summaryrefslogtreecommitdiffstats
path: root/src/glsl/nir/nir_lower_variables.c
blob: 4844b7c6ed03064a4507b4a6c53c17af5e8824bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Jason Ekstrand (jason@jlekstrand.net)
 *
 */

#include "nir.h"

struct deref_node {
   struct deref_node *parent;
   const struct glsl_type *type;

   bool lower_to_ssa;

   struct set *loads;
   struct set *stores;
   struct set *copies;

   nir_ssa_def **def_stack;
   nir_ssa_def **def_stack_tail;

   struct deref_node *wildcard;
   struct deref_node *indirect;
   struct deref_node *children[0];
};

struct lower_variables_state {
   void *mem_ctx;
   void *dead_ctx;
   nir_function_impl *impl;

   /* A hash table mapping variables to deref_node data */
   struct hash_table *deref_var_nodes;

   /* A hash table mapping fully-qualified direct dereferences, i.e.
    * dereferences with no indirect or wildcard array dereferences, to
    * deref_node data.
    *
    * At the moment, we only lower loads, stores, and copies that can be
    * trivially lowered to loads and stores, i.e. copies with no indirects
    * and no wildcards.  If a part of a variable that is being loaded from
    * and/or stored into is also involved in a copy operation with
    * wildcards, then we lower that copy operation to loads and stores, but
    * otherwise we leave copies with wildcards alone. Since the only derefs
    * used in these loads, stores, and trivial copies are ones with no
    * wildcards and no indirects, these are precisely the derefs that we
    * can actually consider lowering.
    */
   struct hash_table *direct_deref_nodes;

   /* A hash table mapping phi nodes to deref_state data */
   struct hash_table *phi_table;
};

/* The following two functions implement a hash and equality check for
 * variable dreferences.  When the hash or equality function encounters an
 * array, all indirects are treated as equal and are never equal to a
 * direct dereference or a wildcard.
 */
static uint32_t
hash_deref(const void *void_deref)
{
   uint32_t hash = _mesa_fnv32_1a_offset_bias;

   const nir_deref_var *deref_var = void_deref;
   hash = _mesa_fnv32_1a_accumulate(hash, deref_var->var);

   for (const nir_deref *deref = deref_var->deref.child;
        deref; deref = deref->child) {
      switch (deref->deref_type) {
      case nir_deref_type_array: {
         nir_deref_array *deref_array = nir_deref_as_array(deref);

         hash = _mesa_fnv32_1a_accumulate(hash, deref_array->deref_array_type);

         if (deref_array->deref_array_type == nir_deref_array_type_direct)
            hash = _mesa_fnv32_1a_accumulate(hash, deref_array->base_offset);
         break;
      }
      case nir_deref_type_struct: {
         nir_deref_struct *deref_struct = nir_deref_as_struct(deref);
         hash = _mesa_fnv32_1a_accumulate(hash, deref_struct->index);
         break;
      }
      default:
         assert("Invalid deref chain");
      }
   }

   return hash;
}

static bool
derefs_equal(const void *void_a, const void *void_b)
{
   const nir_deref_var *a_var = void_a;
   const nir_deref_var *b_var = void_b;

   if (a_var->var != b_var->var)
      return false;

   for (const nir_deref *a = a_var->deref.child, *b = b_var->deref.child;
        a != NULL; a = a->child, b = b->child) {
      if (a->deref_type != b->deref_type)
         return false;

      switch (a->deref_type) {
      case nir_deref_type_array: {
         nir_deref_array *a_arr = nir_deref_as_array(a);
         nir_deref_array *b_arr = nir_deref_as_array(b);

         if (a_arr->deref_array_type != b_arr->deref_array_type)
            return false;

         if (a_arr->deref_array_type == nir_deref_array_type_direct &&
             a_arr->base_offset != b_arr->base_offset)
            return false;
         break;
      }
      case nir_deref_type_struct:
         if (nir_deref_as_struct(a)->index != nir_deref_as_struct(b)->index)
            return false;
         break;
      default:
         assert("Invalid deref chain");
         return false;
      }

      assert((a->child == NULL) == (b->child == NULL));
      if((a->child == NULL) != (b->child == NULL))
         return false;
   }

   return true;
}

static int
type_get_length(const struct glsl_type *type)
{
   switch (glsl_get_base_type(type)) {
   case GLSL_TYPE_STRUCT:
   case GLSL_TYPE_ARRAY:
      return glsl_get_length(type);
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_BOOL:
      if (glsl_type_is_matrix(type))
         return glsl_get_matrix_columns(type);
      else
         return glsl_get_vector_elements(type);
   default:
      unreachable("Invalid deref base type");
   }
}

static struct deref_node *
deref_node_create(struct deref_node *parent,
                  const struct glsl_type *type, void *mem_ctx)
{
   size_t size = sizeof(struct deref_node) +
                 type_get_length(type) * sizeof(struct deref_node *);

   struct deref_node *node = rzalloc_size(mem_ctx, size);
   node->type = type;
   node->parent = parent;

   return node;
}

/* Gets the deref_node for the given deref chain and creates it if it
 * doesn't yet exist.  If the deref is fully-qualified and direct and
 * add_to_direct_deref_nodes is true, it will be added to the hash table of
 * of fully-qualified direct derefs.
 */
static struct deref_node *
get_deref_node(nir_deref_var *deref, bool add_to_direct_deref_nodes,
               struct lower_variables_state *state)
{
   bool is_direct = true;

   struct deref_node *node;

   struct hash_entry *var_entry =
      _mesa_hash_table_search(state->deref_var_nodes, deref->var);

   if (var_entry) {
      node = var_entry->data;
   } else {
      node = deref_node_create(NULL, deref->deref.type, state->dead_ctx);
      _mesa_hash_table_insert(state->deref_var_nodes, deref->var, node);
   }

   for (nir_deref *tail = deref->deref.child; tail; tail = tail->child) {
      switch (tail->deref_type) {
      case nir_deref_type_struct: {
         nir_deref_struct *deref_struct = nir_deref_as_struct(tail);

         assert(deref_struct->index < type_get_length(node->type));

         if (node->children[deref_struct->index] == NULL)
            node->children[deref_struct->index] =
               deref_node_create(node, tail->type, state->dead_ctx);

         node = node->children[deref_struct->index];
         break;
      }

      case nir_deref_type_array: {
         nir_deref_array *arr = nir_deref_as_array(tail);

         switch (arr->deref_array_type) {
         case nir_deref_array_type_direct:
            /* This is possible if a loop unrolls and generates an
             * out-of-bounds offset.  We need to handle this at least
             * somewhat gracefully.
             */
            if (arr->base_offset >= type_get_length(node->type))
               return NULL;

            if (node->children[arr->base_offset] == NULL)
               node->children[arr->base_offset] =
                  deref_node_create(node, tail->type, state->dead_ctx);

            node = node->children[arr->base_offset];
            break;

         case nir_deref_array_type_indirect:
            if (node->indirect == NULL)
               node->indirect = deref_node_create(node, tail->type,
                                                  state->dead_ctx);

            node = node->indirect;
            is_direct = false;
            break;

         case nir_deref_array_type_wildcard:
            if (node->wildcard == NULL)
               node->wildcard = deref_node_create(node, tail->type,
                                                  state->dead_ctx);

            node = node->wildcard;
            is_direct = false;
            break;

         default:
            unreachable("Invalid array deref type");
         }
         break;
      }
      default:
         unreachable("Invalid deref type");
      }
   }

   assert(node);

   if (is_direct && add_to_direct_deref_nodes)
      _mesa_hash_table_insert(state->direct_deref_nodes, deref, node);

   return node;
}

/* \sa foreach_deref_node_match */
static bool
foreach_deref_node_worker(struct deref_node *node, nir_deref *deref,
                          bool (* cb)(struct deref_node *node,
                                      struct lower_variables_state *state),
                          struct lower_variables_state *state)
{
   if (deref->child == NULL) {
      return cb(node, state);
   } else {
      switch (deref->child->deref_type) {
      case nir_deref_type_array: {
         nir_deref_array *arr = nir_deref_as_array(deref->child);
         assert(arr->deref_array_type == nir_deref_array_type_direct);
         if (node->children[arr->base_offset] &&
             !foreach_deref_node_worker(node->children[arr->base_offset],
                                        deref->child, cb, state))
            return false;

         if (node->wildcard &&
             !foreach_deref_node_worker(node->wildcard,
                                        deref->child, cb, state))
            return false;

         return true;
      }

      case nir_deref_type_struct: {
         nir_deref_struct *str = nir_deref_as_struct(deref->child);
         return foreach_deref_node_worker(node->children[str->index],
                                          deref->child, cb, state);
      }

      default:
         unreachable("Invalid deref child type");
      }
   }
}

/* Walks over every "matching" deref_node and calls the callback.  A node
 * is considered to "match" if either refers to that deref or matches up t
 * a wildcard.  In other words, the following would match a[6].foo[3].bar:
 *
 * a[6].foo[3].bar
 * a[*].foo[3].bar
 * a[6].foo[*].bar
 * a[*].foo[*].bar
 *
 * The given deref must be a full-length and fully qualified (no wildcards
 * or indirects) deref chain.
 */
static bool
foreach_deref_node_match(nir_deref_var *deref,
                         bool (* cb)(struct deref_node *node,
                                     struct lower_variables_state *state),
                         struct lower_variables_state *state)
{
   nir_deref_var var_deref = *deref;
   var_deref.deref.child = NULL;
   struct deref_node *node = get_deref_node(&var_deref, false, state);

   if (node == NULL)
      return false;

   return foreach_deref_node_worker(node, &deref->deref, cb, state);
}

/* \sa deref_may_be_aliased */
static bool
deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref,
                          struct lower_variables_state *state)
{
   if (deref->child == NULL) {
      return false;
   } else {
      switch (deref->child->deref_type) {
      case nir_deref_type_array: {
         nir_deref_array *arr = nir_deref_as_array(deref->child);
         if (arr->deref_array_type == nir_deref_array_type_indirect)
            return true;

         assert(arr->deref_array_type == nir_deref_array_type_direct);

         if (node->children[arr->base_offset] &&
             deref_may_be_aliased_node(node->children[arr->base_offset],
                                       deref->child, state))
            return true;

         if (node->wildcard &&
             deref_may_be_aliased_node(node->wildcard, deref->child, state))
            return true;

         return false;
      }

      case nir_deref_type_struct: {
         nir_deref_struct *str = nir_deref_as_struct(deref->child);
         if (node->children[str->index]) {
             return deref_may_be_aliased_node(node->children[str->index],
                                              deref->child, state);
         } else {
            return false;
         }
      }

      default:
         unreachable("Invalid nir_deref child type");
      }
   }
}

/* Returns true if there are no indirects that can ever touch this deref.
 *
 * For example, if the given deref is a[6].foo, then any uses of a[i].foo
 * would cause this to return false, but a[i].bar would not affect it
 * because it's a different structure member.  A var_copy involving of
 * a[*].bar also doesn't affect it because that can be lowered to entirely
 * direct load/stores.
 *
 * We only support asking this question about fully-qualified derefs.
 * Obviously, it's pointless to ask this about indirects, but we also
 * rule-out wildcards.  Handling Wildcard dereferences would involve
 * checking each array index to make sure that there aren't any indirect
 * references.
 */
static bool
deref_may_be_aliased(nir_deref_var *deref,
                     struct lower_variables_state *state)
{
   nir_deref_var var_deref = *deref;
   var_deref.deref.child = NULL;
   struct deref_node *node = get_deref_node(&var_deref, false, state);

   /* An invalid dereference can't be aliased. */
   if (node == NULL)
      return false;

   return deref_may_be_aliased_node(node, &deref->deref, state);
}

static void
register_load_instr(nir_intrinsic_instr *load_instr, bool create_node,
                    struct lower_variables_state *state)
{
   struct deref_node *node = get_deref_node(load_instr->variables[0],
                                            create_node, state);
   if (node == NULL)
      return;

   if (node->loads == NULL)
      node->loads = _mesa_set_create(state->dead_ctx,
                                     _mesa_key_pointer_equal);

   _mesa_set_add(node->loads, _mesa_hash_pointer(load_instr), load_instr);
}

static void
register_store_instr(nir_intrinsic_instr *store_instr, bool create_node,
                     struct lower_variables_state *state)
{
   struct deref_node *node = get_deref_node(store_instr->variables[0],
                                            create_node, state);
   if (node == NULL)
      return;

   if (node->stores == NULL)
      node->stores = _mesa_set_create(state->dead_ctx,
                                     _mesa_key_pointer_equal);

   _mesa_set_add(node->stores, _mesa_hash_pointer(store_instr), store_instr);
}

static void
register_copy_instr(nir_intrinsic_instr *copy_instr, bool create_node,
                    struct lower_variables_state *state)
{
   for (unsigned idx = 0; idx < 2; idx++) {
      struct deref_node *node = get_deref_node(copy_instr->variables[idx],
                                               create_node, state);
      if (node == NULL)
         continue;

      if (node->copies == NULL)
         node->copies = _mesa_set_create(state->dead_ctx,
                                         _mesa_key_pointer_equal);

      _mesa_set_add(node->copies, _mesa_hash_pointer(copy_instr), copy_instr);
   }
}

/* Registers all variable uses in the given block. */
static bool
register_variable_uses_block(nir_block *block, void *void_state)
{
   struct lower_variables_state *state = void_state;

   nir_foreach_instr_safe(block, instr) {
      if (instr->type != nir_instr_type_intrinsic)
         continue;

      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

      switch (intrin->intrinsic) {
      case nir_intrinsic_load_var:
         register_load_instr(intrin, true, state);
         break;

      case nir_intrinsic_store_var:
         register_store_instr(intrin, true, state);
         break;

      case nir_intrinsic_copy_var:
         register_copy_instr(intrin, true, state);
         break;

      default:
         continue;
      }
   }

   return true;
}

/* Walks down the deref chain and returns the next deref in the chain whose
 * child is a wildcard.  In other words, given the chain  a[1].foo[*].bar,
 * this function will return the deref to foo.  Calling it a second time
 * with the [*].bar, it will return NULL.
 */
static nir_deref *
deref_next_wildcard_parent(nir_deref *deref)
{
   for (nir_deref *tail = deref; tail->child; tail = tail->child) {
      if (tail->child->deref_type != nir_deref_type_array)
         continue;

      nir_deref_array *arr = nir_deref_as_array(tail->child);

      if (arr->deref_array_type == nir_deref_array_type_wildcard)
         return tail;
   }

   return NULL;
}

/* Returns the last deref in the chain.
 */
static nir_deref *
get_deref_tail(nir_deref *deref)
{
   while (deref->child)
      deref = deref->child;

   return deref;
}

/* This function recursively walks the given deref chain and replaces the
 * given copy instruction with an equivalent sequence load/store
 * operations.
 *
 * @copy_instr    The copy instruction to replace; new instructions will be
 *                inserted before this one
 *
 * @dest_head     The head of the destination variable deref chain
 *
 * @src_head      The head of the source variable deref chain
 *
 * @dest_tail     The current tail of the destination variable deref chain;
 *                this is used for recursion and external callers of this
 *                function should call it with tail == head
 *
 * @src_tail      The current tail of the source variable deref chain;
 *                this is used for recursion and external callers of this
 *                function should call it with tail == head
 *
 * @state         The current variable lowering state
 */
static void
emit_copy_load_store(nir_intrinsic_instr *copy_instr,
                     nir_deref_var *dest_head, nir_deref_var *src_head,
                     nir_deref *dest_tail, nir_deref *src_tail,
                     struct lower_variables_state *state)
{
   /* Find the next pair of wildcards */
   nir_deref *src_arr_parent = deref_next_wildcard_parent(src_tail);
   nir_deref *dest_arr_parent = deref_next_wildcard_parent(dest_tail);

   if (src_arr_parent || dest_arr_parent) {
      /* Wildcards had better come in matched pairs */
      assert(dest_arr_parent && dest_arr_parent);

      nir_deref_array *src_arr = nir_deref_as_array(src_arr_parent->child);
      nir_deref_array *dest_arr = nir_deref_as_array(dest_arr_parent->child);

      unsigned length = type_get_length(src_arr_parent->type);
      /* The wildcards should represent the same number of elements */
      assert(length == type_get_length(dest_arr_parent->type));
      assert(length > 0);

      /* Walk over all of the elements that this wildcard refers to and
       * call emit_copy_load_store on each one of them */
      src_arr->deref_array_type = nir_deref_array_type_direct;
      dest_arr->deref_array_type = nir_deref_array_type_direct;
      for (unsigned i = 0; i < length; i++) {
         src_arr->base_offset = i;
         dest_arr->base_offset = i;
         emit_copy_load_store(copy_instr, dest_head, src_head,
                              &dest_arr->deref, &src_arr->deref, state);
      }
      src_arr->deref_array_type = nir_deref_array_type_wildcard;
      dest_arr->deref_array_type = nir_deref_array_type_wildcard;
   } else {
      /* In this case, we have no wildcards anymore, so all we have to do
       * is just emit the load and store operations. */
      src_tail = get_deref_tail(src_tail);
      dest_tail = get_deref_tail(dest_tail);

      assert(src_tail->type == dest_tail->type);

      unsigned num_components = glsl_get_vector_elements(src_tail->type);

      nir_deref *src_deref = nir_copy_deref(state->mem_ctx, &src_head->deref);
      nir_deref *dest_deref = nir_copy_deref(state->mem_ctx, &dest_head->deref);

      nir_intrinsic_instr *load =
         nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_load_var);
      load->num_components = num_components;
      load->variables[0] = nir_deref_as_var(src_deref);
      load->dest.is_ssa = true;
      nir_ssa_def_init(&load->instr, &load->dest.ssa, num_components, NULL);

      nir_instr_insert_before(&copy_instr->instr, &load->instr);
      register_load_instr(load, false, state);

      nir_intrinsic_instr *store =
         nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_store_var);
      store->num_components = num_components;
      store->variables[0] = nir_deref_as_var(dest_deref);
      store->src[0].is_ssa = true;
      store->src[0].ssa = &load->dest.ssa;

      nir_instr_insert_before(&copy_instr->instr, &store->instr);
      register_store_instr(store, false, state);
   }
}

/* Walks over all of the copy instructions to or from the given deref_node
 * and lowers them to load/store intrinsics.
 */
static bool
lower_copies_to_load_store(struct deref_node *node,
                           struct lower_variables_state *state)
{
   if (!node->copies)
      return true;

   struct set_entry *copy_entry;
   set_foreach(node->copies, copy_entry) {
      nir_intrinsic_instr *copy = (void *)copy_entry->key;

      emit_copy_load_store(copy, copy->variables[0], copy->variables[1],
                           &copy->variables[0]->deref,
                           &copy->variables[1]->deref,
                           state);

      for (unsigned i = 0; i < 2; ++i) {
         struct deref_node *arg_node = get_deref_node(copy->variables[i],
                                                      false, state);
         if (arg_node == NULL)
            continue;

         struct set_entry *arg_entry = _mesa_set_search(arg_node->copies,
                                                        copy_entry->hash,
                                                        copy);
         assert(arg_entry);
         _mesa_set_remove(node->copies, arg_entry);
      }

      nir_instr_remove(&copy->instr);
   }

   return true;
}

/* Returns a load_const instruction that represents the constant
 * initializer for the given deref chain.  The caller is responsible for
 * ensuring that there actually is a constant initializer.
 */
static nir_load_const_instr *
get_const_initializer_load(const nir_deref_var *deref,
                           struct lower_variables_state *state)
{
   nir_constant *constant = deref->var->constant_initializer;
   const nir_deref *tail = &deref->deref;
   unsigned matrix_offset = 0;
   while (tail->child) {
      switch (tail->child->deref_type) {
      case nir_deref_type_array: {
         nir_deref_array *arr = nir_deref_as_array(tail->child);
         assert(arr->deref_array_type == nir_deref_array_type_direct);
         if (glsl_type_is_matrix(tail->type)) {
            assert(arr->deref.child == NULL);
            matrix_offset = arr->base_offset;
         } else {
            constant = constant->elements[arr->base_offset];
         }
         break;
      }

      case nir_deref_type_struct: {
         constant = constant->elements[nir_deref_as_struct(tail->child)->index];
         break;
      }

      default:
         unreachable("Invalid deref child type");
      }

      tail = tail->child;
   }

   nir_load_const_instr *load =
      nir_load_const_instr_create(state->mem_ctx,
                                  glsl_get_vector_elements(tail->type));

   matrix_offset *= load->def.num_components;
   for (unsigned i = 0; i < load->def.num_components; i++) {
      switch (glsl_get_base_type(tail->type)) {
      case GLSL_TYPE_FLOAT:
      case GLSL_TYPE_INT:
      case GLSL_TYPE_UINT:
         load->value.u[i] = constant->value.u[matrix_offset + i];
         break;
      case GLSL_TYPE_BOOL:
         load->value.u[i] = constant->value.u[matrix_offset + i] ?
                             NIR_TRUE : NIR_FALSE;
         break;
      default:
         unreachable("Invalid immediate type");
      }
   }

   return load;
}

/** Pushes an SSA def onto the def stack for the given node
 *
 * Each node is potentially associated with a stack of SSA definitions.
 * This stack is used for determining what SSA definition reaches a given
 * point in the program for variable renaming.  The stack is always kept in
 * dominance-order with at most one SSA def per block.  If the SSA
 * definition on the top of the stack is in the same block as the one being
 * pushed, the top element is replaced.
 */
static void
def_stack_push(struct deref_node *node, nir_ssa_def *def,
               struct lower_variables_state *state)
{
   if (node->def_stack == NULL) {
      node->def_stack = ralloc_array(state->dead_ctx, nir_ssa_def *,
                                     state->impl->num_blocks);
      node->def_stack_tail = node->def_stack - 1;
   }

   if (node->def_stack_tail >= node->def_stack) {
      nir_ssa_def *top_def = *node->def_stack_tail;

      if (def->parent_instr->block == top_def->parent_instr->block) {
         /* They're in the same block, just replace the top */
         *node->def_stack_tail = def;
         return;
      }
   }

   *(++node->def_stack_tail) = def;
}

/* Pop the top of the def stack if it's in the given block */
static void
def_stack_pop_if_in_block(struct deref_node *node, nir_block *block)
{
   /* If we're popping, then we have presumably pushed at some time in the
    * past so this should exist.
    */
   assert(node->def_stack != NULL);

   /* The stack is already empty.  Do nothing. */
   if (node->def_stack_tail < node->def_stack)
      return;

   nir_ssa_def *def = *node->def_stack_tail;
   if (def->parent_instr->block == block)
      node->def_stack_tail--;
}

/** Retrieves the SSA definition on the top of the stack for the given
 * node, if one exists.  If the stack is empty, then we return the constant
 * initializer (if it exists) or an SSA undef.
 */
static nir_ssa_def *
get_ssa_def_for_block(struct deref_node *node, nir_block *block,
                      struct lower_variables_state *state)
{
   /* If we have something on the stack, go ahead and return it.  We're
    * assuming that the top of the stack dominates the given block.
    */
   if (node->def_stack && node->def_stack_tail >= node->def_stack)
      return *node->def_stack_tail;

   /* If we got here then we don't have a definition that dominates the
    * given block.  This means that we need to add an undef and use that.
    */
   nir_ssa_undef_instr *undef =
      nir_ssa_undef_instr_create(state->mem_ctx,
                                 glsl_get_vector_elements(node->type));
   nir_instr_insert_before_cf_list(&state->impl->body, &undef->instr);
   def_stack_push(node, &undef->def, state);
   return &undef->def;
}

/* Given a block and one of its predecessors, this function fills in the
 * souces of the phi nodes to take SSA defs from the given predecessor.
 * This function must be called exactly once per block/predecessor pair.
 */
static void
add_phi_sources(nir_block *block, nir_block *pred,
                struct lower_variables_state *state)
{
   nir_foreach_instr(block, instr) {
      if (instr->type != nir_instr_type_phi)
         break;

      nir_phi_instr *phi = nir_instr_as_phi(instr);

      struct hash_entry *entry =
            _mesa_hash_table_search(state->phi_table, phi);
      if (!entry)
         continue;

      struct deref_node *node = entry->data;

      nir_phi_src *src = ralloc(state->mem_ctx, nir_phi_src);
      src->pred = pred;
      src->src.is_ssa = true;
      src->src.ssa = get_ssa_def_for_block(node, pred, state);

      _mesa_set_add(src->src.ssa->uses, _mesa_hash_pointer(instr), instr);

      exec_list_push_tail(&phi->srcs, &src->node);
   }
}

/* Performs variable renaming by doing a DFS of the dominance tree
 *
 * This algorithm is very similar to the one outlined in "Efficiently
 * Computing Static Single Assignment Form and the Control Dependence
 * Graph" by Cytron et. al.  The primary difference is that we only put one
 * SSA def on the stack per block.
 */
static bool
rename_variables_block(nir_block *block, struct lower_variables_state *state)
{
   nir_foreach_instr_safe(block, instr) {
      if (instr->type == nir_instr_type_phi) {
         nir_phi_instr *phi = nir_instr_as_phi(instr);

         struct hash_entry *entry =
            _mesa_hash_table_search(state->phi_table, phi);

         /* This can happen if we already have phi nodes in the program
          * that were not created in this pass.
          */
         if (!entry)
            continue;

         struct deref_node *node = entry->data;

         def_stack_push(node, &phi->dest.ssa, state);
      } else if (instr->type == nir_instr_type_intrinsic) {
         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

         switch (intrin->intrinsic) {
         case nir_intrinsic_load_var: {
            struct deref_node *node = get_deref_node(intrin->variables[0],
                                                     false, state);

            if (node == NULL) {
               /* If we hit this path then we are referencing an invalid
                * value.  Most likely, we unrolled something and are
                * reading past the end of some array.  In any case, this
                * should result in an undefined value.
                */
               nir_ssa_undef_instr *undef =
                  nir_ssa_undef_instr_create(state->mem_ctx,
                                             intrin->num_components);

               nir_instr_insert_before(&intrin->instr, &undef->instr);
               nir_instr_remove(&intrin->instr);

               nir_src new_src = {
                  .is_ssa = true,
                  .ssa = &undef->def,
               };

               nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
                                        state->mem_ctx);
               continue;
            }

            if (!node->lower_to_ssa)
               continue;

            nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
                                                      nir_op_imov);
            mov->src[0].src.is_ssa = true;
            mov->src[0].src.ssa = get_ssa_def_for_block(node, block, state);
            for (unsigned i = intrin->num_components; i < 4; i++)
               mov->src[0].swizzle[i] = 0;

            assert(intrin->dest.is_ssa);

            mov->dest.write_mask = (1 << intrin->num_components) - 1;
            mov->dest.dest.is_ssa = true;
            nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
                             intrin->num_components, NULL);

            nir_instr_insert_before(&intrin->instr, &mov->instr);
            nir_instr_remove(&intrin->instr);

            nir_src new_src = {
               .is_ssa = true,
               .ssa = &mov->dest.dest.ssa,
            };

            nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
                                     state->mem_ctx);
            break;
         }

         case nir_intrinsic_store_var: {
            struct deref_node *node = get_deref_node(intrin->variables[0],
                                                     false, state);

            if (node == NULL) {
               /* Probably an out-of-bounds array store.  That should be a
                * no-op. */
               nir_instr_remove(&intrin->instr);
               continue;
            }

            if (!node->lower_to_ssa)
               continue;

            assert(intrin->num_components ==
                   glsl_get_vector_elements(node->type));

            assert(intrin->src[0].is_ssa);

            nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
                                                      nir_op_imov);
            mov->src[0].src.is_ssa = true;
            mov->src[0].src.ssa = intrin->src[0].ssa;
            for (unsigned i = intrin->num_components; i < 4; i++)
               mov->src[0].swizzle[i] = 0;

            mov->dest.write_mask = (1 << intrin->num_components) - 1;
            mov->dest.dest.is_ssa = true;
            nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
                             intrin->num_components, NULL);

            nir_instr_insert_before(&intrin->instr, &mov->instr);

            def_stack_push(node, &mov->dest.dest.ssa, state);

            /* We'll wait to remove the instruction until the next pass
             * where we pop the node we just pushed back off the stack.
             */
            break;
         }

         default:
            break;
         }
      }
   }

   if (block->successors[0])
      add_phi_sources(block->successors[0], block, state);
   if (block->successors[1])
      add_phi_sources(block->successors[1], block, state);

   for (unsigned i = 0; i < block->num_dom_children; ++i)
      rename_variables_block(block->dom_children[i], state);

   /* Now we iterate over the instructions and pop off any SSA defs that we
    * pushed in the first loop.
    */
   nir_foreach_instr_safe(block, instr) {
      if (instr->type == nir_instr_type_phi) {
         nir_phi_instr *phi = nir_instr_as_phi(instr);

         struct hash_entry *entry =
            _mesa_hash_table_search(state->phi_table, phi);

         /* This can happen if we already have phi nodes in the program
          * that were not created in this pass.
          */
         if (!entry)
            continue;

         struct deref_node *node = entry->data;

         def_stack_pop_if_in_block(node, block);
      } else if (instr->type == nir_instr_type_intrinsic) {
         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

         if (intrin->intrinsic != nir_intrinsic_store_var)
            continue;

         struct deref_node *node = get_deref_node(intrin->variables[0],
                                                  false, state);
         if (!node)
            continue;

         if (!node->lower_to_ssa)
            continue;

         def_stack_pop_if_in_block(node, block);
         nir_instr_remove(&intrin->instr);
      }
   }

   return true;
}

/* Inserts phi nodes for all variables marked lower_to_ssa
 *
 * This is the same algorithm as presented in "Efficiently Computing Static
 * Single Assignment Form and the Control Dependence Graph" by Cytron et.
 * al.
 */
static void
insert_phi_nodes(struct lower_variables_state *state)
{
   unsigned work[state->impl->num_blocks];
   unsigned has_already[state->impl->num_blocks];

   /*
    * Since the work flags already prevent us from inserting a node that has
    * ever been inserted into W, we don't need to use a set to represent W.
    * Also, since no block can ever be inserted into W more than once, we know
    * that the maximum size of W is the number of basic blocks in the
    * function. So all we need to handle W is an array and a pointer to the
    * next element to be inserted and the next element to be removed.
    */
   nir_block *W[state->impl->num_blocks];

   memset(work, 0, sizeof work);
   memset(has_already, 0, sizeof has_already);

   unsigned w_start, w_end;
   unsigned iter_count = 0;

   struct hash_entry *deref_entry;
   hash_table_foreach(state->direct_deref_nodes, deref_entry) {
      struct deref_node *node = deref_entry->data;

      if (node->stores == NULL)
         continue;

      if (!node->lower_to_ssa)
         continue;

      w_start = w_end = 0;
      iter_count++;

      struct set_entry *store_entry;
      set_foreach(node->stores, store_entry) {
         nir_intrinsic_instr *store = (nir_intrinsic_instr *)store_entry->key;
         if (work[store->instr.block->index] < iter_count)
            W[w_end++] = store->instr.block;
         work[store->instr.block->index] = iter_count;
      }

      while (w_start != w_end) {
         nir_block *cur = W[w_start++];
         struct set_entry *dom_entry;
         set_foreach(cur->dom_frontier, dom_entry) {
            nir_block *next = (nir_block *) dom_entry->key;

            /*
             * If there's more than one return statement, then the end block
             * can be a join point for some definitions. However, there are
             * no instructions in the end block, so nothing would use those
             * phi nodes. Of course, we couldn't place those phi nodes
             * anyways due to the restriction of having no instructions in the
             * end block...
             */
            if (next == state->impl->end_block)
               continue;

            if (has_already[next->index] < iter_count) {
               nir_phi_instr *phi = nir_phi_instr_create(state->mem_ctx);
               phi->dest.is_ssa = true;
               nir_ssa_def_init(&phi->instr, &phi->dest.ssa,
                                glsl_get_vector_elements(node->type), NULL);
               nir_instr_insert_before_block(next, &phi->instr);

               _mesa_hash_table_insert(state->phi_table, phi, node);

               has_already[next->index] = iter_count;
               if (work[next->index] < iter_count) {
                  work[next->index] = iter_count;
                  W[w_end++] = next;
               }
            }
         }
      }
   }
}


/** Implements a pass to lower variable uses to SSA values
 *
 * This path walks the list of instructions and tries to lower as many
 * local variable load/store operations to SSA defs and uses as it can.
 * The process involves four passes:
 *
 *  1) Iterate over all of the instructions and mark where each local
 *     variable deref is used in a load, store, or copy.  While we're at
 *     it, we keep track of all of the fully-qualified (no wildcards) and
 *     fully-direct references we see and store them in the
 *     direct_deref_nodes hash table.
 *
 *  2) Walk over the the list of fully-qualified direct derefs generated in
 *     the previous pass.  For each deref, we determine if it can ever be
 *     aliased, i.e. if there is an indirect reference anywhere that may
 *     refer to it.  If it cannot be aliased, we mark it for lowering to an
 *     SSA value.  At this point, we lower any var_copy instructions that
 *     use the given deref to load/store operations and, if the deref has a
 *     constant initializer, we go ahead and add a load_const value at the
 *     beginning of the function with the initialized value.
 *
 *  3) Walk over the list of derefs we plan to lower to SSA values and
 *     insert phi nodes as needed.
 *
 *  4) Perform "variable renaming" by replacing the load/store instructions
 *     with SSA definitions and SSA uses.
 */
static bool
nir_lower_variables_impl(nir_function_impl *impl)
{
   struct lower_variables_state state;

   state.mem_ctx = ralloc_parent(impl);
   state.dead_ctx = ralloc_context(state.mem_ctx);
   state.impl = impl;

   state.deref_var_nodes = _mesa_hash_table_create(state.dead_ctx,
                                                   _mesa_hash_pointer,
                                                   _mesa_key_pointer_equal);
   state.direct_deref_nodes = _mesa_hash_table_create(state.dead_ctx,
                                                      hash_deref, derefs_equal);
   state.phi_table = _mesa_hash_table_create(state.dead_ctx,
                                             _mesa_hash_pointer,
                                             _mesa_key_pointer_equal);

   nir_foreach_block(impl, register_variable_uses_block, &state);

   struct set *outputs = _mesa_set_create(state.dead_ctx,
                                          _mesa_key_pointer_equal);

   bool progress = false;

   nir_metadata_require(impl, nir_metadata_block_index);

   struct hash_entry *entry;
   hash_table_foreach(state.direct_deref_nodes, entry) {
      nir_deref_var *deref = (void *)entry->key;
      struct deref_node *node = entry->data;

      if (deref->var->data.mode != nir_var_local) {
         _mesa_hash_table_remove(state.direct_deref_nodes, entry);
         continue;
      }

      if (deref_may_be_aliased(deref, &state)) {
         _mesa_hash_table_remove(state.direct_deref_nodes, entry);
         continue;
      }

      node->lower_to_ssa = true;
      progress = true;

      if (deref->var->constant_initializer) {
         nir_load_const_instr *load = get_const_initializer_load(deref, &state);
         nir_ssa_def_init(&load->instr, &load->def,
                          glsl_get_vector_elements(node->type), NULL);
         nir_instr_insert_before_cf_list(&impl->body, &load->instr);
         def_stack_push(node, &load->def, &state);
      }

      if (deref->var->data.mode == nir_var_shader_out)
         _mesa_set_add(outputs, _mesa_hash_pointer(node), node);

      foreach_deref_node_match(deref, lower_copies_to_load_store, &state);
   }

   if (!progress)
      return false;

   nir_metadata_require(impl, nir_metadata_dominance);

   insert_phi_nodes(&state);
   rename_variables_block(impl->start_block, &state);

   nir_metadata_preserve(impl, nir_metadata_block_index |
                               nir_metadata_dominance);

   ralloc_free(state.dead_ctx);

   return progress;
}

void
nir_lower_variables(nir_shader *shader)
{
   nir_foreach_overload(shader, overload) {
      if (overload->impl)
         nir_lower_variables_impl(overload->impl);
   }
}