa)
      return true;

   struct hash_entry *entry =
      _mesa_hash_table_search(state->ssa_map, &dest->ssa);

   if (!entry)
      return true;

   nir_register *reg = (nir_register *) entry->data;
   unsigned index = reg->index;

   state->states[index].index--;
   assert(state->states[index].index >= -1);

   return true;
}

static void
rewrite_instr_backwards(nir_instr *instr, rewrite_state *state)
{
   nir_foreach_dest(instr, rewrite_def_backwards, state);
}

static void
rewrite_block(nir_block *block, rewrite_state *state)
{
   /* This will skip over any instructions after the current one, which is
    * what we want because those instructions (vector gather, conditional
    * select) will already be in SSA form.
    */
   nir_foreach_instr_safe(block, instr) {
      rewrite_instr_forward(instr, state);
   }

   if (block != state->impl->end_block &&
       !nir_cf_node_is_last(&block->cf_node) &&
       nir_cf_node_next(&block->cf_node)->type == nir_cf_node_if) {
      nir_if *if_stmt = nir_cf_node_as_if(nir_cf_node_next(&block->cf_node));
      state->parent_instr = NULL;
      state->parent_if = if_stmt;
      rewrite_use(&if_stmt->condition, state);
   }

   if (block->successors[0])
      rewrite_phi_sources(block->successors[0], block, state);
   if (block->successors[1])
      rewrite_phi_sources(block->successors[1], block, state);

   for (unsigned i = 0; i < block->num_dom_children; i++)
      rewrite_block(block->dom_children[i], state);

   nir_foreach_instr_reverse(block, instr) {
      rewrite_instr_backwards(instr, state);
   }
}

static void
remove_unused_regs(nir_function_impl *impl, rewrite_state *state)
{
   foreach_list_typed_safe(nir_register, reg, node, &impl->registers) {
      if (state->states[reg->index].stack != NULL)
         exec_node_remove(&reg->node);
   }
}

static void
init_rewrite_state(nir_function_impl *impl, rewrite_state *state)
{
   state->impl = impl;
   state->mem_ctx = ralloc_parent(impl);
   state->ssa_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
                                            _mesa_key_pointer_equal);
   state->states = ralloc_array(NULL, reg_state, impl->reg_alloc);

   foreach_list_typed(nir_register, reg, node, &impl->registers) {
      assert(reg->index < impl->reg_alloc);
      if (reg->num_array_elems > 0) {
         state->states[reg->index].stack = NULL;
      } else {
         /*
          * Calculate a conservative estimate of the stack size based on the
          * number of definitions there are. Note that this function *must* be
          * called after phi nodes are inserted so we can count phi node
          * definitions too.
          */
         unsigned stack_size = 0;
         struct set_entry *entry;
         set_foreach(reg->defs, entry) {
            nir_instr *def = (nir_instr *) entry->key;

            stack_size++;

            /*
             * predicates generate an additional predicate destination that
             * gets pushed on the stack
             *
             * Note: ALU instructions generate an additional instruction too,
             * but as of now only the additional instruction is pushed onto
             * the stack, and not the original instruction because it doesn't
             * need to be (actually, we could do the same with predicates,
             * but it was easier to just use the existing codepath).
             */

            if (def->type == nir_instr_type_intrinsic) {
               nir_intrinsic_instr *intrinsic_instr =
                  nir_instr_as_intrinsic(def);
               if (nir_intrinsic_infos[intrinsic_instr->intrinsic].has_dest &&
                   intrinsic_instr->has_predicate)
                  stack_size++;
            } else {
               if (get_instr_predicate(def) != NULL)
                  stack_size++;
            }
         }

         state->states[reg->index].stack = ralloc_array(state->states,
                                                        nir_ssa_def *,
                                                        stack_size);
#ifdef DEBUG
         state->states[reg->index].stack_size = stack_size;
#endif
         state->states[reg->index].index = -1;
         state->states[reg->index].num_defs = 0;
      }
   }
}

static void
destroy_rewrite_state(rewrite_state *state)
{
   _mesa_hash_table_destroy(state->ssa_map, NULL);
   ralloc_free(state->states);
}

void
nir_convert_to_ssa_impl(nir_function_impl *impl)
{
   nir_metadata_require(impl, nir_metadata_dominance);

   insert_phi_nodes(impl);

   rewrite_state state;
   init_rewrite_state(impl, &state);

   rewrite_block(impl->start_block, &state);

   remove_unused_regs(impl, &state);

   nir_metadata_preserve(impl, nir_metadata_block_index |
                               nir_metadata_dominance);

   destroy_rewrite_state(&state);
}

void
nir_convert_to_ssa(nir_shader *shader)
{
   nir_foreach_overload(shader, overload) {
      if (overload->impl)
         nir_convert_to_ssa_impl(overload->impl);
   }
}