1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* @file streamout_jit.cpp
*
* @brief Implementation of the streamout jitter
*
* Notes:
*
******************************************************************************/
#include "jit_pch.hpp"
#include "builder.h"
#include "jit_api.h"
#include "streamout_jit.h"
#include "gen_state_llvm.h"
#include "functionpasses/passes.h"
using namespace llvm;
using namespace SwrJit;
//////////////////////////////////////////////////////////////////////////
/// Interface to Jitting a fetch shader
//////////////////////////////////////////////////////////////////////////
struct StreamOutJit : public Builder
{
StreamOutJit(JitManager* pJitMgr) : Builder(pJitMgr){};
// returns pointer to SWR_STREAMOUT_BUFFER
Value* getSOBuffer(Value* pSoCtx, uint32_t buffer)
{
return LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_pBuffer, buffer });
}
//////////////////////////////////////////////////////////////////////////
// @brief checks if streamout buffer is oob
// @return <i1> true/false
Value* oob(const STREAMOUT_COMPILE_STATE& state, Value* pSoCtx, uint32_t buffer)
{
Value* returnMask = C(false);
Value* pBuf = getSOBuffer(pSoCtx, buffer);
// load enable
// @todo bool data types should generate <i1> llvm type
Value* enabled = TRUNC(LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_enable }), IRB()->getInt1Ty());
// load buffer size
Value* bufferSize = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_bufferSize });
// load current streamOffset
Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
// load buffer pitch
Value* pitch = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pitch });
// buffer is considered oob if in use in a decl but not enabled
returnMask = OR(returnMask, NOT(enabled));
// buffer is oob if cannot fit a prims worth of verts
Value* newOffset = ADD(streamOffset, MUL(pitch, C(state.numVertsPerPrim)));
returnMask = OR(returnMask, ICMP_SGT(newOffset, bufferSize));
return returnMask;
}
//////////////////////////////////////////////////////////////////////////
// @brief converts scalar bitmask to <4 x i32> suitable for shuffle vector,
// packing the active mask bits
// ex. bitmask 0011 -> (0, 1, 0, 0)
// bitmask 1000 -> (3, 0, 0, 0)
// bitmask 1100 -> (2, 3, 0, 0)
Value* PackMask(uint32_t bitmask)
{
std::vector<Constant*> indices(4, C(0));
DWORD index;
uint32_t elem = 0;
while (_BitScanForward(&index, bitmask))
{
indices[elem++] = C((int)index);
bitmask &= ~(1 << index);
}
return ConstantVector::get(indices);
}
//////////////////////////////////////////////////////////////////////////
// @brief convert scalar bitmask to <4xfloat> bitmask
Value* ToMask(uint32_t bitmask)
{
std::vector<Constant*> indices;
for (uint32_t i = 0; i < 4; ++i)
{
if (bitmask & (1 << i))
{
indices.push_back(C(true));
}
else
{
indices.push_back(C(false));
}
}
return ConstantVector::get(indices);
}
//////////////////////////////////////////////////////////////////////////
// @brief processes a single decl from the streamout stream. Reads 4 components from the input
// stream and writes N components to the output buffer given the componentMask or if
// a hole, just increments the buffer pointer
// @param pStream - pointer to current attribute
// @param pOutBuffers - pointers to the current location of each output buffer
// @param decl - input decl
void buildDecl(Value* pStream, Value* pOutBuffers[4], const STREAMOUT_DECL& decl)
{
uint32_t numComponents = _mm_popcnt_u32(decl.componentMask);
uint32_t packedMask = (1 << numComponents) - 1;
if (!decl.hole)
{
// increment stream pointer to correct slot
Value* pAttrib = GEP(pStream, C(4 * decl.attribSlot));
// load 4 components from stream
Type* simd4Ty = VectorType::get(IRB()->getFloatTy(), 4);
Type* simd4PtrTy = PointerType::get(simd4Ty, 0);
pAttrib = BITCAST(pAttrib, simd4PtrTy);
Value *vattrib = LOAD(pAttrib);
// shuffle/pack enabled components
Value* vpackedAttrib = VSHUFFLE(vattrib, vattrib, PackMask(decl.componentMask));
// store to output buffer
// cast SO buffer to i8*, needed by maskstore
Value* pOut = BITCAST(pOutBuffers[decl.bufferIndex], PointerType::get(simd4Ty, 0));
// cast input to <4xfloat>
Value* src = BITCAST(vpackedAttrib, simd4Ty);
// cast mask to <4xi1>
Value* mask = ToMask(packedMask);
MASKED_STORE(src, pOut, 4, mask);
}
// increment SO buffer
pOutBuffers[decl.bufferIndex] = GEP(pOutBuffers[decl.bufferIndex], C(numComponents));
}
//////////////////////////////////////////////////////////////////////////
// @brief builds a single vertex worth of data for the given stream
// @param streamState - state for this stream
// @param pCurVertex - pointer to src stream vertex data
// @param pOutBuffer - pointers to up to 4 SO buffers
void buildVertex(const STREAMOUT_STREAM& streamState, Value* pCurVertex, Value* pOutBuffer[4])
{
for (uint32_t d = 0; d < streamState.numDecls; ++d)
{
const STREAMOUT_DECL& decl = streamState.decl[d];
buildDecl(pCurVertex, pOutBuffer, decl);
}
}
void buildStream(const STREAMOUT_COMPILE_STATE& state, const STREAMOUT_STREAM& streamState, Value* pSoCtx, BasicBlock* returnBB, Function* soFunc)
{
// get list of active SO buffers
std::unordered_set<uint32_t> activeSOBuffers;
for (uint32_t d = 0; d < streamState.numDecls; ++d)
{
const STREAMOUT_DECL& decl = streamState.decl[d];
activeSOBuffers.insert(decl.bufferIndex);
}
// always increment numPrimStorageNeeded
Value *numPrimStorageNeeded = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimStorageNeeded });
numPrimStorageNeeded = ADD(numPrimStorageNeeded, C(1));
STORE(numPrimStorageNeeded, pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimStorageNeeded });
// check OOB on active SO buffers. If any buffer is out of bound, don't write
// the primitive to any buffer
Value* oobMask = C(false);
for (uint32_t buffer : activeSOBuffers)
{
oobMask = OR(oobMask, oob(state, pSoCtx, buffer));
}
BasicBlock* validBB = BasicBlock::Create(JM()->mContext, "valid", soFunc);
// early out if OOB
COND_BR(oobMask, returnBB, validBB);
IRB()->SetInsertPoint(validBB);
Value* numPrimsWritten = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimsWritten });
numPrimsWritten = ADD(numPrimsWritten, C(1));
STORE(numPrimsWritten, pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimsWritten });
// compute start pointer for each output buffer
Value* pOutBuffer[4];
Value* pOutBufferStartVertex[4];
Value* outBufferPitch[4];
for (uint32_t b: activeSOBuffers)
{
Value* pBuf = getSOBuffer(pSoCtx, b);
Value* pData = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pBuffer });
Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
pOutBuffer[b] = GEP(pData, streamOffset);
pOutBufferStartVertex[b] = pOutBuffer[b];
outBufferPitch[b] = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pitch });
}
// loop over the vertices of the prim
Value* pStreamData = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_pPrimData });
for (uint32_t v = 0; v < state.numVertsPerPrim; ++v)
{
buildVertex(streamState, pStreamData, pOutBuffer);
// increment stream and output buffer pointers
// stream verts are always 32*4 dwords apart
pStreamData = GEP(pStreamData, C(SWR_VTX_NUM_SLOTS * 4));
// output buffers offset using pitch in buffer state
for (uint32_t b : activeSOBuffers)
{
pOutBufferStartVertex[b] = GEP(pOutBufferStartVertex[b], outBufferPitch[b]);
pOutBuffer[b] = pOutBufferStartVertex[b];
}
}
// update each active buffer's streamOffset
for (uint32_t b : activeSOBuffers)
{
Value* pBuf = getSOBuffer(pSoCtx, b);
Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
streamOffset = ADD(streamOffset, MUL(C(state.numVertsPerPrim), outBufferPitch[b]));
STORE(streamOffset, pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
}
}
Function* Create(const STREAMOUT_COMPILE_STATE& state)
{
std::stringstream fnName("SO_", std::ios_base::in | std::ios_base::out | std::ios_base::ate);
fnName << ComputeCRC(0, &state, sizeof(state));
// SO function signature
// typedef void(__cdecl *PFN_SO_FUNC)(SWR_STREAMOUT_CONTEXT*)
std::vector<Type*> args{
PointerType::get(Gen_SWR_STREAMOUT_CONTEXT(JM()), 0), // SWR_STREAMOUT_CONTEXT*
};
FunctionType* fTy = FunctionType::get(IRB()->getVoidTy(), args, false);
Function* soFunc = Function::Create(fTy, GlobalValue::ExternalLinkage, fnName.str(), JM()->mpCurrentModule);
soFunc->getParent()->setModuleIdentifier(soFunc->getName());
// create return basic block
BasicBlock* entry = BasicBlock::Create(JM()->mContext, "entry", soFunc);
BasicBlock* returnBB = BasicBlock::Create(JM()->mContext, "return", soFunc);
IRB()->SetInsertPoint(entry);
// arguments
auto argitr = soFunc->arg_begin();
Value* pSoCtx = &*argitr++;
pSoCtx->setName("pSoCtx");
const STREAMOUT_STREAM& streamState = state.stream;
buildStream(state, streamState, pSoCtx, returnBB, soFunc);
BR(returnBB);
IRB()->SetInsertPoint(returnBB);
RET_VOID();
JitManager::DumpToFile(soFunc, "SoFunc");
::FunctionPassManager passes(JM()->mpCurrentModule);
passes.add(createBreakCriticalEdgesPass());
passes.add(createCFGSimplificationPass());
passes.add(createEarlyCSEPass());
passes.add(createPromoteMemoryToRegisterPass());
passes.add(createCFGSimplificationPass());
passes.add(createEarlyCSEPass());
passes.add(createInstructionCombiningPass());
passes.add(createInstructionSimplifierPass());
passes.add(createConstantPropagationPass());
passes.add(createSCCPPass());
passes.add(createAggressiveDCEPass());
passes.add(createLowerX86Pass(this));
passes.run(*soFunc);
JitManager::DumpToFile(soFunc, "SoFunc_optimized");
return soFunc;
}
};
//////////////////////////////////////////////////////////////////////////
/// @brief JITs from streamout shader IR
/// @param hJitMgr - JitManager handle
/// @param func - LLVM function IR
/// @return PFN_SO_FUNC - pointer to SOS function
PFN_SO_FUNC JitStreamoutFunc(HANDLE hJitMgr, const HANDLE hFunc)
{
llvm::Function *func = (llvm::Function*)hFunc;
JitManager* pJitMgr = reinterpret_cast<JitManager*>(hJitMgr);
PFN_SO_FUNC pfnStreamOut;
pfnStreamOut = (PFN_SO_FUNC)(pJitMgr->mpExec->getFunctionAddress(func->getName().str()));
// MCJIT finalizes modules the first time you JIT code from them. After finalized, you cannot add new IR to the module
pJitMgr->mIsModuleFinalized = true;
pJitMgr->DumpAsm(func, "SoFunc_optimized");
return pfnStreamOut;
}
//////////////////////////////////////////////////////////////////////////
/// @brief JIT compiles streamout shader
/// @param hJitMgr - JitManager handle
/// @param state - SO state to build function from
extern "C" PFN_SO_FUNC JITCALL JitCompileStreamout(HANDLE hJitMgr, const STREAMOUT_COMPILE_STATE& state)
{
JitManager* pJitMgr = reinterpret_cast<JitManager*>(hJitMgr);
STREAMOUT_COMPILE_STATE soState = state;
if (soState.offsetAttribs)
{
for (uint32_t i = 0; i < soState.stream.numDecls; ++i)
{
soState.stream.decl[i].attribSlot -= soState.offsetAttribs;
}
}
pJitMgr->SetupNewModule();
StreamOutJit theJit(pJitMgr);
HANDLE hFunc = theJit.Create(soState);
return JitStreamoutFunc(hJitMgr, hFunc);
}
|