aboutsummaryrefslogtreecommitdiffstats
path: root/src/glsl/list.h
blob: 48502fb4c8cb9099dcb706e661be1e6eac4605f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * Copyright © 2008, 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file list.h
 * \brief Doubly-linked list abstract container type.
 *
 * Each doubly-linked list has a sentinal head and tail node.  These nodes
 * contain no data.  The head sentinal can be identified by its \c prev
 * pointer being \c NULL.  The tail sentinal can be identified by its
 * \c next pointer being \c NULL.
 *
 * A list is empty if either the head sentinal's \c next pointer points to the
 * tail sentinal or the tail sentinal's \c prev poiner points to the head
 * sentinal.
 *
 * Instead of tracking two separate \c node structures and a \c list structure
 * that points to them, the sentinal nodes are in a single structure.  Noting
 * that each sentinal node always has one \c NULL pointer, the \c NULL
 * pointers occupy the same memory location.  In the \c list structure
 * contains a the following:
 *
 *   - A \c head pointer that represents the \c next pointer of the
 *     head sentinal node.
 *   - A \c tail pointer that represents the \c prev pointer of the head
 *     sentinal node and the \c next pointer of the tail sentinal node.  This
 *     pointer is \b always \c NULL.
 *   - A \c tail_prev pointer that represents the \c prev pointer of the
 *     tail sentinal node.
 *
 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
 * the list is empty.
 *
 * To anyone familiar with "exec lists" on the Amiga, this structure should
 * be immediately recognizable.  See the following link for the original Amiga
 * operating system documentation on the subject.
 *
 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
 *
 * \author Ian Romanick <ian.d.romanick@intel.com>
 */

#pragma once
#ifndef LIST_CONTAINER_H
#define LIST_CONTAINER_H

#ifndef __cplusplus
#include <stddef.h>
#include <talloc.h>
#else
extern "C" {
#include <talloc.h>
}
#endif

#include <assert.h>

struct exec_node {
   struct exec_node *next;
   struct exec_node *prev;

#ifdef __cplusplus
   /* Callers of this talloc-based new need not call delete. It's
    * easier to just talloc_free 'ctx' (or any of its ancestors). */
   static void* operator new(size_t size, void *ctx)
   {
      void *node;

      node = talloc_size(ctx, size);
      assert(node != NULL);

      return node;
   }

   /* If the user *does* call delete, that's OK, we will just
    * talloc_free in that case. */
   static void operator delete(void *node)
   {
      talloc_free(node);
   }

   exec_node() : next(NULL), prev(NULL)
   {
      /* empty */
   }

   const exec_node *get_next() const
   {
      return next;
   }

   exec_node *get_next()
   {
      return next;
   }

   const exec_node *get_prev() const
   {
      return prev;
   }

   exec_node *get_prev()
   {
      return prev;
   }

   void remove()
   {
      next->prev = prev;
      prev->next = next;
      next = NULL;
      prev = NULL;
   }

   /**
    * Link a node with itself
    *
    * This creates a sort of degenerate list that is occasionally useful.
    */
   void self_link()
   {
      next = this;
      prev = this;
   }

   /**
    * Insert a node in the list after the current node
    */
   void insert_after(exec_node *after)
   {
      after->next = this->next;
      after->prev = this;

      this->next->prev = after;
      this->next = after;
   }
   /**
    * Insert a node in the list before the current node
    */
   void insert_before(exec_node *before)
   {
      before->next = this;
      before->prev = this->prev;

      this->prev->next = before;
      this->prev = before;
   }

   /**
    * Is this the sentinal at the tail of the list?
    */
   bool is_tail_sentinal() const
   {
      return this->next == NULL;
   }

   /**
    * Is this the sentinal at the head of the list?
    */
   bool is_head_sentinal() const
   {
      return this->prev == NULL;
   }
#endif
};


#ifdef __cplusplus
/* This macro will not work correctly if `t' uses virtual inheritance.  If you
 * are using virtual inheritance, you deserve a slow and painful death.  Enjoy!
 */
#define exec_list_offsetof(t, f, p) \
   (((char *) &((t *) p)->f) - ((char *) p))
#else
#define exec_list_offsetof(t, f, p) offsetof(t, f)
#endif

/**
 * Get a pointer to the structure containing an exec_node
 *
 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
 * the containing structure.
 *
 * \param type  Base type of the structure containing the node
 * \param node  Pointer to the \c exec_node
 * \param field Name of the field in \c type that is the embedded \c exec_node
 */
#define exec_node_data(type, node, field) \
   ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))

#ifdef __cplusplus
struct exec_node;

class iterator {
public:
   void next()
   {
   }

   void *get()
   {
      return NULL;
   }

   bool has_next() const
   {
      return false;
   }
};

class exec_list_iterator : public iterator {
public:
   exec_list_iterator(exec_node *n) : node(n), _next(n->next)
   {
      /* empty */
   }

   void next()
   {
      node = _next;
      _next = node->next;
   }

   void remove()
   {
      node->remove();
   }

   exec_node *get()
   {
      return node;
   }

   bool has_next() const
   {
      return _next != NULL;
   }

private:
   exec_node *node;
   exec_node *_next;
};

#define foreach_iter(iter_type, iter, container) \
   for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
#endif


struct exec_list {
   struct exec_node *head;
   struct exec_node *tail;
   struct exec_node *tail_pred;

#ifdef __cplusplus
   /* Callers of this talloc-based new need not call delete. It's
    * easier to just talloc_free 'ctx' (or any of its ancestors). */
   static void* operator new(size_t size, void *ctx)
   {
      void *node;

      node = talloc_size(ctx, size);
      assert(node != NULL);

      return node;
   }

   /* If the user *does* call delete, that's OK, we will just
    * talloc_free in that case. */
   static void operator delete(void *node)
   {
      talloc_free(node);
   }

   exec_list()
   {
      make_empty();
   }

   void make_empty()
   {
      head = (exec_node *) & tail;
      tail = NULL;
      tail_pred = (exec_node *) & head;
   }

   bool is_empty() const
   {
      /* There are three ways to test whether a list is empty or not.
       *
       * - Check to see if the \c head points to the \c tail.
       * - Check to see if the \c tail_pred points to the \c head.
       * - Check to see if the \c head is the sentinal node by test whether its
       *   \c next pointer is \c NULL.
       *
       * The first two methods tend to generate better code on modern systems
       * because they save a pointer dereference.
       */
      return head == (exec_node *) &tail;
   }

   const exec_node *get_head() const
   {
      return !is_empty() ? head : NULL;
   }

   exec_node *get_head()
   {
      return !is_empty() ? head : NULL;
   }

   const exec_node *get_tail() const
   {
      return !is_empty() ? tail_pred : NULL;
   }

   exec_node *get_tail()
   {
      return !is_empty() ? tail_pred : NULL;
   }

   void push_head(exec_node *n)
   {
      n->next = head;
      n->prev = (exec_node *) &head;

      n->next->prev = n;
      head = n;
   }

   void push_tail(exec_node *n)
   {
      n->next = (exec_node *) &tail;
      n->prev = tail_pred;

      n->prev->next = n;
      tail_pred = n;
   }

   void push_degenerate_list_at_head(exec_node *n)
   {
      assert(n->prev->next == n);

      n->prev->next = head;
      head->prev = n->prev;
      n->prev = (exec_node *) &head;
      head = n;
   }

   /**
    * Move all of the nodes from this list to the target list
    */
   void move_nodes_to(exec_list *target)
   {
      if (is_empty()) {
	 target->make_empty();
      } else {
	 target->head = head;
	 target->tail = NULL;
	 target->tail_pred = tail_pred;

	 target->head->prev = (exec_node *) &target->head;
	 target->tail_pred->next = (exec_node *) &target->tail;

	 make_empty();
      }
   }

   /**
    * Append all nodes from the source list to the target list
    */
   void
   append_list(exec_list *source)
   {
      if (source->is_empty())
	 return;

      /* Link the first node of the source with the last node of the target list.
       */
      this->tail_pred->next = source->head;
      source->head->prev = this->tail_pred;

      /* Make the tail of the source list be the tail of the target list.
       */
      this->tail_pred = source->tail_pred;
      this->tail_pred->next = (exec_node *) &this->tail;

      /* Make the source list empty for good measure.
       */
      source->make_empty();
   }

   exec_list_iterator iterator()
   {
      return exec_list_iterator(head);
   }

   exec_list_iterator iterator() const
   {
      return exec_list_iterator((exec_node *) head);
   }
#endif
};

/**
 * This version is safe even if the current node is removed.  If you insert
 * new nodes before the current node, they will be processed next.
 *
 * \note
 * The extra test for \c __node being \c NULL is required because after the
 * iteration \c __prev coupld be the last node in the list.  The loop increment
 * then causes \c __prev to point to the sentinal and \c __node to be \c NULL.
 */ 
#define foreach_list_safe(__node, __list)		\
   for (exec_node * __prev = (exec_node *) (__list), * __node = (__list)->head \
        ; __node != NULL && (__node)->next != NULL	\
	; __prev = (__prev)->next, __node = (__prev)->next)

#define foreach_list(__node, __list)			\
   for (exec_node * __node = (__list)->head		\
	; (__node)->next != NULL 			\
	; (__node) = (__node)->next)

#define foreach_list_const(__node, __list)		\
   for (const exec_node * __node = (__list)->head	\
	; (__node)->next != NULL 			\
	; (__node) = (__node)->next)

#define foreach_list_typed(__type, __node, __field, __list)		\
   for (__type * __node =						\
	   exec_node_data(__type, (__list)->head, __field);		\
	(__node)->__field.next != NULL; 				\
	(__node) = exec_node_data(__type, (__node)->__field.next, __field))

#define foreach_list_typed_const(__type, __node, __field, __list)	\
   for (const __type * __node =						\
	   exec_node_data(__type, (__list)->head, __field);		\
	(__node)->__field.next != NULL; 				\
	(__node) = exec_node_data(__type, (__node)->__field.next, __field))

#endif /* LIST_CONTAINER_H */