/* Draw test patterns to help determine correct gamma value for a display. When the intensities of the inner squares nearly match the intensities of their frames (from some distance the borders should disappear) then you've found the right gamma value. You can set Mesa's gamma values (for red, green and blue) with the MESA_GAMMA environment variable. But only on X windows! For example: setenv MESA_GAMMA 1.5 1.6 1.4 Sets the red gamma value to 1.5, green to 1.6 and blue to 1.4. See the main README file for more information. For more info about gamma correction see: http://www.inforamp.net/~poynton/notes/colour_and_gamma/GammaFAQ.html This program is in the public domain Brian Paul 19 Oct 1995 Kai Schuetz 05 Jun 1999 */ /* Conversion to GLUT by Mark J. Kilgard */ #include #include #include #include static void Reshape(int width, int height) { glViewport(0, 0, (GLint) width, (GLint) height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0); glMatrixMode(GL_MODELVIEW); glShadeModel(GL_FLAT); } /* ARGSUSED1 */ static void key_esc(unsigned char key, int x, int y) { if(key == 27) exit(0); /* Exit on Escape */ } static GLubyte p25[] = { 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00, }; static GLubyte p50[] = { 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, }; static GLubyte p75[] = { 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xaa, 0xaa, 0xaa, 0xaa, 0xff, 0xff, 0xff, 0xff, }; static GLubyte *stippletab[4] = {NULL, p25, p50, p75}; static void gamma_ramp(GLfloat yoffs, GLfloat r, GLfloat g, GLfloat b) { GLint d; glColor3f(0.0, 0.0, 0.0); /* solid black, no stipple */ glRectf(-1.0, yoffs, -0.6, yoffs + 0.5); for(d = 1; d < 4; d++) { /* increasing density from 25% to 75% */ GLfloat xcoord = (-1.0 + d*0.4); GLfloat t = d * 0.25; glColor3f(r*t, g*t, b*t); /* draw outer rect */ glRectf(xcoord, yoffs, xcoord+0.4, yoffs + 0.5); glColor3f(0.0, 0.0, 0.0); /* "clear" inner rect */ glRectf(xcoord + 0.1, yoffs + 0.125, xcoord + 0.3, yoffs + 0.375); glColor3f(r, g, b); /* draw stippled inner rect */ glEnable(GL_POLYGON_STIPPLE); glPolygonStipple(stippletab[d]); glRectf(xcoord + 0.1, yoffs + 0.125, xcoord + 0.3, yoffs + 0.375); glDisable(GL_POLYGON_STIPPLE); } glColor3f(r, g, b); /* solid color, no stipple */ glRectf(0.6, yoffs, 1.0, yoffs + 0.5); } static void display(void) { gamma_ramp( 0.5, 1.0, 1.0, 1.0); /* white ramp */ gamma_ramp( 0.0, 1.0, 0.0, 0.0); /* red ramp */ gamma_ramp(-0.5, 0.0, 1.0, 0.0); /* green ramp */ gamma_ramp(-1.0, 0.0, 0.0, 1.0); /* blue ramp */ glFlush(); } int main(int argc, char **argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE); glutInitWindowPosition(50, 50); glutInitWindowSize(500, 400); glutCreateWindow("gamma test patterns"); glutReshapeFunc(Reshape); glutDisplayFunc(display); glutKeyboardFunc(key_esc); glutMainLoop(); return 0; /* ANSI C requires main to return int. */ } href='#n56'>56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
/*
 * Copyright (c) 2014 Scott Mansell
 * Copyright © 2014 Broadcom
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <inttypes.h>
#include "pipe/p_state.h"
#include "util/u_format.h"
#include "util/u_hash.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/u_pack_color.h"
#include "util/format_srgb.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_info.h"
#include "tgsi/tgsi_lowering.h"
#include "tgsi/tgsi_parse.h"
#include "nir/tgsi_to_nir.h"

#include "vc4_context.h"
#include "vc4_qpu.h"
#include "vc4_qir.h"
#ifdef USE_VC4_SIMULATOR
#include "simpenrose/simpenrose.h"
#endif

struct vc4_key {
        struct vc4_uncompiled_shader *shader_state;
        struct {
                enum pipe_format format;
                unsigned compare_mode:1;
                unsigned compare_func:3;
                unsigned wrap_s:3;
                unsigned wrap_t:3;
                uint8_t swizzle[4];
        } tex[VC4_MAX_TEXTURE_SAMPLERS];
        uint8_t ucp_enables;
};

struct vc4_fs_key {
        struct vc4_key base;
        enum pipe_format color_format;
        bool depth_enabled;
        bool stencil_enabled;
        bool stencil_twoside;
        bool stencil_full_writemasks;
        bool is_points;
        bool is_lines;
        bool alpha_test;
        bool point_coord_upper_left;
        bool light_twoside;
        uint8_t alpha_test_func;
        uint8_t logicop_func;
        uint32_t point_sprite_mask;

        struct pipe_rt_blend_state blend;
};

struct vc4_vs_key {
        struct vc4_key base;

        /**
         * This is a proxy for the array of FS input semantics, which is
         * larger than we would want to put in the key.
         */
        uint64_t compiled_fs_id;

        enum pipe_format attr_formats[8];
        bool is_coord;
        bool per_vertex_point_size;
};

static void
resize_qreg_array(struct vc4_compile *c,
                  struct qreg **regs,
                  uint32_t *size,
                  uint32_t decl_size)
{
        if (*size >= decl_size)
                return;

        uint32_t old_size = *size;
        *size = MAX2(*size * 2, decl_size);
        *regs = reralloc(c, *regs, struct qreg, *size);
        if (!*regs) {
                fprintf(stderr, "Malloc failure\n");
                abort();
        }

        for (uint32_t i = old_size; i < *size; i++)
                (*regs)[i] = c->undef;
}

static struct qreg
indirect_uniform_load(struct vc4_compile *c,
                      struct qreg indirect_offset,
                      unsigned offset)
{
        struct vc4_compiler_ubo_range *range = NULL;
        unsigned i;
        for (i = 0; i < c->num_uniform_ranges; i++) {
                range = &c->ubo_ranges[i];
                if (offset >= range->src_offset &&
                    offset < range->src_offset + range->size) {
                        break;
                }
        }
        /* The driver-location-based offset always has to be within a declared
         * uniform range.
         */
        assert(range);
        if (!range->used) {
                range->used = true;
                range->dst_offset = c->next_ubo_dst_offset;
                c->next_ubo_dst_offset += range->size;
                c->num_ubo_ranges++;
        };

        offset -= range->src_offset;
        /* Translate the user's TGSI register index from the TGSI register
         * base to a byte offset.
         */
        indirect_offset = qir_SHL(c, indirect_offset, qir_uniform_ui(c, 4));

        /* Adjust for where we stored the TGSI register base. */
        indirect_offset = qir_ADD(c, indirect_offset,
                                  qir_uniform_ui(c, (range->dst_offset +
                                                     offset)));
        indirect_offset = qir_MIN(c, indirect_offset,
                                  qir_uniform_ui(c, (range->dst_offset +
                                                     range->size - 4)));

        qir_TEX_DIRECT(c, indirect_offset, qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
        struct qreg r4 = qir_TEX_RESULT(c);
        c->num_texture_samples++;
        return qir_MOV(c, r4);
}

static struct qreg *
ntq_get_dest(struct vc4_compile *c, nir_dest dest)
{
        assert(!dest.is_ssa);
        nir_register *reg = dest.reg.reg;
        struct hash_entry *entry = _mesa_hash_table_search(c->def_ht, reg);
        assert(reg->num_array_elems == 0);
        assert(dest.reg.base_offset == 0);

        struct qreg *qregs = entry->data;
        return qregs;
}

static struct qreg
ntq_get_src(struct vc4_compile *c, nir_src src, int i)
{
        struct hash_entry *entry;
        if (src.is_ssa) {
                entry = _mesa_hash_table_search(c->def_ht, src.ssa);
                assert(i < src.ssa->num_components);
        } else {
                nir_register *reg = src.reg.reg;
                entry = _mesa_hash_table_search(c->def_ht, reg);
                assert(reg->num_array_elems == 0);
                assert(src.reg.base_offset == 0);
                assert(i < reg->num_components);
        }

        struct qreg *qregs = entry->data;
        return qregs[i];
}

static struct qreg
ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
                unsigned src)
{
        assert(util_is_power_of_two(instr->dest.write_mask));
        unsigned chan = ffs(instr->dest.write_mask) - 1;
        struct qreg r = ntq_get_src(c, instr->src[src].src,
                                    instr->src[src].swizzle[chan]);

        assert(!instr->src[src].abs);
        assert(!instr->src[src].negate);

        return r;
};

static struct qreg
get_swizzled_channel(struct vc4_compile *c,
                     struct qreg *srcs, int swiz)
{
        switch (swiz) {
        default:
        case UTIL_FORMAT_SWIZZLE_NONE:
                fprintf(stderr, "warning: unknown swizzle\n");
                /* FALLTHROUGH */
        case UTIL_FORMAT_SWIZZLE_0:
                return qir_uniform_f(c, 0.0);
        case UTIL_FORMAT_SWIZZLE_1:
                return qir_uniform_f(c, 1.0);
        case UTIL_FORMAT_SWIZZLE_X:
        case UTIL_FORMAT_SWIZZLE_Y:
        case UTIL_FORMAT_SWIZZLE_Z:
        case UTIL_FORMAT_SWIZZLE_W:
                return srcs[swiz];
        }
}

static inline struct qreg
qir_SAT(struct vc4_compile *c, struct qreg val)
{
        return qir_FMAX(c,
                        qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
                        qir_uniform_f(c, 0.0));
}

static struct qreg
ntq_rcp(struct vc4_compile *c, struct qreg x)
{
        struct qreg r = qir_RCP(c, x);

        /* Apply a Newton-Raphson step to improve the accuracy. */
        r = qir_FMUL(c, r, qir_FSUB(c,
                                    qir_uniform_f(c, 2.0),
                                    qir_FMUL(c, x, r)));

        return r;
}

static struct qreg
ntq_rsq(struct vc4_compile *c, struct qreg x)
{
        struct qreg r = qir_RSQ(c, x);

        /* Apply a Newton-Raphson step to improve the accuracy. */
        r = qir_FMUL(c, r, qir_FSUB(c,
                                    qir_uniform_f(c, 1.5),
                                    qir_FMUL(c,
                                             qir_uniform_f(c, 0.5),
                                             qir_FMUL(c, x,
                                                      qir_FMUL(c, r, r)))));

        return r;
}

static struct qreg
qir_srgb_decode(struct vc4_compile *c, struct qreg srgb)
{
        struct qreg low = qir_FMUL(c, srgb, qir_uniform_f(c, 1.0 / 12.92));
        struct qreg high = qir_POW(c,
                                   qir_FMUL(c,
                                            qir_FADD(c,
                                                     srgb,
                                                     qir_uniform_f(c, 0.055)),
                                            qir_uniform_f(c, 1.0 / 1.055)),
                                   qir_uniform_f(c, 2.4));

        qir_SF(c, qir_FSUB(c, srgb, qir_uniform_f(c, 0.04045)));
        return qir_SEL_X_Y_NS(c, low, high);
}

static struct qreg
qir_srgb_encode(struct vc4_compile *c, struct qreg linear)
{
        struct qreg low = qir_FMUL(c, linear, qir_uniform_f(c, 12.92));
        struct qreg high = qir_FSUB(c,
                                    qir_FMUL(c,
                                             qir_uniform_f(c, 1.055),
                                             qir_POW(c,
                                                     linear,
                                                     qir_uniform_f(c, 0.41666))),
                                    qir_uniform_f(c, 0.055));

        qir_SF(c, qir_FSUB(c, linear, qir_uniform_f(c, 0.0031308)));
        return qir_SEL_X_Y_NS(c, low, high);
}

static struct qreg
ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
{
        struct qreg src0_hi = qir_SHR(c, src0,
                                      qir_uniform_ui(c, 24));
        struct qreg src1_hi = qir_SHR(c, src1,
                                      qir_uniform_ui(c, 24));

        struct qreg hilo = qir_MUL24(c, src0_hi, src1);
        struct qreg lohi = qir_MUL24(c, src0, src1_hi);
        struct qreg lolo = qir_MUL24(c, src0, src1);

        return qir_ADD(c, lolo, qir_SHL(c,
                                        qir_ADD(c, hilo, lohi),
                                        qir_uniform_ui(c, 24)));
}

static struct qreg
ntq_idiv(struct vc4_compile *c, struct qreg src0, struct qreg src1)
{
        return qir_FTOI(c, qir_FMUL(c,
                                    qir_ITOF(c, src0),
                                    qir_RCP(c, qir_ITOF(c, src1))));
}

static void
ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
{
        struct qreg s, t, r, lod, proj, compare;
        bool is_txb = false, is_txl = false, has_proj = false;
        unsigned unit = instr->sampler_index;

        for (unsigned i = 0; i < instr->num_srcs; i++) {
                switch (instr->src[i].src_type) {
                case nir_tex_src_coord:
                        s = ntq_get_src(c, instr->src[i].src, 0);
                        if (instr->sampler_dim != GLSL_SAMPLER_DIM_1D)
                                t = ntq_get_src(c, instr->src[i].src, 1);
                        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
                                r = ntq_get_src(c, instr->src[i].src, 2);
                        break;
                case nir_tex_src_bias:
                        lod = ntq_get_src(c, instr->src[i].src, 0);
                        is_txb = true;
                        break;
                case nir_tex_src_lod:
                        lod = ntq_get_src(c, instr->src[i].src, 0);
                        is_txl = true;
                        break;
                case nir_tex_src_comparitor:
                        compare = ntq_get_src(c, instr->src[i].src, 0);
                        break;
                case nir_tex_src_projector:
                        proj = qir_RCP(c, ntq_get_src(c, instr->src[i].src, 0));
                        s = qir_FMUL(c, s, proj);
                        t = qir_FMUL(c, t, proj);
                        has_proj = true;
                        break;
                default:
                        unreachable("unknown texture source");
                }
        }

        struct qreg texture_u[] = {
                qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
                qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
                qir_uniform(c, QUNIFORM_CONSTANT, 0),
                qir_uniform(c, QUNIFORM_CONSTANT, 0),
        };
        uint32_t next_texture_u = 0;

        /* There is no native support for GL texture rectangle coordinates, so
         * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
         * 1]).
         */
        if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
                s = qir_FMUL(c, s,
                             qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
                t = qir_FMUL(c, t,
                             qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
        }

        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
                texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
                                           unit | (is_txl << 16));
        }

        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
                struct qreg ma = qir_FMAXABS(c, qir_FMAXABS(c, s, t), r);
                struct qreg rcp_ma = qir_RCP(c, ma);
                s = qir_FMUL(c, s, rcp_ma);
                t = qir_FMUL(c, t, rcp_ma);
                r = qir_FMUL(c, r, rcp_ma);

                qir_TEX_R(c, r, texture_u[next_texture_u++]);
        } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
                   c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
                   c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
                   c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
                qir_TEX_R(c, qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR, unit),
                          texture_u[next_texture_u++]);
        }

        if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
                s = qir_SAT(c, s);
        }

        if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
                t = qir_SAT(c, t);
        }

        qir_TEX_T(c, t, texture_u[next_texture_u++]);

        if (is_txl || is_txb)
                qir_TEX_B(c, lod, texture_u[next_texture_u++]);

        qir_TEX_S(c, s, texture_u[next_texture_u++]);

        c->num_texture_samples++;
        struct qreg r4 = qir_TEX_RESULT(c);

        enum pipe_format format = c->key->tex[unit].format;

        struct qreg unpacked[4];
        if (util_format_is_depth_or_stencil(format)) {
                struct qreg depthf = qir_ITOF(c, qir_SHR(c, r4,
                                                         qir_uniform_ui(c, 8)));
                struct qreg normalized = qir_FMUL(c, depthf,
                                                  qir_uniform_f(c, 1.0f/0xffffff));

                struct qreg depth_output;

                struct qreg one = qir_uniform_f(c, 1.0f);
                if (c->key->tex[unit].compare_mode) {
                        if (has_proj)
                                compare = qir_FMUL(c, compare, proj);

                        switch (c->key->tex[unit].compare_func) {
                        case PIPE_FUNC_NEVER:
                                depth_output = qir_uniform_f(c, 0.0f);
                                break;
                        case PIPE_FUNC_ALWAYS:
                                depth_output = one;
                                break;
                        case PIPE_FUNC_EQUAL:
                                qir_SF(c, qir_FSUB(c, compare, normalized));
                                depth_output = qir_SEL_X_0_ZS(c, one);
                                break;
                        case PIPE_FUNC_NOTEQUAL:
                                qir_SF(c, qir_FSUB(c, compare, normalized));
                                depth_output = qir_SEL_X_0_ZC(c, one);
                                break;
                        case PIPE_FUNC_GREATER:
                                qir_SF(c, qir_FSUB(c, compare, normalized));
                                depth_output = qir_SEL_X_0_NC(c, one);
                                break;
                        case PIPE_FUNC_GEQUAL:
                                qir_SF(c, qir_FSUB(c, normalized, compare));
                                depth_output = qir_SEL_X_0_NS(c, one);
                                break;
                        case PIPE_FUNC_LESS:
                                qir_SF(c, qir_FSUB(c, compare, normalized));
                                depth_output = qir_SEL_X_0_NS(c, one);
                                break;
                        case PIPE_FUNC_LEQUAL:
                                qir_SF(c, qir_FSUB(c, normalized, compare));
                                depth_output = qir_SEL_X_0_NC(c, one);
                                break;
                        }
                } else {
                        depth_output = normalized;
                }

                for (int i = 0; i < 4; i++)
                        unpacked[i] = depth_output;
        } else {
                for (int i = 0; i < 4; i++)
                        unpacked[i] = qir_R4_UNPACK(c, r4, i);
        }

        const uint8_t *format_swiz = vc4_get_format_swizzle(format);
        struct qreg texture_output[4];
        for (int i = 0; i < 4; i++) {
                texture_output[i] = get_swizzled_channel(c, unpacked,
                                                         format_swiz[i]);
        }

        if (util_format_is_srgb(format)) {
                for (int i = 0; i < 3; i++)
                        texture_output[i] = qir_srgb_decode(c,
                                                            texture_output[i]);
        }

        struct qreg *dest = ntq_get_dest(c, instr->dest);
        for (int i = 0; i < 4; i++) {
                dest[i] = get_swizzled_channel(c, texture_output,
                                               c->key->tex[unit].swizzle[i]);
        }
}

/**
 * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
 * to zero).
 */
static struct qreg
ntq_ffract(struct vc4_compile *c, struct qreg src)
{
        struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
        struct qreg diff = qir_FSUB(c, src, trunc);
        qir_SF(c, diff);
        return qir_SEL_X_Y_NS(c,
                              qir_FADD(c, diff, qir_uniform_f(c, 1.0)),
                              diff);
}

/**
 * Computes floor(x), which is tricky because our FTOI truncates (rounds to
 * zero).
 */
static struct qreg
ntq_ffloor(struct vc4_compile *c, struct qreg src)
{
        struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));

        /* This will be < 0 if we truncated and the truncation was of a value
         * that was < 0 in the first place.
         */
        qir_SF(c, qir_FSUB(c, src, trunc));

        return qir_SEL_X_Y_NS(c,
                              qir_FSUB(c, trunc, qir_uniform_f(c, 1.0)),
                              trunc);
}

/**
 * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
 * zero).
 */
static struct qreg
ntq_fceil(struct vc4_compile *c, struct qreg src)
{
        struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));

        /* This will be < 0 if we truncated and the truncation was of a value
         * that was > 0 in the first place.
         */
        qir_SF(c, qir_FSUB(c, trunc, src));

        return qir_SEL_X_Y_NS(c,
                              qir_FADD(c, trunc, qir_uniform_f(c, 1.0)),
                              trunc);
}

static struct qreg
ntq_fsin(struct vc4_compile *c, struct qreg src)
{
        float coeff[] = {
                -2.0 * M_PI,
                pow(2.0 * M_PI, 3) / (3 * 2 * 1),
                -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
                pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
                -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
        };

        struct qreg scaled_x =
                qir_FMUL(c,
                         src,
                         qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));

        struct qreg x = qir_FADD(c,
                                 ntq_ffract(c, scaled_x),
                                 qir_uniform_f(c, -0.5));
        struct qreg x2 = qir_FMUL(c, x, x);
        struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
        for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
                x = qir_FMUL(c, x, x2);
                sum = qir_FADD(c,
                               sum,
                               qir_FMUL(c,
                                        x,
                                        qir_uniform_f(c, coeff[i])));
        }
        return sum;
}

static struct qreg
ntq_fcos(struct vc4_compile *c, struct qreg src)
{
        float coeff[] = {
                -1.0f,
                pow(2.0 * M_PI, 2) / (2 * 1),
                -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
                pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
                -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
                pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
        };

        struct qreg scaled_x =
                qir_FMUL(c, src,
                         qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
        struct qreg x_frac = qir_FADD(c,
                                      ntq_ffract(c, scaled_x),
                                      qir_uniform_f(c, -0.5));

        struct qreg sum = qir_uniform_f(c, coeff[0]);
        struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
        struct qreg x = x2; /* Current x^2, x^4, or x^6 */
        for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
                if (i != 1)
                        x = qir_FMUL(c, x, x2);

                struct qreg mul = qir_FMUL(c,
                                           x,
                                           qir_uniform_f(c, coeff[i]));
                if (i == 0)
                        sum = mul;
                else
                        sum = qir_FADD(c, sum, mul);
        }
        return sum;
}

static struct qreg
ntq_fsign(struct vc4_compile *c, struct qreg src)
{
        qir_SF(c, src);
        return qir_SEL_X_Y_NC(c,
                              qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0)),
                              qir_uniform_f(c, -1.0));
}

static struct qreg
get_channel_from_vpm(struct vc4_compile *c,
                     struct qreg *vpm_reads,
                     uint8_t swiz,
                     const struct util_format_description *desc)
{
        const struct util_format_channel_description *chan =
                &desc->channel[swiz];
        struct qreg temp;

        if (swiz > UTIL_FORMAT_SWIZZLE_W)
                return get_swizzled_channel(c, vpm_reads, swiz);
        else if (chan->size == 32 &&
                 chan->type == UTIL_FORMAT_TYPE_FLOAT) {
                return get_swizzled_channel(c, vpm_reads, swiz);
        } else if (chan->size == 32 &&
                   chan->type == UTIL_FORMAT_TYPE_SIGNED) {
                if (chan->normalized) {
                        return qir_FMUL(c,
                                        qir_ITOF(c, vpm_reads[swiz]),
                                        qir_uniform_f(c,
                                                      1.0 / 0x7fffffff));
                } else {
                        return qir_ITOF(c, vpm_reads[swiz]);
                }
        } else if (chan->size == 8 &&
                   (chan->type == UTIL_FORMAT_TYPE_UNSIGNED ||
                    chan->type == UTIL_FORMAT_TYPE_SIGNED)) {
                struct qreg vpm = vpm_reads[0];
                if (chan->type == UTIL_FORMAT_TYPE_SIGNED) {
                        temp = qir_XOR(c, vpm, qir_uniform_ui(c, 0x80808080));
                        if (chan->normalized) {
                                return qir_FSUB(c, qir_FMUL(c,
                                                            qir_UNPACK_8_F(c, temp, swiz),
                                                            qir_uniform_f(c, 2.0)),
                                                qir_uniform_f(c, 1.0));
                        } else {
                                return qir_FADD(c,
                                                qir_ITOF(c,
                                                         qir_UNPACK_8_I(c, temp,
                                                                        swiz)),
                                                qir_uniform_f(c, -128.0));
                        }
                } else {
                        if (chan->normalized) {
                                return qir_UNPACK_8_F(c, vpm, swiz);
                        } else {
                                return qir_ITOF(c, qir_UNPACK_8_I(c, vpm, swiz));
                        }
                }
        } else if (chan->size == 16 &&
                   (chan->type == UTIL_FORMAT_TYPE_UNSIGNED ||
                    chan->type == UTIL_FORMAT_TYPE_SIGNED)) {
                struct qreg vpm = vpm_reads[swiz / 2];

                /* Note that UNPACK_16F eats a half float, not ints, so we use
                 * UNPACK_16_I for all of these.
                 */
                if (chan->type == UTIL_FORMAT_TYPE_SIGNED) {
                        temp = qir_ITOF(c, qir_UNPACK_16_I(c, vpm, swiz % 2));
                        if (chan->normalized) {
                                return qir_FMUL(c, temp,
                                                qir_uniform_f(c, 1/32768.0f));
                        } else {
                                return temp;
                        }
                } else {
                        /* UNPACK_16I sign-extends, so we have to emit ANDs. */
                        temp = vpm;
                        if (swiz == 1 || swiz == 3)
                                temp = qir_UNPACK_16_I(c, temp, 1);
                        temp = qir_AND(c, temp, qir_uniform_ui(c, 0xffff));
                        temp = qir_ITOF(c, temp);

                        if (chan->normalized) {
                                return qir_FMUL(c, temp,
                                                qir_uniform_f(c, 1 / 65535.0));
                        } else {
                                return temp;
                        }
                }
        } else {
                return c->undef;
        }
}

static void
emit_vertex_input(struct vc4_compile *c, int attr)
{
        enum pipe_format format = c->vs_key->attr_formats[attr];
        uint32_t attr_size = util_format_get_blocksize(format);
        struct qreg vpm_reads[4];

        c->vattr_sizes[attr] = align(attr_size, 4);
        for (int i = 0; i < align(attr_size, 4) / 4; i++) {
                struct qreg vpm = { QFILE_VPM, attr * 4 + i };
                vpm_reads[i] = qir_MOV(c, vpm);
                c->num_inputs++;
        }

        bool format_warned = false;
        const struct util_format_description *desc =
                util_format_description(format);

        for (int i = 0; i < 4; i++) {
                uint8_t swiz = desc->swizzle[i];
                struct qreg result = get_channel_from_vpm(c, vpm_reads,
                                                          swiz, desc);

                if (result.file == QFILE_NULL) {
                        if (!format_warned) {
                                fprintf(stderr,
                                        "vtx element %d unsupported type: %s\n",
                                        attr, util_format_name(format));
                                format_warned = true;
                        }
                        result = qir_uniform_f(c, 0.0);
                }
                c->inputs[attr * 4 + i] = result;
        }
}

static void
emit_fragcoord_input(struct vc4_compile *c, int attr)
{
        c->inputs[attr * 4 + 0] = qir_FRAG_X(c);
        c->inputs[attr * 4 + 1] = qir_FRAG_Y(c);
        c->inputs[attr * 4 + 2] =
                qir_FMUL(c,
                         qir_ITOF(c, qir_FRAG_Z(c)),
                         qir_uniform_f(c, 1.0 / 0xffffff));
        c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
}

static void
emit_point_coord_input(struct vc4_compile *c, int attr)
{
        if (c->point_x.file == QFILE_NULL) {
                c->point_x = qir_uniform_f(c, 0.0);
                c->point_y = qir_uniform_f(c, 0.0);
        }

        c->inputs[attr * 4 + 0] = c->point_x;
        if (c->fs_key->point_coord_upper_left) {
                c->inputs[attr * 4 + 1] = qir_FSUB(c,
                                                   qir_uniform_f(c, 1.0),
                                                   c->point_y);
        } else {
                c->inputs[attr * 4 + 1] = c->point_y;
        }
        c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
        c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
}

static struct qreg
emit_fragment_varying(struct vc4_compile *c, uint8_t semantic,
                      uint8_t index, uint8_t swizzle)
{
        uint32_t i = c->num_input_semantics++;
        struct qreg vary = {
                QFILE_VARY,
                i
        };

        if (c->num_input_semantics >= c->input_semantics_array_size) {
                c->input_semantics_array_size =
                        MAX2(4, c->input_semantics_array_size * 2);

                c->input_semantics = reralloc(c, c->input_semantics,
                                              struct vc4_varying_semantic,
                                              c->input_semantics_array_size);
        }

        c->input_semantics[i].semantic = semantic;
        c->input_semantics[i].index = index;
        c->input_semantics[i].swizzle = swizzle;

        return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
}

static void
emit_fragment_input(struct vc4_compile *c, int attr,
                    unsigned semantic_name, unsigned semantic_index)
{
        for (int i = 0; i < 4; i++) {
                c->inputs[attr * 4 + i] =
                        emit_fragment_varying(c,
                                              semantic_name,
                                              semantic_index,
                                              i);
                c->num_inputs++;
        }
}

static void
emit_face_input(struct vc4_compile *c, int attr)
{
        c->inputs[attr * 4 + 0] = qir_FSUB(c,
                                           qir_uniform_f(c, 1.0),
                                           qir_FMUL(c,
                                                    qir_ITOF(c, qir_FRAG_REV_FLAG(c)),
                                                    qir_uniform_f(c, 2.0)));
        c->inputs[attr * 4 + 1] = qir_uniform_f(c, 0.0);
        c->inputs[attr * 4 + 2] = qir_uniform_f(c, 0.0);
        c->inputs[attr * 4 + 3] = qir_uniform_f(c, 1.0);
}

static void
add_output(struct vc4_compile *c,
           uint32_t decl_offset,
           uint8_t semantic_name,
           uint8_t semantic_index,
           uint8_t semantic_swizzle)
{
        uint32_t old_array_size = c->outputs_array_size;
        resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
                          decl_offset + 1);

        if (old_array_size != c->outputs_array_size) {
                c->output_semantics = reralloc(c,
                                               c->output_semantics,
                                               struct vc4_varying_semantic,
                                               c->outputs_array_size);
        }

        c->output_semantics[decl_offset].semantic = semantic_name;
        c->output_semantics[decl_offset].index = semantic_index;
        c->output_semantics[decl_offset].swizzle = semantic_swizzle;
}

static void
declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
{
        unsigned array_id = c->num_uniform_ranges++;
        if (array_id >= c->ubo_ranges_array_size) {
                c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
                                                array_id + 1);
                c->ubo_ranges = reralloc(c, c->ubo_ranges,
                                         struct vc4_compiler_ubo_range,
                                         c->ubo_ranges_array_size);
        }

        c->ubo_ranges[array_id].dst_offset = 0;
        c->ubo_ranges[array_id].src_offset = start;
        c->ubo_ranges[array_id].size = size;
        c->ubo_ranges[array_id].used = false;
}

static void
ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
{
        /* Vectors are special in that they have non-scalarized writemasks,
         * and just take the first swizzle channel for each argument in order
         * into each writemask channel.
         */
        if (instr->op == nir_op_vec2 ||
            instr->op == nir_op_vec3 ||
            instr->op == nir_op_vec4) {
                struct qreg srcs[4];
                for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
                        srcs[i] = ntq_get_src(c, instr->src[i].src,
                                              instr->src[i].swizzle[0]);
                struct qreg *dest = ntq_get_dest(c, instr->dest.dest);
                for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
                        dest[i] = srcs[i];
                return;
        }

        /* General case: We can just grab the one used channel per src. */
        struct qreg src[nir_op_infos[instr->op].num_inputs];
        for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
                src[i] = ntq_get_alu_src(c, instr, i);
        }

        /* Pick the channel to store the output in. */
        assert(!instr->dest.saturate);
        struct qreg *dest = ntq_get_dest(c, instr->dest.dest);
        assert(util_is_power_of_two(instr->dest.write_mask));
        dest += ffs(instr->dest.write_mask) - 1;

        switch (instr->op) {
        case nir_op_fmov:
        case nir_op_imov:
                *dest = qir_MOV(c, src[0]);
                break;
        case nir_op_fmul:
                *dest = qir_FMUL(c, src[0], src[1]);
                break;
        case nir_op_fadd:
                *dest = qir_FADD(c, src[0], src[1]);
                break;
        case nir_op_fsub:
                *dest = qir_FSUB(c, src[0], src[1]);
                break;
        case nir_op_fmin:
                *dest = qir_FMIN(c, src[0], src[1]);
                break;
        case nir_op_fmax:
                *dest = qir_FMAX(c, src[0], src[1]);
                break;
        case nir_op_f2i:
                *dest = qir_FTOI(c, src[0]);
                break;
        case nir_op_i2f:
                *dest = qir_ITOF(c, src[0]);
                break;
        case nir_op_b2f:
                *dest = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
                break;
        case nir_op_iadd:
                *dest = qir_ADD(c, src[0], src[1]);
                break;
        case nir_op_ushr:
                *dest = qir_SHR(c, src[0], src[1]);
                break;
        case nir_op_isub:
                *dest = qir_SUB(c, src[0], src[1]);
                break;
        case nir_op_ishr:
                *dest = qir_ASR(c, src[0], src[1]);
                break;
        case nir_op_ishl:
                *dest = qir_SHL(c, src[0], src[1]);
                break;
        case nir_op_imin:
                *dest = qir_MIN(c, src[0], src[1]);
                break;
        case nir_op_imax:
                *dest = qir_MAX(c, src[0], src[1]);
                break;
        case nir_op_iand:
                *dest = qir_AND(c, src[0], src[1]);
                break;
        case nir_op_ior:
                *dest = qir_OR(c, src[0], src[1]);
                break;
        case nir_op_ixor:
                *dest = qir_XOR(c, src[0], src[1]);
                break;
        case nir_op_inot:
                *dest = qir_NOT(c, src[0]);
                break;

        case nir_op_imul:
                *dest = ntq_umul(c, src[0], src[1]);
                break;
        case nir_op_idiv:
                *dest = ntq_idiv(c, src[0], src[1]);
                break;

        case nir_op_seq:
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_ZS(c, qir_uniform_f(c, 1.0));
                break;
        case nir_op_sne:
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_ZC(c, qir_uniform_f(c, 1.0));
                break;
        case nir_op_sge:
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_NC(c, qir_uniform_f(c, 1.0));
                break;
        case nir_op_slt:
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_NS(c, qir_uniform_f(c, 1.0));
                break;
        case nir_op_feq:
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
                break;
        case nir_op_fne:
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
                break;
        case nir_op_fge:
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
                break;
        case nir_op_flt:
                qir_SF(c, qir_FSUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
                break;
        case nir_op_ieq:
                qir_SF(c, qir_SUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_ZS(c, qir_uniform_ui(c, ~0));
                break;
        case nir_op_ine:
                qir_SF(c, qir_SUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_ZC(c, qir_uniform_ui(c, ~0));
                break;
        case nir_op_ige:
                qir_SF(c, qir_SUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_NC(c, qir_uniform_ui(c, ~0));
                break;
        case nir_op_ilt:
                qir_SF(c, qir_SUB(c, src[0], src[1]));
                *dest = qir_SEL_X_0_NS(c, qir_uniform_ui(c, ~0));
                break;

        case nir_op_bcsel:
                qir_SF(c, src[0]);
                *dest = qir_SEL_X_Y_NS(c, src[1], src[2]);
                break;
        case nir_op_fcsel:
                qir_SF(c, src[0]);
                *dest = qir_SEL_X_Y_ZC(c, src[1], src[2]);
                break;

        case nir_op_frcp:
                *dest = ntq_rcp(c, src[0]);
                break;
        case nir_op_frsq:
                *dest = ntq_rsq(c, src[0]);
                break;
        case nir_op_fexp2:
                *dest = qir_EXP2(c, src[0]);
                break;
        case nir_op_flog2:
                *dest = qir_LOG2(c, src[0]);
                break;

        case nir_op_ftrunc:
                *dest = qir_ITOF(c, qir_FTOI(c, src[0]));
                break;
        case nir_op_fceil:
                *dest = ntq_fceil(c, src[0]);
                break;
        case nir_op_ffract:
                *dest = ntq_ffract(c, src[0]);
                break;
        case nir_op_ffloor:
                *dest = ntq_ffloor(c, src[0]);
                break;

        case nir_op_fsin:
                *dest = ntq_fsin(c, src[0]);
                break;
        case nir_op_fcos:
                *dest = ntq_fcos(c, src[0]);
                break;

        case nir_op_fsign:
                *dest = ntq_fsign(c, src[0]);
                break;
        case nir_op_fabs:
                *dest = qir_FMAXABS(c, src[0], src[0]);
                break;

        default:
                fprintf(stderr, "unknown NIR ALU inst: ");
                nir_print_instr(&instr->instr, stderr);
                fprintf(stderr, "\n");
                abort();
        }
}

static struct qreg
vc4_blend_channel(struct vc4_compile *c,
                  struct qreg *dst,
                  struct qreg *src,
                  struct qreg val,
                  unsigned factor,
                  int channel)
{
        switch(factor) {
        case PIPE_BLENDFACTOR_ONE:
                return val;
        case PIPE_BLENDFACTOR_SRC_COLOR:
                return qir_FMUL(c, val, src[channel]);
        case PIPE_BLENDFACTOR_SRC_ALPHA:
                return qir_FMUL(c, val, src[3]);
        case PIPE_BLENDFACTOR_DST_ALPHA:
                return qir_FMUL(c, val, dst[3]);
        case PIPE_BLENDFACTOR_DST_COLOR:
                return qir_FMUL(c, val, dst[channel]);
        case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
                if (channel != 3) {
                        return qir_FMUL(c,
                                        val,
                                        qir_FMIN(c,
                                                 src[3],
                                                 qir_FSUB(c,
                                                          qir_uniform_f(c, 1.0),
                                                          dst[3])));
                } else {
                        return val;
                }
        case PIPE_BLENDFACTOR_CONST_COLOR:
                return qir_FMUL(c, val,
                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR,
                                            channel));
        case PIPE_BLENDFACTOR_CONST_ALPHA:
                return qir_FMUL(c, val,
                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR, 3));
        case PIPE_BLENDFACTOR_ZERO:
                return qir_uniform_f(c, 0.0);
        case PIPE_BLENDFACTOR_INV_SRC_COLOR:
                return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
                                                 src[channel]));
        case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
                return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
                                                 src[3]));
        case PIPE_BLENDFACTOR_INV_DST_ALPHA:
                return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
                                                 dst[3]));
        case PIPE_BLENDFACTOR_INV_DST_COLOR:
                return qir_FMUL(c, val, qir_FSUB(c, qir_uniform_f(c, 1.0),
                                                 dst[channel]));
        case PIPE_BLENDFACTOR_INV_CONST_COLOR:
                return qir_FMUL(c, val,
                                qir_FSUB(c, qir_uniform_f(c, 1.0),
                                         qir_uniform(c,
                                                     QUNIFORM_BLEND_CONST_COLOR,
                                                     channel)));
        case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
                return qir_FMUL(c, val,
                                qir_FSUB(c, qir_uniform_f(c, 1.0),
                                         qir_uniform(c,
                                                     QUNIFORM_BLEND_CONST_COLOR,
                                                     3)));

        default:
        case PIPE_BLENDFACTOR_SRC1_COLOR:
        case PIPE_BLENDFACTOR_SRC1_ALPHA:
        case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
        case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
                /* Unsupported. */
                fprintf(stderr, "Unknown blend factor %d\n", factor);
                return val;
        }
}

static struct qreg
vc4_blend_func(struct vc4_compile *c,
               struct qreg src, struct qreg dst,
               unsigned func)
{
        switch (func) {
        case PIPE_BLEND_ADD:
                return qir_FADD(c, src, dst);
        case PIPE_BLEND_SUBTRACT:
                return qir_FSUB(c, src, dst);
        case PIPE_BLEND_REVERSE_SUBTRACT:
                return qir_FSUB(c, dst, src);
        case PIPE_BLEND_MIN:
                return qir_FMIN(c, src, dst);
        case PIPE_BLEND_MAX:
                return qir_FMAX(c, src, dst);

        default:
                /* Unsupported. */
                fprintf(stderr, "Unknown blend func %d\n", func);
                return src;

        }
}

/**
 * Implements fixed function blending in shader code.
 *
 * VC4 doesn't have any hardware support for blending.  Instead, you read the
 * current contents of the destination from the tile buffer after having
 * waited for the scoreboard (which is handled by vc4_qpu_emit.c), then do
 * math using your output color and that destination value, and update the
 * output color appropriately.
 */
static void
vc4_blend(struct vc4_compile *c, struct qreg *result,
          struct qreg *dst_color, struct qreg *src_color)
{
        struct pipe_rt_blend_state *blend = &c->fs_key->blend;

        if (!blend->blend_enable) {
                for (int i = 0; i < 4; i++)
                        result[i] = src_color[i];
                return;
        }

        struct qreg clamped_src[4];
        struct qreg clamped_dst[4];
        for (int i = 0; i < 4; i++) {
                clamped_src[i] = qir_SAT(c, src_color[i]);
                clamped_dst[i] = qir_SAT(c, dst_color[i]);
        }
        src_color = clamped_src;
        dst_color = clamped_dst;

        struct qreg src_blend[4], dst_blend[4];
        for (int i = 0; i < 3; i++) {
                src_blend[i] = vc4_blend_channel(c,
                                                 dst_color, src_color,
                                                 src_color[i],
                                                 blend->rgb_src_factor, i);
                dst_blend[i] = vc4_blend_channel(c,
                                                 dst_color, src_color,
                                                 dst_color[i],
                                                 blend->rgb_dst_factor, i);
        }
        src_blend[3] = vc4_blend_channel(c,
                                         dst_color, src_color,
                                         src_color[3],
                                         blend->alpha_src_factor, 3);
        dst_blend[3] = vc4_blend_channel(c,
                                         dst_color, src_color,
                                         dst_color[3],
                                         blend->alpha_dst_factor, 3);

        for (int i = 0; i < 3; i++) {
                result[i] = vc4_blend_func(c,
                                           src_blend[i], dst_blend[i],
                                           blend->rgb_func);
        }
        result[3] = vc4_blend_func(c,
                                   src_blend[3], dst_blend[3],
                                   blend->alpha_func);
}

static void
clip_distance_discard(struct vc4_compile *c)
{
        for (int i = 0; i < PIPE_MAX_CLIP_PLANES; i++) {
                if (!(c->key->ucp_enables & (1 << i)))
                        continue;

                struct qreg dist = emit_fragment_varying(c,
                                                         TGSI_SEMANTIC_CLIPDIST,
                                                         i,
                                                         TGSI_SWIZZLE_X);

                qir_SF(c, dist);

                if (c->discard.file == QFILE_NULL)
                        c->discard = qir_uniform_ui(c, 0);

                c->discard = qir_SEL_X_Y_NS(c, qir_uniform_ui(c, ~0),
                                            c->discard);
        }
}

static void
alpha_test_discard(struct vc4_compile *c)
{
        struct qreg src_alpha;
        struct qreg alpha_ref = qir_uniform(c, QUNIFORM_ALPHA_REF, 0);

        if (!c->fs_key->alpha_test)
                return;

        if (c->output_color_index != -1)
                src_alpha = c->outputs[c->output_color_index + 3];
        else
                src_alpha = qir_uniform_f(c, 1.0);

        if (c->discard.file == QFILE_NULL)
                c->discard = qir_uniform_ui(c, 0);

        switch (c->fs_key->alpha_test_func) {
        case PIPE_FUNC_NEVER:
                c->discard = qir_uniform_ui(c, ~0);
                break;
        case PIPE_FUNC_ALWAYS:
                break;
        case PIPE_FUNC_EQUAL:
                qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
                c->discard = qir_SEL_X_Y_ZS(c, c->discard,
                                            qir_uniform_ui(c, ~0));
                break;
        case PIPE_FUNC_NOTEQUAL:
                qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
                c->discard = qir_SEL_X_Y_ZC(c, c->discard,
                                            qir_uniform_ui(c, ~0));
                break;
        case PIPE_FUNC_GREATER:
                qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
                c->discard = qir_SEL_X_Y_NC(c, c->discard,
                                            qir_uniform_ui(c, ~0));
                break;
        case PIPE_FUNC_GEQUAL:
                qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
                c->discard = qir_SEL_X_Y_NS(c, c->discard,
                                            qir_uniform_ui(c, ~0));
                break;
        case PIPE_FUNC_LESS:
                qir_SF(c, qir_FSUB(c, src_alpha, alpha_ref));
                c->discard = qir_SEL_X_Y_NS(c, c->discard,
                                            qir_uniform_ui(c, ~0));
                break;
        case PIPE_FUNC_LEQUAL:
                qir_SF(c, qir_FSUB(c, alpha_ref, src_alpha));
                c->discard = qir_SEL_X_Y_NC(c, c->discard,
                                            qir_uniform_ui(c, ~0));
                break;
        }
}

static struct qreg
vc4_logicop(struct vc4_compile *c, struct qreg src, struct qreg dst)
{
        switch (c->fs_key->logicop_func) {
        case PIPE_LOGICOP_CLEAR:
                return qir_uniform_f(c, 0.0);
        case PIPE_LOGICOP_NOR:
                return qir_NOT(c, qir_OR(c, src, dst));
        case PIPE_LOGICOP_AND_INVERTED:
                return qir_AND(c, qir_NOT(c, src), dst);
        case PIPE_LOGICOP_COPY_INVERTED:
                return qir_NOT(c, src);
        case PIPE_LOGICOP_AND_REVERSE:
                return qir_AND(c, src, qir_NOT(c, dst));
        case PIPE_LOGICOP_INVERT:
                return qir_NOT(c, dst);
        case PIPE_LOGICOP_XOR:
                return qir_XOR(c, src, dst);
        case PIPE_LOGICOP_NAND:
                return qir_NOT(c, qir_AND(c, src, dst));
        case PIPE_LOGICOP_AND:
                return qir_AND(c, src, dst);
        case PIPE_LOGICOP_EQUIV:
                return qir_NOT(c, qir_XOR(c, src, dst));
        case PIPE_LOGICOP_NOOP:
                return dst;
        case PIPE_LOGICOP_OR_INVERTED:
                return qir_OR(c, qir_NOT(c, src), dst);
        case PIPE_LOGICOP_OR_REVERSE:
                return qir_OR(c, src, qir_NOT(c, dst));
        case PIPE_LOGICOP_OR:
                return qir_OR(c, src, dst);
        case PIPE_LOGICOP_SET:
                return qir_uniform_ui(c, ~0);
        case PIPE_LOGICOP_COPY:
        default:
                return src;
        }
}

static void
emit_frag_end(struct vc4_compile *c)
{
        clip_distance_discard(c);
        alpha_test_discard(c);

        enum pipe_format color_format = c->fs_key->color_format;
        const uint8_t *format_swiz = vc4_get_format_swizzle(color_format);
        struct qreg tlb_read_color[4] = { c->undef, c->undef, c->undef, c->undef };
        struct qreg dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
        struct qreg linear_dst_color[4] = { c->undef, c->undef, c->undef, c->undef };
        struct qreg packed_dst_color = c->undef;

        if (c->fs_key->blend.blend_enable ||
            c->fs_key->blend.colormask != 0xf ||
            c->fs_key->logicop_func != PIPE_LOGICOP_COPY) {
                struct qreg r4 = qir_TLB_COLOR_READ(c);
                for (int i = 0; i < 4; i++)
                        tlb_read_color[i] = qir_R4_UNPACK(c, r4, i);
                for (int i = 0; i < 4; i++) {
                        dst_color[i] = get_swizzled_channel(c,
                                                            tlb_read_color,
                                                            format_swiz[i]);
                        if (util_format_is_srgb(color_format) && i != 3) {
                                linear_dst_color[i] =
                                        qir_srgb_decode(c, dst_color[i]);
                        } else {
                                linear_dst_color[i] = dst_color[i];
                        }
                }

                /* Save the packed value for logic ops.  Can't reuse r4
                 * becuase other things might smash it (like sRGB)
                 */
                packed_dst_color = qir_MOV(c, r4);
        }

        struct qreg blend_color[4];
        struct qreg undef_array[4] = {
                c->undef, c->undef, c->undef, c->undef
        };
        vc4_blend(c, blend_color, linear_dst_color,
                  (c->output_color_index != -1 ?
                   c->outputs + c->output_color_index :
                   undef_array));

        if (util_format_is_srgb(color_format)) {
                for (int i = 0; i < 3; i++)
                        blend_color[i] = qir_srgb_encode(c, blend_color[i]);
        }

        /* Debug: Sometimes you're getting a black output and just want to see
         * if the FS is getting executed at all.  Spam magenta into the color
         * output.
         */
        if (0) {
                blend_color[0] = qir_uniform_f(c, 1.0);
                blend_color[1] = qir_uniform_f(c, 0.0);
                blend_color[2] = qir_uniform_f(c, 1.0);
                blend_color[3] = qir_uniform_f(c, 0.5);
        }

        struct qreg swizzled_outputs[4];
        for (int i = 0; i < 4; i++) {
                swizzled_outputs[i] = get_swizzled_channel(c, blend_color,
                                                           format_swiz[i]);
        }

        if (c->discard.file != QFILE_NULL)
                qir_TLB_DISCARD_SETUP(c, c->discard);

        if (c->fs_key->stencil_enabled) {
                qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 0));
                if (c->fs_key->stencil_twoside) {
                        qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 1));
                }
                if (c->fs_key->stencil_full_writemasks) {
                        qir_TLB_STENCIL_SETUP(c, qir_uniform(c, QUNIFORM_STENCIL, 2));
                }
        }

        if (c->fs_key->depth_enabled) {
                struct qreg z;
                if (c->output_position_index != -1) {
                        z = qir_FTOI(c, qir_FMUL(c, c->outputs[c->output_position_index + 2],
                                                 qir_uniform_f(c, 0xffffff)));
                } else {
                        z = qir_FRAG_Z(c);
                }
                qir_TLB_Z_WRITE(c, z);
        }

        struct qreg packed_color = c->undef;
        for (int i = 0; i < 4; i++) {
                if (swizzled_outputs[i].file == QFILE_NULL)
                        continue;
                if (packed_color.file == QFILE_NULL) {
                        packed_color = qir_PACK_8888_F(c, swizzled_outputs[i]);
                } else {
                        packed_color = qir_PACK_8_F(c,
                                                    packed_color,
                                                    swizzled_outputs[i],
                                                    i);
                }
        }

        if (packed_color.file == QFILE_NULL)
                packed_color = qir_uniform_ui(c, 0);

        if (c->fs_key->logicop_func != PIPE_LOGICOP_COPY) {
                packed_color = vc4_logicop(c, packed_color, packed_dst_color);
        }

        /* If the bit isn't set in the color mask, then just return the
         * original dst color, instead.
         */
        uint32_t colormask = 0xffffffff;
        for (int i = 0; i < 4; i++) {
                if (format_swiz[i] < 4 &&
                    !(c->fs_key->blend.colormask & (1 << format_swiz[i]))) {
                        colormask &= ~(0xff << (i * 8));
                }
        }
        if (colormask != 0xffffffff) {
                packed_color = qir_OR(c,
                                      qir_AND(c, packed_color,
                                              qir_uniform_ui(c, colormask)),
                                      qir_AND(c, packed_dst_color,
                                              qir_uniform_ui(c, ~colormask)));
        }

        qir_emit(c, qir_inst(QOP_TLB_COLOR_WRITE, c->undef,
                             packed_color, c->undef));
}

static void
emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
{
        struct qreg xyi[2];

        for (int i = 0; i < 2; i++) {
                struct qreg scale =
                        qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);

                xyi[i] = qir_FTOI(c, qir_FMUL(c,
                                              qir_FMUL(c,
                                                       c->outputs[c->output_position_index + i],
                                                       scale),
                                              rcp_w));
        }

        qir_VPM_WRITE(c, qir_PACK_SCALED(c, xyi[0], xyi[1]));
}

static void
emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
{
        struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
        struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);

        qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
                                                          c->outputs[c->output_position_index + 2],
                                                          zscale),
                                              rcp_w),
                                  zoffset));
}

static void
emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
{
        qir_VPM_WRITE(c, rcp_w);
}

static void
emit_point_size_write(struct vc4_compile *c)
{
        struct qreg point_size;

        if (c->output_point_size_index != -1)
                point_size = c->outputs[c->output_point_size_index + 3];
        else
                point_size = qir_uniform_f(c, 1.0);

        /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
         * BCM21553).
         */
        point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));

        qir_VPM_WRITE(c, point_size);
}

/**
 * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
 *
 * The simulator insists that there be at least one vertex attribute, so
 * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
 * insists that all vertex attributes loaded get read by the VS/CS, so we have
 * to consume it here.
 */
static void
emit_stub_vpm_read(struct vc4_compile *c)
{
        if (c->num_inputs)
                return;

        c->vattr_sizes[0] = 4;
        struct qreg vpm = { QFILE_VPM, 0 };
        (void)qir_MOV(c, vpm);
        c->num_inputs++;
}

static void
emit_ucp_clipdistance(struct vc4_compile *c)
{
        unsigned cv;
        if (c->output_clipvertex_index != -1)
                cv = c->output_clipvertex_index;
        else if (c->output_position_index != -1)
                cv = c->output_position_index;
        else
                return;

        for (int plane = 0; plane < PIPE_MAX_CLIP_PLANES; plane++) {
                if (!(c->key->ucp_enables & (1 << plane)))
                        continue;

                /* Pick the next outputs[] that hasn't been written to, since
                 * there are no other program writes left to be processed at
                 * this point.  If something had been declared but not written
                 * (like a w component), we'll just smash over the top of it.
                 */
                uint32_t output_index = c->num_outputs++;
                add_output(c, output_index,
                           TGSI_SEMANTIC_CLIPDIST,
                           plane,
                           TGSI_SWIZZLE_X);


                struct qreg dist = qir_uniform_f(c, 0.0);
                for (int i = 0; i < 4; i++) {
                        struct qreg pos_chan = c->outputs[cv + i];
                        struct qreg ucp =
                                qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
                                            plane * 4 + i);
                        dist = qir_FADD(c, dist, qir_FMUL(c, pos_chan, ucp));
                }

                c->outputs[output_index] = dist;
        }
}

static void
emit_vert_end(struct vc4_compile *c,
              struct vc4_varying_semantic *fs_inputs,
              uint32_t num_fs_inputs)
{
        struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);

        emit_stub_vpm_read(c);
        emit_ucp_clipdistance(c);

        emit_scaled_viewport_write(c, rcp_w);
        emit_zs_write(c, rcp_w);
        emit_rcp_wc_write(c, rcp_w);
        if (c->vs_key->per_vertex_point_size)
                emit_point_size_write(c);

        for (int i = 0; i < num_fs_inputs; i++) {
                struct vc4_varying_semantic *input = &fs_inputs[i];
                int j;

                for (j = 0; j < c->num_outputs; j++) {
                        struct vc4_varying_semantic *output =
                                &c->output_semantics[j];

                        if (input->semantic == output->semantic &&
                            input->index == output->index &&
                            input->swizzle == output->swizzle) {
                                qir_VPM_WRITE(c, c->outputs[j]);
                                break;
                        }
                }
                /* Emit padding if we didn't find a declared VS output for
                 * this FS input.
                 */
                if (j == c->num_outputs)
                        qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
        }
}

static void
emit_coord_end(struct vc4_compile *c)
{
        struct qreg rcp_w = qir_RCP(c, c->outputs[c->output_position_index + 3]);

        emit_stub_vpm_read(c);

        for (int i = 0; i < 4; i++)
                qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);

        emit_scaled_viewport_write(c, rcp_w);
        emit_zs_write(c, rcp_w);
        emit_rcp_wc_write(c, rcp_w);
        if (c->vs_key->per_vertex_point_size)
                emit_point_size_write(c);
}

static void
vc4_optimize_nir(struct nir_shader *s)
{
        bool progress;

        do {
                progress = false;

                nir_lower_vars_to_ssa(s);
                nir_lower_alu_to_scalar(s);

                progress = nir_copy_prop(s) || progress;
                progress = nir_opt_dce(s) || progress;
                progress = nir_opt_cse(s) || progress;
                progress = nir_opt_peephole_select(s) || progress;
                progress = nir_opt_algebraic(s) || progress;
                progress = nir_opt_constant_folding(s) || progress;
        } while (progress);
}

static int
driver_location_compare(const void *in_a, const void *in_b)
{
        const nir_variable *const *a = in_a;
        const nir_variable *const *b = in_b;

        return (*a)->data.driver_location - (*b)->data.driver_location;
}

static void
ntq_setup_inputs(struct vc4_compile *c)
{
        unsigned num_entries = 0;
        foreach_list_typed(nir_variable, var, node, &c->s->inputs)
                num_entries++;

        nir_variable *vars[num_entries];

        unsigned i = 0;
        foreach_list_typed(nir_variable, var, node, &c->s->inputs)
                vars[i++] = var;

        /* Sort the variables so that we emit the input setup in
         * driver_location order.  This is required for VPM reads, whose data
         * is fetched into the VPM in driver_location (TGSI register index)
         * order.
         */
        qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);

        for (unsigned i = 0; i < num_entries; i++) {
                nir_variable *var = vars[i];
                unsigned array_len = MAX2(glsl_get_length(var->type), 1);
                /* XXX: map loc slots to semantics */
                unsigned semantic_name = var->data.location;
                unsigned semantic_index = var->data.index;
                unsigned loc = var->data.driver_location;

                assert(array_len == 1);
                resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
                                  (loc + 1) * 4);

                if (c->stage == QSTAGE_FRAG) {
                        if (semantic_name == TGSI_SEMANTIC_POSITION) {
                                emit_fragcoord_input(c, loc);
                        } else if (semantic_name == TGSI_SEMANTIC_FACE) {
                                emit_face_input(c, loc);
                        } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
                                   (c->fs_key->point_sprite_mask &
                                    (1 << semantic_index))) {
                                emit_point_coord_input(c, loc);
                        } else {
                                emit_fragment_input(c, loc,
                                                    semantic_name,
                                                    semantic_index);
                        }
                } else {
                        emit_vertex_input(c, loc);
                }
        }
}

static void
ntq_setup_outputs(struct vc4_compile *c)
{
        foreach_list_typed(nir_variable, var, node, &c->s->outputs) {
                unsigned array_len = MAX2(glsl_get_length(var->type), 1);
                /* XXX: map loc slots to semantics */
                unsigned semantic_name = var->data.location;
                unsigned semantic_index = var->data.index;
                unsigned loc = var->data.driver_location * 4;

                assert(array_len == 1);

                for (int i = 0; i < 4; i++) {
                        add_output(c,
                                   loc + i,
                                   semantic_name,
                                   semantic_index,
                                   i);
                }

                switch (semantic_name) {
                case TGSI_SEMANTIC_POSITION:
                        c->output_position_index = loc;
                        break;
                case TGSI_SEMANTIC_CLIPVERTEX:
                        c->output_clipvertex_index = loc;
                        break;
                case TGSI_SEMANTIC_COLOR:
                        c->output_color_index = loc;
                        break;
                case TGSI_SEMANTIC_PSIZE:
                        c->output_point_size_index = loc;
                        break;
                }

        }
}

static void
ntq_setup_uniforms(struct vc4_compile *c)
{
        foreach_list_typed(nir_variable, var, node, &c->s->uniforms) {
                unsigned array_len = MAX2(glsl_get_length(var->type), 1);
                unsigned array_elem_size = 4 * sizeof(float);

                declare_uniform_range(c, var->data.driver_location * array_elem_size,
                                      array_len * array_elem_size);

        }
}

/**
 * Sets up the mapping from nir_register to struct qreg *.
 *
 * Each nir_register gets a struct qreg per 32-bit component being stored.
 */
static void
ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
{
        foreach_list_typed(nir_register, nir_reg, node, list) {
                unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
                struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
                                                  array_len *
                                                  nir_reg->num_components);

                _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);

                for (int i = 0; i < array_len * nir_reg->num_components; i++)
                        qregs[i] = qir_uniform_ui(c, 0);
        }
}

static void
ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
{
        struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
                                          instr->def.num_components);
        for (int i = 0; i < instr->def.num_components; i++)
                qregs[i] = qir_uniform_ui(c, instr->value.u[i]);

        _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
}

static void
ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
{
        const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
        struct qreg *dest = NULL;

        if (info->has_dest) {
                dest = ntq_get_dest(c, instr->dest);
        }

        switch (instr->intrinsic) {
        case nir_intrinsic_load_uniform:
                assert(instr->const_index[1] == 1);

                for (int i = 0; i < instr->num_components; i++) {
                        dest[i] = qir_uniform(c, QUNIFORM_UNIFORM,
                                              instr->const_index[0] * 4 + i);
                }
                break;

        case nir_intrinsic_load_uniform_indirect:
                assert(instr->const_index[1] == 1);

                for (int i = 0; i < instr->num_components; i++) {
                        dest[i] = indirect_uniform_load(c,
                                                        ntq_get_src(c, instr->src[0], 0),
                                                        (instr->const_index[0] *
                                                         4 + i) * sizeof(float));
                }

                break;

        case nir_intrinsic_load_input:
                assert(instr->const_index[1] == 1);

                for (int i = 0; i < instr->num_components; i++)
                        dest[i] = c->inputs[instr->const_index[0] * 4 + i];

                break;

        case nir_intrinsic_store_output:
                for (int i = 0; i < instr->num_components; i++) {
                        c->outputs[instr->const_index[0] * 4 + i] =
                                qir_MOV(c, ntq_get_src(c, instr->src[0], i));
                }
                c->num_outputs = MAX2(c->num_outputs,
                                      instr->const_index[0] * 4 +
                                      instr->num_components + 1);
                break;

        case nir_intrinsic_discard:
                c->discard = qir_uniform_ui(c, ~0);
                break;

        case nir_intrinsic_discard_if:
                if (c->discard.file == QFILE_NULL)
                        c->discard = qir_uniform_ui(c, 0);
                c->discard = qir_OR(c, c->discard,
                                    ntq_get_src(c, instr->src[0], 0));
                break;

        default:
                fprintf(stderr, "Unknown intrinsic: ");
                nir_print_instr(&instr->instr, stderr);
                fprintf(stderr, "\n");
                break;
        }
}

static void
ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
{
        fprintf(stderr, "general IF statements not handled.\n");
}

static void
ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
{
        switch (instr->type) {
        case nir_instr_type_alu:
                ntq_emit_alu(c, nir_instr_as_alu(instr));
                break;

        case nir_instr_type_intrinsic:
                ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
                break;

        case nir_instr_type_load_const:
                ntq_emit_load_const(c, nir_instr_as_load_const(instr));
                break;

        case nir_instr_type_tex:
                ntq_emit_tex(c, nir_instr_as_tex(instr));
                break;

        default:
                fprintf(stderr, "Unknown NIR instr type: ");
                nir_print_instr(instr, stderr);
                fprintf(stderr, "\n");
                abort();
        }
}

static void
ntq_emit_block(struct vc4_compile *c, nir_block *block)
{
        nir_foreach_instr(block, instr) {
                ntq_emit_instr(c, instr);
        }
}

static void
ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
{
        foreach_list_typed(nir_cf_node, node, node, list) {
                switch (node->type) {
                        /* case nir_cf_node_loop: */
                case nir_cf_node_block:
                        ntq_emit_block(c, nir_cf_node_as_block(node));
                        break;

                case nir_cf_node_if:
                        ntq_emit_if(c, nir_cf_node_as_if(node));
                        break;

                default:
                        assert(0);
                }
        }
}

static void
ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
{
        ntq_setup_registers(c, &impl->registers);
        ntq_emit_cf_list(c, &impl->body);
}

static void
nir_to_qir(struct vc4_compile *c)
{
        ntq_setup_inputs(c);
        ntq_setup_outputs(c);
        ntq_setup_uniforms(c);
        ntq_setup_registers(c, &c->s->registers);

        /* Find the main function and emit the body. */
        nir_foreach_overload(c->s, overload) {
                assert(strcmp(overload->function->name, "main") == 0);
                assert(overload->impl);
                ntq_emit_impl(c, overload->impl);
        }
}

static const nir_shader_compiler_options nir_options = {
        .lower_ffma = true,
        .lower_flrp = true,
        .lower_fpow = true,
        .lower_fsat = true,
        .lower_fsqrt = true,
        .lower_negate = true,
};

static bool
count_nir_instrs_in_block(nir_block *block, void *state)
{
        int *count = (int *) state;
        nir_foreach_instr(block, instr) {
                *count = *count + 1;
        }
        return true;
}

static int
count_nir_instrs(nir_shader *nir)
{
        int count = 0;
        nir_foreach_overload(nir, overload) {
                if (!overload->impl)
                        continue;
                nir_foreach_block(overload->impl, count_nir_instrs_in_block, &count);
        }
        return count;
}

static struct vc4_compile *
vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
                       struct vc4_key *key)
{
        struct vc4_compile *c = qir_compile_init();

        c->stage = stage;
        c->shader_state = &key->shader_state->base;
        c->program_id = key->shader_state->program_id;
        c->variant_id = key->shader_state->compiled_variant_count++;

        c->key = key;
        switch (stage) {
        case QSTAGE_FRAG:
                c->fs_key = (struct vc4_fs_key *)key;
                if (c->fs_key->is_points) {
                        c->point_x = emit_fragment_varying(c, ~0, ~0, 0);
                        c->point_y = emit_fragment_varying(c, ~0, ~0, 0);
                } else if (c->fs_key->is_lines) {
                        c->line_x = emit_fragment_varying(c, ~0, ~0, 0);
                }
                break;
        case QSTAGE_VERT:
                c->vs_key = (struct vc4_vs_key *)key;
                break;
        case QSTAGE_COORD:
                c->vs_key = (struct vc4_vs_key *)key;
                break;
        }

        const struct tgsi_token *tokens = key->shader_state->base.tokens;
        if (c->fs_key && c->fs_key->light_twoside) {
                if (!key->shader_state->twoside_tokens) {
                        const struct tgsi_lowering_config lowering_config = {
                                .color_two_side = true,
                        };
                        struct tgsi_shader_info info;
                        key->shader_state->twoside_tokens =
                                tgsi_transform_lowering(&lowering_config,
                                                        key->shader_state->base.tokens,
                                                        &info);

                        /* If no transformation occurred, then NULL is
                         * returned and we just use our original tokens.
                         */
                        if (!key->shader_state->twoside_tokens) {
                                key->shader_state->twoside_tokens =
                                        key->shader_state->base.tokens;
                        }
                }
                tokens = key->shader_state->twoside_tokens;
        }

        if (vc4_debug & VC4_DEBUG_TGSI) {
                fprintf(stderr, "%s prog %d/%d TGSI:\n",
                        qir_get_stage_name(c->stage),
                        c->program_id, c->variant_id);
                tgsi_dump(tokens, 0);
        }

        c->s = tgsi_to_nir(tokens, &nir_options);
        nir_opt_global_to_local(c->s);
        nir_convert_to_ssa(c->s);

        vc4_optimize_nir(c->s);

        nir_remove_dead_variables(c->s);

        nir_convert_from_ssa(c->s);

        if (vc4_debug & VC4_DEBUG_SHADERDB) {
                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
                        qir_get_stage_name(c->stage),
                        c->program_id, c->variant_id,
                        count_nir_instrs(c->s));
        }

        if (vc4_debug & VC4_DEBUG_NIR) {
                fprintf(stderr, "%s prog %d/%d NIR:\n",
                        qir_get_stage_name(c->stage),
                        c->program_id, c->variant_id);
                nir_print_shader(c->s, stderr);
        }

        nir_to_qir(c);

        switch (stage) {
        case QSTAGE_FRAG:
                emit_frag_end(c);
                break;
        case QSTAGE_VERT:
                emit_vert_end(c,
                              vc4->prog.fs->input_semantics,
                              vc4->prog.fs->num_inputs);
                break;
        case QSTAGE_COORD:
                emit_coord_end(c);
                break;
        }

        if (vc4_debug & VC4_DEBUG_QIR) {
                fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
                        qir_get_stage_name(c->stage),
                        c->program_id, c->variant_id);
                qir_dump(c);
        }

        qir_optimize(c);
        qir_lower_uniforms(c);

        if (vc4_debug & VC4_DEBUG_QIR) {
                fprintf(stderr, "%s prog %d/%d QIR:\n",
                        qir_get_stage_name(c->stage),
                        c->program_id, c->variant_id);
                qir_dump(c);
        }
        qir_reorder_uniforms(c);
        vc4_generate_code(vc4, c);

        if (vc4_debug & VC4_DEBUG_SHADERDB) {
                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
                        qir_get_stage_name(c->stage),
                        c->program_id, c->variant_id,
                        c->qpu_inst_count);
                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
                        qir_get_stage_name(c->stage),
                        c->program_id, c->variant_id,
                        c->num_uniforms);
        }

        ralloc_free(c->s);

        return c;
}

static void *
vc4_shader_state_create(struct pipe_context *pctx,
                        const struct pipe_shader_state *cso)
{
        struct vc4_context *vc4 = vc4_context(pctx);
        struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
        if (!so)
                return NULL;

        so->base.tokens = tgsi_dup_tokens(cso->tokens);
        so->program_id = vc4->next_uncompiled_program_id++;

        return so;
}

static void
copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
                             struct vc4_compile *c)
{
        int count = c->num_uniforms;
        struct vc4_shader_uniform_info *uinfo = &shader->uniforms;

        uinfo->count = count;
        uinfo->data = ralloc_array(shader, uint32_t, count);
        memcpy(uinfo->data, c->uniform_data,
               count * sizeof(*uinfo->data));
        uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
        memcpy(uinfo->contents, c->uniform_contents,
               count * sizeof(*uinfo->contents));
        uinfo->num_texture_samples = c->num_texture_samples;
}

static struct vc4_compiled_shader *
vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
                        struct vc4_key *key)
{
        struct hash_table *ht;
        uint32_t key_size;
        if (stage == QSTAGE_FRAG) {
                ht = vc4->fs_cache;
                key_size = sizeof(struct vc4_fs_key);
        } else {
                ht = vc4->vs_cache;
                key_size = sizeof(struct vc4_vs_key);
        }

        struct vc4_compiled_shader *shader;
        struct hash_entry *entry = _mesa_hash_table_search(ht, key);
        if (entry)
                return entry->data;

        struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key);
        shader = rzalloc(NULL, struct vc4_compiled_shader);

        shader->program_id = vc4->next_compiled_program_id++;
        if (stage == QSTAGE_FRAG) {
                bool input_live[c->num_input_semantics];
                struct simple_node *node;

                memset(input_live, 0, sizeof(input_live));
                foreach(node, &c->instructions) {
                        struct qinst *inst = (struct qinst *)node;
                        for (int i = 0; i < qir_get_op_nsrc(inst->op); i++) {
                                if (inst->src[i].file == QFILE_VARY)
                                        input_live[inst->src[i].index] = true;
                        }
                }

                shader->input_semantics = ralloc_array(shader,
                                                       struct vc4_varying_semantic,
                                                       c->num_input_semantics);

                for (int i = 0; i < c->num_input_semantics; i++) {
                        struct vc4_varying_semantic *sem = &c->input_semantics[i];

                        if (!input_live[i])
                                continue;

                        /* Skip non-VS-output inputs. */
                        if (sem->semantic == (uint8_t)~0)
                                continue;

                        if (sem->semantic == TGSI_SEMANTIC_COLOR ||
                            sem->semantic == TGSI_SEMANTIC_BCOLOR) {
                                shader->color_inputs |= (1 << shader->num_inputs);
                        }

                        shader->input_semantics[shader->num_inputs] = *sem;
                        shader->num_inputs++;
                }
        } else {
                shader->num_inputs = c->num_inputs;

                shader->vattr_offsets[0] = 0;
                for (int i = 0; i < 8; i++) {
                        shader->vattr_offsets[i + 1] =
                                shader->vattr_offsets[i] + c->vattr_sizes[i];

                        if (c->vattr_sizes[i])
                                shader->vattrs_live |= (1 << i);
                }
        }

        copy_uniform_state_to_shader(shader, c);
        shader->bo = vc4_bo_alloc_mem(vc4->screen, c->qpu_insts,
                                      c->qpu_inst_count * sizeof(uint64_t),
                                      "code");

        /* Copy the compiler UBO range state to the compiled shader, dropping
         * out arrays that were never referenced by an indirect load.
         *
         * (Note that QIR dead code elimination of an array access still
         * leaves that array alive, though)
         */
        if (c->num_ubo_ranges) {
                shader->num_ubo_ranges = c->num_ubo_ranges;
                shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
                                                  c->num_ubo_ranges);
                uint32_t j = 0;
                for (int i = 0; i < c->num_uniform_ranges; i++) {
                        struct vc4_compiler_ubo_range *range =
                                &c->ubo_ranges[i];
                        if (!range->used)
                                continue;

                        shader->ubo_ranges[j].dst_offset = range->dst_offset;
                        shader->ubo_ranges[j].src_offset = range->src_offset;
                        shader->ubo_ranges[j].size = range->size;
                        shader->ubo_size += c->ubo_ranges[i].size;
                        j++;
                }
        }
        if (shader->ubo_size) {
                fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
                        qir_get_stage_name(c->stage),
                        c->program_id, c->variant_id,
                        shader->ubo_size / 4);
        }

        qir_compile_destroy(c);

        struct vc4_key *dup_key;
        dup_key = ralloc_size(shader, key_size);
        memcpy(dup_key, key, key_size);
        _mesa_hash_table_insert(ht, dup_key, shader);

        return shader;
}

static void
vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
                     struct vc4_texture_stateobj *texstate)
{
        for (int i = 0; i < texstate->num_textures; i++) {
                struct pipe_sampler_view *sampler = texstate->textures[i];
                struct pipe_sampler_state *sampler_state =
                        texstate->samplers[i];

                if (sampler) {
                        key->tex[i].format = sampler->format;
                        key->tex[i].swizzle[0] = sampler->swizzle_r;
                        key->tex[i].swizzle[1] = sampler->swizzle_g;
                        key->tex[i].swizzle[2] = sampler->swizzle_b;
                        key->tex[i].swizzle[3] = sampler->swizzle_a;
                        key->tex[i].compare_mode = sampler_state->compare_mode;
                        key->tex[i].compare_func = sampler_state->compare_func;
                        key->tex[i].wrap_s = sampler_state->wrap_s;
                        key->tex[i].wrap_t = sampler_state->wrap_t;
                }
        }

        key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
}

static void
vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
{
        struct vc4_fs_key local_key;
        struct vc4_fs_key *key = &local_key;

        if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
                            VC4_DIRTY_BLEND |
                            VC4_DIRTY_FRAMEBUFFER |
                            VC4_DIRTY_ZSA |
                            VC4_DIRTY_RASTERIZER |
                            VC4_DIRTY_FRAGTEX |
                            VC4_DIRTY_TEXSTATE |
                            VC4_DIRTY_UNCOMPILED_FS))) {
                return;
        }

        memset(key, 0, sizeof(*key));
        vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
        key->base.shader_state = vc4->prog.bind_fs;
        key->is_points = (prim_mode == PIPE_PRIM_POINTS);
        key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
                         prim_mode <= PIPE_PRIM_LINE_STRIP);
        key->blend = vc4->blend->rt[0];
        if (vc4->blend->logicop_enable) {
                key->logicop_func = vc4->blend->logicop_func;
        } else {
                key->logicop_func = PIPE_LOGICOP_COPY;
        }
        if (vc4->framebuffer.cbufs[0])
                key->color_format = vc4->framebuffer.cbufs[0]->format;

        key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
        key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
        key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
        key->depth_enabled = (vc4->zsa->base.depth.enabled ||
                              key->stencil_enabled);
        if (vc4->zsa->base.alpha.enabled) {
                key->alpha_test = true;
                key->alpha_test_func = vc4->zsa->base.alpha.func;
        }

        if (key->is_points) {
                key->point_sprite_mask =
                        vc4->rasterizer->base.sprite_coord_enable;
                key->point_coord_upper_left =
                        (vc4->rasterizer->base.sprite_coord_mode ==
                         PIPE_SPRITE_COORD_UPPER_LEFT);
        }

        key->light_twoside = vc4->rasterizer->base.light_twoside;

        struct vc4_compiled_shader *old_fs = vc4->prog.fs;
        vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
        if (vc4->prog.fs == old_fs)
                return;

        vc4->dirty |= VC4_DIRTY_COMPILED_FS;
        if (vc4->rasterizer->base.flatshade &&
            old_fs && vc4->prog.fs->color_inputs != old_fs->color_inputs) {
                vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
        }
}

static void
vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
{
        struct vc4_vs_key local_key;
        struct vc4_vs_key *key = &local_key;

        if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
                            VC4_DIRTY_RASTERIZER |
                            VC4_DIRTY_VERTTEX |
                            VC4_DIRTY_TEXSTATE |
                            VC4_DIRTY_VTXSTATE |
                            VC4_DIRTY_UNCOMPILED_VS |
                            VC4_DIRTY_COMPILED_FS))) {
                return;
        }

        memset(key, 0, sizeof(*key));
        vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
        key->base.shader_state = vc4->prog.bind_vs;
        key->compiled_fs_id = vc4->prog.fs->program_id;

        for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
                key->attr_formats[i] = vc4->vtx->pipe[i].src_format;

        key->per_vertex_point_size =
                (prim_mode == PIPE_PRIM_POINTS &&
                 vc4->rasterizer->base.point_size_per_vertex);

        vc4->prog.vs = vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
        key->is_coord = true;
        vc4->prog.cs = vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
}

void
vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
{
        vc4_update_compiled_fs(vc4, prim_mode);
        vc4_update_compiled_vs(vc4, prim_mode);
}

static uint32_t
fs_cache_hash(const void *key)
{
        return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
}

static uint32_t
vs_cache_hash(const void *key)
{
        return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
}

static bool
fs_cache_compare(const void *key1, const void *key2)
{
        return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
}

static bool
vs_cache_compare(const void *key1, const void *key2)
{
        return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
}

static void
delete_from_cache_if_matches(struct hash_table *ht,
                             struct hash_entry *entry,
                             struct vc4_uncompiled_shader *so)
{
        const struct vc4_key *key = entry->key;

        if (key->shader_state == so) {
                struct vc4_compiled_shader *shader = entry->data;
                _mesa_hash_table_remove(ht, entry);
                vc4_bo_unreference(&shader->bo);
                ralloc_free(shader);
        }
}

static void
vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
{
        struct vc4_context *vc4 = vc4_context(pctx);
        struct vc4_uncompiled_shader *so = hwcso;

        struct hash_entry *entry;
        hash_table_foreach(vc4->fs_cache, entry)
                delete_from_cache_if_matches(vc4->fs_cache, entry, so);
        hash_table_foreach(vc4->vs_cache, entry)
                delete_from_cache_if_matches(vc4->vs_cache, entry, so);

        if (so->twoside_tokens != so->base.tokens)
                free((void *)so->twoside_tokens);
        free((void *)so->base.tokens);
        free(so);
}

static uint32_t translate_wrap(uint32_t p_wrap, bool using_nearest)
{
        switch (p_wrap) {
        case PIPE_TEX_WRAP_REPEAT:
                return 0;
        case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
                return 1;
        case PIPE_TEX_WRAP_MIRROR_REPEAT:
                return 2;
        case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
                return 3;
        case PIPE_TEX_WRAP_CLAMP:
                return (using_nearest ? 1 : 3);
        default:
                fprintf(stderr, "Unknown wrap mode %d\n", p_wrap);
                assert(!"not reached");
                return 0;
        }
}

static void
write_texture_p0(struct vc4_context *vc4,
                 struct vc4_texture_stateobj *texstate,
                 uint32_t unit)
{
        struct pipe_sampler_view *texture = texstate->textures[unit];
        struct vc4_resource *rsc = vc4_resource(texture->texture);

        cl_reloc(vc4, &vc4->uniforms, rsc->bo,
                 VC4_SET_FIELD(rsc->slices[0].offset >> 12, VC4_TEX_P0_OFFSET) |
                 VC4_SET_FIELD(texture->u.tex.last_level -
                               texture->u.tex.first_level, VC4_TEX_P0_MIPLVLS) |
                 VC4_SET_FIELD(texture->target == PIPE_TEXTURE_CUBE,
                               VC4_TEX_P0_CMMODE) |
                 VC4_SET_FIELD(rsc->vc4_format & 15, VC4_TEX_P0_TYPE));
}

static void
write_texture_p1(struct vc4_context *vc4,
                 struct vc4_texture_stateobj *texstate,
                 uint32_t unit)
{
        struct pipe_sampler_view *texture = texstate->textures[unit];
        struct vc4_resource *rsc = vc4_resource(texture->texture);
        struct pipe_sampler_state *sampler = texstate->samplers[unit];
        static const uint8_t minfilter_map[6] = {
                VC4_TEX_P1_MINFILT_NEAR_MIP_NEAR,
                VC4_TEX_P1_MINFILT_LIN_MIP_NEAR,
                VC4_TEX_P1_MINFILT_NEAR_MIP_LIN,
                VC4_TEX_P1_MINFILT_LIN_MIP_LIN,
                VC4_TEX_P1_MINFILT_NEAREST,
                VC4_TEX_P1_MINFILT_LINEAR,
        };
        static const uint32_t magfilter_map[] = {
                [PIPE_TEX_FILTER_NEAREST] = VC4_TEX_P1_MAGFILT_NEAREST,
                [PIPE_TEX_FILTER_LINEAR] = VC4_TEX_P1_MAGFILT_LINEAR,
        };

        bool either_nearest =
                (sampler->mag_img_filter == PIPE_TEX_MIPFILTER_NEAREST ||
                 sampler->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST);

        cl_aligned_u32(&vc4->uniforms,
               VC4_SET_FIELD(rsc->vc4_format >> 4, VC4_TEX_P1_TYPE4) |
               VC4_SET_FIELD(texture->texture->height0 & 2047,
                             VC4_TEX_P1_HEIGHT) |
               VC4_SET_FIELD(texture->texture->width0 & 2047,
                             VC4_TEX_P1_WIDTH) |
               VC4_SET_FIELD(magfilter_map[sampler->mag_img_filter],
                             VC4_TEX_P1_MAGFILT) |
               VC4_SET_FIELD(minfilter_map[sampler->min_mip_filter * 2 +
                                           sampler->min_img_filter],
                             VC4_TEX_P1_MINFILT) |
               VC4_SET_FIELD(translate_wrap(sampler->wrap_s, either_nearest),
                             VC4_TEX_P1_WRAP_S) |
               VC4_SET_FIELD(translate_wrap(sampler->wrap_t, either_nearest),
                             VC4_TEX_P1_WRAP_T));
}

static void
write_texture_p2(struct vc4_context *vc4,
                 struct vc4_texture_stateobj *texstate,
                 uint32_t data)
{
        uint32_t unit = data & 0xffff;
        struct pipe_sampler_view *texture = texstate->textures[unit];
        struct vc4_resource *rsc = vc4_resource(texture->texture);

        cl_aligned_u32(&vc4->uniforms,
               VC4_SET_FIELD(VC4_TEX_P2_PTYPE_CUBE_MAP_STRIDE,
                             VC4_TEX_P2_PTYPE) |
               VC4_SET_FIELD(rsc->cube_map_stride >> 12, VC4_TEX_P2_CMST) |
               VC4_SET_FIELD((data >> 16) & 1, VC4_TEX_P2_BSLOD));
}


#define SWIZ(x,y,z,w) {          \
        UTIL_FORMAT_SWIZZLE_##x, \
        UTIL_FORMAT_SWIZZLE_##y, \
        UTIL_FORMAT_SWIZZLE_##z, \
        UTIL_FORMAT_SWIZZLE_##w  \
}

static void
write_texture_border_color(struct vc4_context *vc4,
                           struct vc4_texture_stateobj *texstate,
                           uint32_t unit)
{
        struct pipe_sampler_state *sampler = texstate->samplers[unit];
        struct pipe_sampler_view *texture = texstate->textures[unit];
        struct vc4_resource *rsc = vc4_resource(texture->texture);
        union util_color uc;

        const struct util_format_description *tex_format_desc =
                util_format_description(texture->format);

        float border_color[4];
        for (int i = 0; i < 4; i++)
                border_color[i] = sampler->border_color.f[i];
        if (util_format_is_srgb(texture->format)) {
                for (int i = 0; i < 3; i++)
                        border_color[i] =
                                util_format_linear_to_srgb_float(border_color[i]);
        }

        /* Turn the border color into the layout of channels that it would
         * have when stored as texture contents.
         */
        float storage_color[4];
        util_format_unswizzle_4f(storage_color,
                                 border_color,
                                 tex_format_desc->swizzle);

        /* Now, pack so that when the vc4_format-sampled texture contents are
         * replaced with our border color, the vc4_get_format_swizzle()
         * swizzling will get the right channels.
         */
        if (util_format_is_depth_or_stencil(texture->format)) {
                uc.ui[0] = util_pack_z(PIPE_FORMAT_Z24X8_UNORM,
                                       sampler->border_color.f[0]) << 8;
        } else {
                switch (rsc->vc4_format) {
                default:
                case VC4_TEXTURE_TYPE_RGBA8888:
                        util_pack_color(storage_color,
                                        PIPE_FORMAT_R8G8B8A8_UNORM, &uc);
                        break;
                case VC4_TEXTURE_TYPE_RGBA4444:
                        util_pack_color(storage_color,
                                        PIPE_FORMAT_A8B8G8R8_UNORM, &uc);
                        break;
                case VC4_TEXTURE_TYPE_RGB565:
                        util_pack_color(storage_color,
                                        PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
                        break;
                case VC4_TEXTURE_TYPE_ALPHA:
                        uc.ui[0] = float_to_ubyte(storage_color[0]) << 24;
                        break;
                case VC4_TEXTURE_TYPE_LUMALPHA:
                        uc.ui[0] = ((float_to_ubyte(storage_color[1]) << 24) |
                                    (float_to_ubyte(storage_color[0]) << 0));
                        break;
                }
        }

        cl_aligned_u32(&vc4->uniforms, uc.ui[0]);
}

static uint32_t
get_texrect_scale(struct vc4_texture_stateobj *texstate,
                  enum quniform_contents contents,
                  uint32_t data)
{
        struct pipe_sampler_view *texture = texstate->textures[data];
        uint32_t dim;

        if (contents == QUNIFORM_TEXRECT_SCALE_X)
                dim = texture->texture->width0;
        else
                dim = texture->texture->height0;

        return fui(1.0f / dim);
}

static struct vc4_bo *
vc4_upload_ubo(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
               const uint32_t *gallium_uniforms)
{
        if (!shader->ubo_size)
                return NULL;

        struct vc4_bo *ubo = vc4_bo_alloc(vc4->screen, shader->ubo_size, "ubo");
        uint32_t *data = vc4_bo_map(ubo);
        for (uint32_t i = 0; i < shader->num_ubo_ranges; i++) {
                memcpy(data + shader->ubo_ranges[i].dst_offset,
                       gallium_uniforms + shader->ubo_ranges[i].src_offset,
                       shader->ubo_ranges[i].size);
        }

        return ubo;
}

void
vc4_write_uniforms(struct vc4_context *vc4, struct vc4_compiled_shader *shader,
                   struct vc4_constbuf_stateobj *cb,
                   struct vc4_texture_stateobj *texstate)
{
        struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
        const uint32_t *gallium_uniforms = cb->cb[0].user_buffer;
        struct vc4_bo *ubo = vc4_upload_ubo(vc4, shader, gallium_uniforms);

        cl_ensure_space(&vc4->uniforms, (uinfo->count +
                                         uinfo->num_texture_samples) * 4);

        cl_start_shader_reloc(&vc4->uniforms, uinfo->num_texture_samples);

        for (int i = 0; i < uinfo->count; i++) {

                switch (uinfo->contents[i]) {
                case QUNIFORM_CONSTANT:
                        cl_aligned_u32(&vc4->uniforms, uinfo->data[i]);
                        break;
                case QUNIFORM_UNIFORM:
                        cl_aligned_u32(&vc4->uniforms,
                                       gallium_uniforms[uinfo->data[i]]);
                        break;
                case QUNIFORM_VIEWPORT_X_SCALE:
                        cl_aligned_f(&vc4->uniforms, vc4->viewport.scale[0] * 16.0f);
                        break;
                case QUNIFORM_VIEWPORT_Y_SCALE:
                        cl_aligned_f(&vc4->uniforms, vc4->viewport.scale[1] * 16.0f);
                        break;

                case QUNIFORM_VIEWPORT_Z_OFFSET:
                        cl_aligned_f(&vc4->uniforms, vc4->viewport.translate[2]);
                        break;
                case QUNIFORM_VIEWPORT_Z_SCALE:
                        cl_aligned_f(&vc4->uniforms, vc4->viewport.scale[2]);
                        break;

                case QUNIFORM_USER_CLIP_PLANE:
                        cl_aligned_f(&vc4->uniforms,
                                     vc4->clip.ucp[uinfo->data[i] / 4][uinfo->data[i] % 4]);
                        break;

                case QUNIFORM_TEXTURE_CONFIG_P0:
                        write_texture_p0(vc4, texstate, uinfo->data[i]);
                        break;

                case QUNIFORM_TEXTURE_CONFIG_P1:
                        write_texture_p1(vc4, texstate, uinfo->data[i]);
                        break;

                case QUNIFORM_TEXTURE_CONFIG_P2:
                        write_texture_p2(vc4, texstate, uinfo->data[i]);
                        break;

                case QUNIFORM_UBO_ADDR:
                        cl_aligned_reloc(vc4, &vc4->uniforms, ubo, 0);
                        break;

                case QUNIFORM_TEXTURE_BORDER_COLOR:
                        write_texture_border_color(vc4, texstate, uinfo->data[i]);
                        break;

                case QUNIFORM_TEXRECT_SCALE_X:
                case QUNIFORM_TEXRECT_SCALE_Y:
                        cl_aligned_u32(&vc4->uniforms,
                                       get_texrect_scale(texstate,
                                                         uinfo->contents[i],
                                                         uinfo->data[i]));
                        break;

                case QUNIFORM_BLEND_CONST_COLOR:
                        cl_aligned_f(&vc4->uniforms,
                                     CLAMP(vc4->blend_color.color[uinfo->data[i]], 0, 1));
                        break;

                case QUNIFORM_STENCIL:
                        cl_aligned_u32(&vc4->uniforms,
                                       vc4->zsa->stencil_uniforms[uinfo->data[i]] |
                                       (uinfo->data[i] <= 1 ?
                                        (vc4->stencil_ref.ref_value[uinfo->data[i]] << 8) :
                                        0));
                        break;

                case QUNIFORM_ALPHA_REF:
                        cl_aligned_f(&vc4->uniforms,
                                     vc4->zsa->base.alpha.ref_value);
                        break;
                }
#if 0
                uint32_t written_val = *(uint32_t *)(vc4->uniforms.next - 4);
                fprintf(stderr, "%p: %d / 0x%08x (%f)\n",
                        shader, i, written_val, uif(written_val));
#endif
        }
}

static void
vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
{
        struct vc4_context *vc4 = vc4_context(pctx);
        vc4->prog.bind_fs = hwcso;
        vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
}

static void
vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
{
        struct vc4_context *vc4 = vc4_context(pctx);
        vc4->prog.bind_vs = hwcso;
        vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
}

void
vc4_program_init(struct pipe_context *pctx)
{
        struct vc4_context *vc4 = vc4_context(pctx);

        pctx->create_vs_state = vc4_shader_state_create;
        pctx->delete_vs_state = vc4_shader_state_delete;

        pctx->create_fs_state = vc4_shader_state_create;
        pctx->delete_fs_state = vc4_shader_state_delete;

        pctx->bind_fs_state = vc4_fp_state_bind;
        pctx->bind_vs_state = vc4_vp_state_bind;

        vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
                                                fs_cache_compare);
        vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
                                                vs_cache_compare);
}

void
vc4_program_fini(struct pipe_context *pctx)
{
        struct vc4_context *vc4 = vc4_context(pctx);

        struct hash_entry *entry;
        hash_table_foreach(vc4->fs_cache, entry) {
                struct vc4_compiled_shader *shader = entry->data;
                vc4_bo_unreference(&shader->bo);
                ralloc_free(shader);
                _mesa_hash_table_remove(vc4->fs_cache, entry);
        }

        hash_table_foreach(vc4->vs_cache, entry) {
                struct vc4_compiled_shader *shader = entry->data;
                vc4_bo_unreference(&shader->bo);
                ralloc_free(shader);
                _mesa_hash_table_remove(vc4->vs_cache, entry);
        }
}