1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
|
/****************************************************************************
* Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
****************************************************************************/
#ifndef __SWR_SIMDINTRIN_H__
#define __SWR_SIMDINTRIN_H__
#include "os.h"
#include <cassert>
#include <emmintrin.h>
#include <immintrin.h>
#include <xmmintrin.h>
#if KNOB_SIMD_WIDTH == 8
typedef __m256 simdscalar;
typedef __m256i simdscalari;
typedef uint8_t simdmask;
#else
#error Unsupported vector width
#endif
// simd vector
OSALIGNSIMD(union) simdvector
{
simdscalar v[4];
struct
{
simdscalar x, y, z, w;
};
simdscalar& operator[] (const int i) { return v[i]; }
const simdscalar& operator[] (const int i) const { return v[i]; }
};
#if KNOB_SIMD_WIDTH == 8
#define _simd128_maskstore_ps _mm_maskstore_ps
#define _simd_load_ps _mm256_load_ps
#define _simd_load1_ps _mm256_broadcast_ss
#define _simd_loadu_ps _mm256_loadu_ps
#define _simd_setzero_ps _mm256_setzero_ps
#define _simd_set1_ps _mm256_set1_ps
#define _simd_blend_ps _mm256_blend_ps
#define _simd_blendv_ps _mm256_blendv_ps
#define _simd_store_ps _mm256_store_ps
#define _simd_mul_ps _mm256_mul_ps
#define _simd_add_ps _mm256_add_ps
#define _simd_sub_ps _mm256_sub_ps
#define _simd_rsqrt_ps _mm256_rsqrt_ps
#define _simd_min_ps _mm256_min_ps
#define _simd_max_ps _mm256_max_ps
#define _simd_movemask_ps _mm256_movemask_ps
#define _simd_cvtps_epi32 _mm256_cvtps_epi32
#define _simd_cvttps_epi32 _mm256_cvttps_epi32
#define _simd_cvtepi32_ps _mm256_cvtepi32_ps
#define _simd_cmplt_ps(a, b) _mm256_cmp_ps(a, b, _CMP_LT_OQ)
#define _simd_cmpgt_ps(a, b) _mm256_cmp_ps(a, b, _CMP_GT_OQ)
#define _simd_cmpneq_ps(a, b) _mm256_cmp_ps(a, b, _CMP_NEQ_OQ)
#define _simd_cmpeq_ps(a, b) _mm256_cmp_ps(a, b, _CMP_EQ_OQ)
#define _simd_cmpge_ps(a, b) _mm256_cmp_ps(a, b, _CMP_GE_OQ)
#define _simd_cmple_ps(a, b) _mm256_cmp_ps(a, b, _CMP_LE_OQ)
#define _simd_cmp_ps(a, b, imm) _mm256_cmp_ps(a, b, imm)
#define _simd_and_ps _mm256_and_ps
#define _simd_or_ps _mm256_or_ps
#define _simd_rcp_ps _mm256_rcp_ps
#define _simd_div_ps _mm256_div_ps
#define _simd_castsi_ps _mm256_castsi256_ps
#define _simd_andnot_ps _mm256_andnot_ps
#define _simd_round_ps _mm256_round_ps
#define _simd_castpd_ps _mm256_castpd_ps
#define _simd_broadcast_ps(a) _mm256_broadcast_ps((const __m128*)(a))
#define _simd_load_sd _mm256_load_sd
#define _simd_movemask_pd _mm256_movemask_pd
#define _simd_castsi_pd _mm256_castsi256_pd
// emulated integer simd
#define SIMD_EMU_EPI(func, intrin) \
INLINE \
__m256i func(__m256i a, __m256i b)\
{\
__m128i aHi = _mm256_extractf128_si256(a, 1);\
__m128i bHi = _mm256_extractf128_si256(b, 1);\
__m128i aLo = _mm256_castsi256_si128(a);\
__m128i bLo = _mm256_castsi256_si128(b);\
\
__m128i subLo = intrin(aLo, bLo);\
__m128i subHi = intrin(aHi, bHi);\
\
__m256i result = _mm256_castsi128_si256(subLo);\
result = _mm256_insertf128_si256(result, subHi, 1);\
\
return result;\
}
#if (KNOB_ARCH == KNOB_ARCH_AVX)
INLINE
__m256 _simdemu_permute_ps(__m256 a, __m256i b)
{
__m128 aHi = _mm256_extractf128_ps(a, 1);
__m128i bHi = _mm256_extractf128_si256(b, 1);
__m128 aLo = _mm256_castps256_ps128(a);
__m128i bLo = _mm256_castsi256_si128(b);
__m128i indexHi = _mm_cmpgt_epi32(bLo, _mm_set1_epi32(3));
__m128 resLow = _mm_permutevar_ps(aLo, _mm_and_si128(bLo, _mm_set1_epi32(0x3)));
__m128 resHi = _mm_permutevar_ps(aHi, _mm_and_si128(bLo, _mm_set1_epi32(0x3)));
__m128 blendLowRes = _mm_blendv_ps(resLow, resHi, _mm_castsi128_ps(indexHi));
indexHi = _mm_cmpgt_epi32(bHi, _mm_set1_epi32(3));
resLow = _mm_permutevar_ps(aLo, _mm_and_si128(bHi, _mm_set1_epi32(0x3)));
resHi = _mm_permutevar_ps(aHi, _mm_and_si128(bHi, _mm_set1_epi32(0x3)));
__m128 blendHiRes = _mm_blendv_ps(resLow, resHi, _mm_castsi128_ps(indexHi));
__m256 result = _mm256_castps128_ps256(blendLowRes);
result = _mm256_insertf128_ps(result, blendHiRes, 1);
return result;
}
INLINE
__m256i _simdemu_srlv_epi32(__m256i vA, __m256i vCount)
{
int32_t aHi, aLow, countHi, countLow;
__m128i vAHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 1));
__m128i vALow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 0));
__m128i vCountHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 1));
__m128i vCountLow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 0));
aHi = _mm_extract_epi32(vAHi, 0);
countHi = _mm_extract_epi32(vCountHi, 0);
aHi >>= countHi;
vAHi = _mm_insert_epi32(vAHi, aHi, 0);
aLow = _mm_extract_epi32(vALow, 0);
countLow = _mm_extract_epi32(vCountLow, 0);
aLow >>= countLow;
vALow = _mm_insert_epi32(vALow, aLow, 0);
aHi = _mm_extract_epi32(vAHi, 1);
countHi = _mm_extract_epi32(vCountHi, 1);
aHi >>= countHi;
vAHi = _mm_insert_epi32(vAHi, aHi, 1);
aLow = _mm_extract_epi32(vALow, 1);
countLow = _mm_extract_epi32(vCountLow, 1);
aLow >>= countLow;
vALow = _mm_insert_epi32(vALow, aLow, 1);
aHi = _mm_extract_epi32(vAHi, 2);
countHi = _mm_extract_epi32(vCountHi, 2);
aHi >>= countHi;
vAHi = _mm_insert_epi32(vAHi, aHi, 2);
aLow = _mm_extract_epi32(vALow, 2);
countLow = _mm_extract_epi32(vCountLow, 2);
aLow >>= countLow;
vALow = _mm_insert_epi32(vALow, aLow, 2);
aHi = _mm_extract_epi32(vAHi, 3);
countHi = _mm_extract_epi32(vCountHi, 3);
aHi >>= countHi;
vAHi = _mm_insert_epi32(vAHi, aHi, 3);
aLow = _mm_extract_epi32(vALow, 3);
countLow = _mm_extract_epi32(vCountLow, 3);
aLow >>= countLow;
vALow = _mm_insert_epi32(vALow, aLow, 3);
__m256i ret = _mm256_set1_epi32(0);
ret = _mm256_insertf128_si256(ret, vAHi, 1);
ret = _mm256_insertf128_si256(ret, vALow, 0);
return ret;
}
INLINE
__m256i _simdemu_sllv_epi32(__m256i vA, __m256i vCount)
{
int32_t aHi, aLow, countHi, countLow;
__m128i vAHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 1));
__m128i vALow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 0));
__m128i vCountHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 1));
__m128i vCountLow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 0));
aHi = _mm_extract_epi32(vAHi, 0);
countHi = _mm_extract_epi32(vCountHi, 0);
aHi <<= countHi;
vAHi = _mm_insert_epi32(vAHi, aHi, 0);
aLow = _mm_extract_epi32(vALow, 0);
countLow = _mm_extract_epi32(vCountLow, 0);
aLow <<= countLow;
vALow = _mm_insert_epi32(vALow, aLow, 0);
aHi = _mm_extract_epi32(vAHi, 1);
countHi = _mm_extract_epi32(vCountHi, 1);
aHi <<= countHi;
vAHi = _mm_insert_epi32(vAHi, aHi, 1);
aLow = _mm_extract_epi32(vALow, 1);
countLow = _mm_extract_epi32(vCountLow, 1);
aLow <<= countLow;
vALow = _mm_insert_epi32(vALow, aLow, 1);
aHi = _mm_extract_epi32(vAHi, 2);
countHi = _mm_extract_epi32(vCountHi, 2);
aHi <<= countHi;
vAHi = _mm_insert_epi32(vAHi, aHi, 2);
aLow = _mm_extract_epi32(vALow, 2);
countLow = _mm_extract_epi32(vCountLow, 2);
aLow <<= countLow;
vALow = _mm_insert_epi32(vALow, aLow, 2);
aHi = _mm_extract_epi32(vAHi, 3);
countHi = _mm_extract_epi32(vCountHi, 3);
aHi <<= countHi;
vAHi = _mm_insert_epi32(vAHi, aHi, 3);
aLow = _mm_extract_epi32(vALow, 3);
countLow = _mm_extract_epi32(vCountLow, 3);
aLow <<= countLow;
vALow = _mm_insert_epi32(vALow, aLow, 3);
__m256i ret = _mm256_set1_epi32(0);
ret = _mm256_insertf128_si256(ret, vAHi, 1);
ret = _mm256_insertf128_si256(ret, vALow, 0);
return ret;
}
#define _simd_mul_epi32 _simdemu_mul_epi32
#define _simd_mullo_epi32 _simdemu_mullo_epi32
#define _simd_sub_epi32 _simdemu_sub_epi32
#define _simd_sub_epi64 _simdemu_sub_epi64
#define _simd_min_epi32 _simdemu_min_epi32
#define _simd_min_epu32 _simdemu_min_epu32
#define _simd_max_epi32 _simdemu_max_epi32
#define _simd_max_epu32 _simdemu_max_epu32
#define _simd_add_epi32 _simdemu_add_epi32
#define _simd_and_si _simdemu_and_si
#define _simd_andnot_si _simdemu_andnot_si
#define _simd_cmpeq_epi32 _simdemu_cmpeq_epi32
#define _simd_cmplt_epi32 _simdemu_cmplt_epi32
#define _simd_cmpgt_epi32 _simdemu_cmpgt_epi32
#define _simd_or_si _simdemu_or_si
#define _simd_castps_si _mm256_castps_si256
#define _simd_adds_epu8 _simdemu_adds_epu8
#define _simd_subs_epu8 _simdemu_subs_epu8
#define _simd_add_epi8 _simdemu_add_epi8
#define _simd_cmpeq_epi64 _simdemu_cmpeq_epi64
#define _simd_cmpgt_epi64 _simdemu_cmpgt_epi64
#define _simd_cmpgt_epi8 _simdemu_cmpgt_epi8
#define _simd_cmpeq_epi8 _simdemu_cmpeq_epi8
#define _simd_cmpgt_epi16 _simdemu_cmpgt_epi16
#define _simd_cmpeq_epi16 _simdemu_cmpeq_epi16
#define _simd_movemask_epi8 _simdemu_movemask_epi8
#define _simd_permute_ps _simdemu_permute_ps
#define _simd_srlv_epi32 _simdemu_srlv_epi32
#define _simd_sllv_epi32 _simdemu_sllv_epi32
SIMD_EMU_EPI(_simdemu_mul_epi32, _mm_mul_epi32)
SIMD_EMU_EPI(_simdemu_mullo_epi32, _mm_mullo_epi32)
SIMD_EMU_EPI(_simdemu_sub_epi32, _mm_sub_epi32)
SIMD_EMU_EPI(_simdemu_sub_epi64, _mm_sub_epi64)
SIMD_EMU_EPI(_simdemu_min_epi32, _mm_min_epi32)
SIMD_EMU_EPI(_simdemu_min_epu32, _mm_min_epu32)
SIMD_EMU_EPI(_simdemu_max_epi32, _mm_max_epi32)
SIMD_EMU_EPI(_simdemu_max_epu32, _mm_max_epu32)
SIMD_EMU_EPI(_simdemu_add_epi32, _mm_add_epi32)
SIMD_EMU_EPI(_simdemu_and_si, _mm_and_si128)
SIMD_EMU_EPI(_simdemu_andnot_si, _mm_andnot_si128)
SIMD_EMU_EPI(_simdemu_cmpeq_epi32, _mm_cmpeq_epi32)
SIMD_EMU_EPI(_simdemu_cmplt_epi32, _mm_cmplt_epi32)
SIMD_EMU_EPI(_simdemu_cmpgt_epi32, _mm_cmpgt_epi32)
SIMD_EMU_EPI(_simdemu_or_si, _mm_or_si128)
SIMD_EMU_EPI(_simdemu_adds_epu8, _mm_adds_epu8)
SIMD_EMU_EPI(_simdemu_subs_epu8, _mm_subs_epu8)
SIMD_EMU_EPI(_simdemu_add_epi8, _mm_add_epi8)
SIMD_EMU_EPI(_simdemu_cmpeq_epi64, _mm_cmpeq_epi64)
SIMD_EMU_EPI(_simdemu_cmpgt_epi64, _mm_cmpgt_epi64)
SIMD_EMU_EPI(_simdemu_cmpgt_epi8, _mm_cmpgt_epi8)
SIMD_EMU_EPI(_simdemu_cmpeq_epi8, _mm_cmpeq_epi8)
SIMD_EMU_EPI(_simdemu_cmpgt_epi16, _mm_cmpgt_epi16)
SIMD_EMU_EPI(_simdemu_cmpeq_epi16, _mm_cmpeq_epi16)
#define _simd_unpacklo_epi32(a, b) _mm256_castps_si256(_mm256_unpacklo_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b)))
#define _simd_unpackhi_epi32(a, b) _mm256_castps_si256(_mm256_unpackhi_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b)))
#define _simd_slli_epi32(a,i) _simdemu_slli_epi32(a,i)
#define _simd_srai_epi32(a,i) _simdemu_srai_epi32(a,i)
#define _simd_srli_epi32(a,i) _simdemu_srli_epi32(a,i)
#define _simd_srlisi_ps(a,i) _mm256_castsi256_ps(_simdemu_srli_si128<i>(_mm256_castps_si256(a)))
#define _simd128_fmadd_ps _mm_fmaddemu_ps
#define _simd_fmadd_ps _mm_fmaddemu256_ps
#define _simd_fmsub_ps _mm_fmsubemu256_ps
#define _simd_shuffle_epi8 _simdemu_shuffle_epi8
SIMD_EMU_EPI(_simdemu_shuffle_epi8, _mm_shuffle_epi8)
INLINE
__m128 _mm_fmaddemu_ps(__m128 a, __m128 b, __m128 c)
{
__m128 res = _mm_mul_ps(a, b);
res = _mm_add_ps(res, c);
return res;
}
INLINE
__m256 _mm_fmaddemu256_ps(__m256 a, __m256 b, __m256 c)
{
__m256 res = _mm256_mul_ps(a, b);
res = _mm256_add_ps(res, c);
return res;
}
INLINE
__m256 _mm_fmsubemu256_ps(__m256 a, __m256 b, __m256 c)
{
__m256 res = _mm256_mul_ps(a, b);
res = _mm256_sub_ps(res, c);
return res;
}
INLINE
__m256 _simd_i32gather_ps(const float* pBase, __m256i vOffsets, const int scale)
{
uint32_t *pOffsets = (uint32_t*)&vOffsets;
simdscalar vResult;
float* pResult = (float*)&vResult;
for (uint32_t i = 0; i < KNOB_SIMD_WIDTH; ++i)
{
uint32_t offset = pOffsets[i];
offset = offset * scale;
pResult[i] = *(float*)(((const uint8_t*)pBase + offset));
}
return vResult;
}
INLINE
__m256 _simd_mask_i32gather_ps(__m256 vSrc, const float* pBase, __m256i vOffsets, __m256 vMask, const int scale)
{
uint32_t *pOffsets = (uint32_t*)&vOffsets;
simdscalar vResult = vSrc;
float* pResult = (float*)&vResult;
DWORD index;
uint32_t mask = _simd_movemask_ps(vMask);
while (_BitScanForward(&index, mask))
{
mask &= ~(1 << index);
uint32_t offset = pOffsets[index];
offset = offset * scale;
pResult[index] = *(float*)(((const uint8_t*)pBase + offset));
}
return vResult;
}
INLINE
__m256i _simd_abs_epi32(__m256i a)
{
__m128i aHi = _mm256_extractf128_si256(a, 1);
__m128i aLo = _mm256_castsi256_si128(a);
__m128i absLo = _mm_abs_epi32(aLo);
__m128i absHi = _mm_abs_epi32(aHi);
__m256i result = _mm256_castsi128_si256(absLo);
result = _mm256_insertf128_si256(result, absHi, 1);
return result;
}
INLINE
int _simdemu_movemask_epi8(__m256i a)
{
__m128i aHi = _mm256_extractf128_si256(a, 1);
__m128i aLo = _mm256_castsi256_si128(a);
int resHi = _mm_movemask_epi8(aHi);
int resLo = _mm_movemask_epi8(aLo);
return (resHi << 16) | resLo;
}
#else
#define _simd_mul_epi32 _mm256_mul_epi32
#define _simd_mullo_epi32 _mm256_mullo_epi32
#define _simd_sub_epi32 _mm256_sub_epi32
#define _simd_sub_epi64 _mm256_sub_epi64
#define _simd_min_epi32 _mm256_min_epi32
#define _simd_max_epi32 _mm256_max_epi32
#define _simd_min_epu32 _mm256_min_epu32
#define _simd_max_epu32 _mm256_max_epu32
#define _simd_add_epi32 _mm256_add_epi32
#define _simd_and_si _mm256_and_si256
#define _simd_andnot_si _mm256_andnot_si256
#define _simd_cmpeq_epi32 _mm256_cmpeq_epi32
#define _simd_cmplt_epi32(a,b) _mm256_cmpgt_epi32(b,a)
#define _simd_cmpgt_epi32(a,b) _mm256_cmpgt_epi32(a,b)
#define _simd_or_si _mm256_or_si256
#define _simd_castps_si _mm256_castps_si256
#define _simd_unpacklo_epi32 _mm256_unpacklo_epi32
#define _simd_unpackhi_epi32 _mm256_unpackhi_epi32
#define _simd_srli_si(a,i) _simdemu_srli_si128<i>(a)
#define _simd_slli_epi32 _mm256_slli_epi32
#define _simd_srai_epi32 _mm256_srai_epi32
#define _simd_srli_epi32 _mm256_srli_epi32
#define _simd_srlisi_ps(a,i) _mm256_castsi256_ps(_simdemu_srli_si128<i>(_mm256_castps_si256(a)))
#define _simd128_fmadd_ps _mm_fmadd_ps
#define _simd_fmadd_ps _mm256_fmadd_ps
#define _simd_fmsub_ps _mm256_fmsub_ps
#define _simd_shuffle_epi8 _mm256_shuffle_epi8
#define _simd_adds_epu8 _mm256_adds_epu8
#define _simd_subs_epu8 _mm256_subs_epu8
#define _simd_add_epi8 _mm256_add_epi8
#define _simd_i32gather_ps _mm256_i32gather_ps
#define _simd_mask_i32gather_ps _mm256_mask_i32gather_ps
#define _simd_abs_epi32 _mm256_abs_epi32
#define _simd_cmpeq_epi64 _mm256_cmpeq_epi64
#define _simd_cmpgt_epi64 _mm256_cmpgt_epi64
#define _simd_cmpgt_epi8 _mm256_cmpgt_epi8
#define _simd_cmpeq_epi8 _mm256_cmpeq_epi8
#define _simd_cmpgt_epi16 _mm256_cmpgt_epi16
#define _simd_cmpeq_epi16 _mm256_cmpeq_epi16
#define _simd_movemask_epi8 _mm256_movemask_epi8
#define _simd_permute_ps _mm256_permutevar8x32_ps
#define _simd_srlv_epi32 _mm256_srlv_epi32
#define _simd_sllv_epi32 _mm256_sllv_epi32
#endif
#define _simd_shuffleps_epi32(vA, vB, imm) _mm256_castps_si256(_mm256_shuffle_ps(_mm256_castsi256_ps(vA), _mm256_castsi256_ps(vB), imm))
#define _simd_shuffle_ps _mm256_shuffle_ps
#define _simd_set1_epi32 _mm256_set1_epi32
#define _simd_set1_epi8 _mm256_set1_epi8
#define _simd_setzero_si _mm256_setzero_si256
#define _simd_cvttps_epi32 _mm256_cvttps_epi32
#define _simd_store_si _mm256_store_si256
#define _simd_broadcast_ss _mm256_broadcast_ss
#define _simd_maskstore_ps _mm256_maskstore_ps
#define _simd_load_si _mm256_load_si256
#define _simd_loadu_si _mm256_loadu_si256
#define _simd_sub_ps _mm256_sub_ps
#define _simd_testz_ps _mm256_testz_ps
#define _simd_xor_ps _mm256_xor_ps
INLINE
simdscalari _simd_blendv_epi32(simdscalari a, simdscalari b, simdscalar mask)
{
return _simd_castps_si(_simd_blendv_ps(_simd_castsi_ps(a), _simd_castsi_ps(b), mask));
}
// convert bitmask to vector mask
INLINE
simdscalar vMask(int32_t mask)
{
__m256i vec = _mm256_set1_epi32(mask);
const __m256i bit = _mm256_set_epi32(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
vec = _simd_and_si(vec, bit);
vec = _simd_cmplt_epi32(_mm256_setzero_si256(), vec);
return _simd_castsi_ps(vec);
}
INLINE
void _simd_mov(simdscalar &r, unsigned int rlane, simdscalar& s, unsigned int slane)
{
OSALIGNSIMD(float) rArray[KNOB_SIMD_WIDTH], sArray[KNOB_SIMD_WIDTH];
_mm256_store_ps(rArray, r);
_mm256_store_ps(sArray, s);
rArray[rlane] = sArray[slane];
r = _mm256_load_ps(rArray);
}
INLINE __m256i _simdemu_slli_epi32(__m256i a, uint32_t i)
{
__m128i aHi = _mm256_extractf128_si256(a, 1);
__m128i aLo = _mm256_castsi256_si128(a);
__m128i resHi = _mm_slli_epi32(aHi, i);
__m128i resLo = _mm_slli_epi32(aLo, i);
__m256i result = _mm256_castsi128_si256(resLo);
result = _mm256_insertf128_si256(result, resHi, 1);
return result;
}
INLINE __m256i _simdemu_srai_epi32(__m256i a, uint32_t i)
{
__m128i aHi = _mm256_extractf128_si256(a, 1);
__m128i aLo = _mm256_castsi256_si128(a);
__m128i resHi = _mm_srai_epi32(aHi, i);
__m128i resLo = _mm_srai_epi32(aLo, i);
__m256i result = _mm256_castsi128_si256(resLo);
result = _mm256_insertf128_si256(result, resHi, 1);
return result;
}
INLINE __m256i _simdemu_srli_epi32(__m256i a, uint32_t i)
{
__m128i aHi = _mm256_extractf128_si256(a, 1);
__m128i aLo = _mm256_castsi256_si128(a);
__m128i resHi = _mm_srli_epi32(aHi, i);
__m128i resLo = _mm_srli_epi32(aLo, i);
__m256i result = _mm256_castsi128_si256(resLo);
result = _mm256_insertf128_si256(result, resHi, 1);
return result;
}
INLINE
void _simdvec_transpose(simdvector &v)
{
SWR_ASSERT(false, "Need to implement 8 wide version");
}
#else
#error Unsupported vector width
#endif
// Populates a simdvector from a vector. So p = xyzw becomes xxxx yyyy zzzz wwww.
INLINE
void _simdvec_load_ps(simdvector& r, const float *p)
{
r[0] = _simd_set1_ps(p[0]);
r[1] = _simd_set1_ps(p[1]);
r[2] = _simd_set1_ps(p[2]);
r[3] = _simd_set1_ps(p[3]);
}
INLINE
void _simdvec_mov(simdvector& r, const simdscalar& s)
{
r[0] = s;
r[1] = s;
r[2] = s;
r[3] = s;
}
INLINE
void _simdvec_mov(simdvector& r, const simdvector& v)
{
r[0] = v[0];
r[1] = v[1];
r[2] = v[2];
r[3] = v[3];
}
// just move a lane from the source simdvector to dest simdvector
INLINE
void _simdvec_mov(simdvector &r, unsigned int rlane, simdvector& s, unsigned int slane)
{
_simd_mov(r[0], rlane, s[0], slane);
_simd_mov(r[1], rlane, s[1], slane);
_simd_mov(r[2], rlane, s[2], slane);
_simd_mov(r[3], rlane, s[3], slane);
}
INLINE
void _simdvec_dp3_ps(simdscalar& r, const simdvector& v0, const simdvector& v1)
{
simdscalar tmp;
r = _simd_mul_ps(v0[0], v1[0]); // (v0.x*v1.x)
tmp = _simd_mul_ps(v0[1], v1[1]); // (v0.y*v1.y)
r = _simd_add_ps(r, tmp); // (v0.x*v1.x) + (v0.y*v1.y)
tmp = _simd_mul_ps(v0[2], v1[2]); // (v0.z*v1.z)
r = _simd_add_ps(r, tmp); // (v0.x*v1.x) + (v0.y*v1.y) + (v0.z*v1.z)
}
INLINE
void _simdvec_dp4_ps(simdscalar& r, const simdvector& v0, const simdvector& v1)
{
simdscalar tmp;
r = _simd_mul_ps(v0[0], v1[0]); // (v0.x*v1.x)
tmp = _simd_mul_ps(v0[1], v1[1]); // (v0.y*v1.y)
r = _simd_add_ps(r, tmp); // (v0.x*v1.x) + (v0.y*v1.y)
tmp = _simd_mul_ps(v0[2], v1[2]); // (v0.z*v1.z)
r = _simd_add_ps(r, tmp); // (v0.x*v1.x) + (v0.y*v1.y) + (v0.z*v1.z)
tmp = _simd_mul_ps(v0[3], v1[3]); // (v0.w*v1.w)
r = _simd_add_ps(r, tmp); // (v0.x*v1.x) + (v0.y*v1.y) + (v0.z*v1.z)
}
INLINE
simdscalar _simdvec_rcp_length_ps(const simdvector& v)
{
simdscalar length;
_simdvec_dp4_ps(length, v, v);
return _simd_rsqrt_ps(length);
}
INLINE
void _simdvec_normalize_ps(simdvector& r, const simdvector& v)
{
simdscalar vecLength;
vecLength = _simdvec_rcp_length_ps(v);
r[0] = _simd_mul_ps(v[0], vecLength);
r[1] = _simd_mul_ps(v[1], vecLength);
r[2] = _simd_mul_ps(v[2], vecLength);
r[3] = _simd_mul_ps(v[3], vecLength);
}
INLINE
void _simdvec_mul_ps(simdvector& r, const simdvector& v, const simdscalar& s)
{
r[0] = _simd_mul_ps(v[0], s);
r[1] = _simd_mul_ps(v[1], s);
r[2] = _simd_mul_ps(v[2], s);
r[3] = _simd_mul_ps(v[3], s);
}
INLINE
void _simdvec_mul_ps(simdvector& r, const simdvector& v0, const simdvector& v1)
{
r[0] = _simd_mul_ps(v0[0], v1[0]);
r[1] = _simd_mul_ps(v0[1], v1[1]);
r[2] = _simd_mul_ps(v0[2], v1[2]);
r[3] = _simd_mul_ps(v0[3], v1[3]);
}
INLINE
void _simdvec_add_ps(simdvector& r, const simdvector& v0, const simdvector& v1)
{
r[0] = _simd_add_ps(v0[0], v1[0]);
r[1] = _simd_add_ps(v0[1], v1[1]);
r[2] = _simd_add_ps(v0[2], v1[2]);
r[3] = _simd_add_ps(v0[3], v1[3]);
}
INLINE
void _simdvec_min_ps(simdvector& r, const simdvector& v0, const simdscalar& s)
{
r[0] = _simd_min_ps(v0[0], s);
r[1] = _simd_min_ps(v0[1], s);
r[2] = _simd_min_ps(v0[2], s);
r[3] = _simd_min_ps(v0[3], s);
}
INLINE
void _simdvec_max_ps(simdvector& r, const simdvector& v0, const simdscalar& s)
{
r[0] = _simd_max_ps(v0[0], s);
r[1] = _simd_max_ps(v0[1], s);
r[2] = _simd_max_ps(v0[2], s);
r[3] = _simd_max_ps(v0[3], s);
}
// Matrix4x4 * Vector4
// outVec.x = (m00 * v.x) + (m01 * v.y) + (m02 * v.z) + (m03 * v.w)
// outVec.y = (m10 * v.x) + (m11 * v.y) + (m12 * v.z) + (m13 * v.w)
// outVec.z = (m20 * v.x) + (m21 * v.y) + (m22 * v.z) + (m23 * v.w)
// outVec.w = (m30 * v.x) + (m31 * v.y) + (m32 * v.z) + (m33 * v.w)
INLINE
void _simd_mat4x4_vec4_multiply(
simdvector& result,
const float *pMatrix,
const simdvector& v)
{
simdscalar m;
simdscalar r0;
simdscalar r1;
m = _simd_load1_ps(pMatrix + 0*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 0*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 0*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 0*4 + 3); // m[row][3]
r1 = _simd_mul_ps(m, v[3]); // (m3 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * v.w)
result[0] = r0;
m = _simd_load1_ps(pMatrix + 1*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 1*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 1*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 1*4 + 3); // m[row][3]
r1 = _simd_mul_ps(m, v[3]); // (m3 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * v.w)
result[1] = r0;
m = _simd_load1_ps(pMatrix + 2*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 2*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 2*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 2*4 + 3); // m[row][3]
r1 = _simd_mul_ps(m, v[3]); // (m3 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * v.w)
result[2] = r0;
m = _simd_load1_ps(pMatrix + 3*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 3*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 3*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 3*4 + 3); // m[row][3]
r1 = _simd_mul_ps(m, v[3]); // (m3 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * v.w)
result[3] = r0;
}
// Matrix4x4 * Vector3 - Direction Vector where w = 0.
// outVec.x = (m00 * v.x) + (m01 * v.y) + (m02 * v.z) + (m03 * 0)
// outVec.y = (m10 * v.x) + (m11 * v.y) + (m12 * v.z) + (m13 * 0)
// outVec.z = (m20 * v.x) + (m21 * v.y) + (m22 * v.z) + (m23 * 0)
// outVec.w = (m30 * v.x) + (m31 * v.y) + (m32 * v.z) + (m33 * 0)
INLINE
void _simd_mat3x3_vec3_w0_multiply(
simdvector& result,
const float *pMatrix,
const simdvector& v)
{
simdscalar m;
simdscalar r0;
simdscalar r1;
m = _simd_load1_ps(pMatrix + 0*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 0*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 0*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
result[0] = r0;
m = _simd_load1_ps(pMatrix + 1*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 1*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 1*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
result[1] = r0;
m = _simd_load1_ps(pMatrix + 2*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 2*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 2*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
result[2] = r0;
result[3] = _simd_setzero_ps();
}
// Matrix4x4 * Vector3 - Position vector where w = 1.
// outVec.x = (m00 * v.x) + (m01 * v.y) + (m02 * v.z) + (m03 * 1)
// outVec.y = (m10 * v.x) + (m11 * v.y) + (m12 * v.z) + (m13 * 1)
// outVec.z = (m20 * v.x) + (m21 * v.y) + (m22 * v.z) + (m23 * 1)
// outVec.w = (m30 * v.x) + (m31 * v.y) + (m32 * v.z) + (m33 * 1)
INLINE
void _simd_mat4x4_vec3_w1_multiply(
simdvector& result,
const float *pMatrix,
const simdvector& v)
{
simdscalar m;
simdscalar r0;
simdscalar r1;
m = _simd_load1_ps(pMatrix + 0*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 0*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 0*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 0*4 + 3); // m[row][3]
r0 = _simd_add_ps(r0, m); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * 1)
result[0] = r0;
m = _simd_load1_ps(pMatrix + 1*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 1*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 1*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 1*4 + 3); // m[row][3]
r0 = _simd_add_ps(r0, m); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * 1)
result[1] = r0;
m = _simd_load1_ps(pMatrix + 2*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 2*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 2*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 2*4 + 3); // m[row][3]
r0 = _simd_add_ps(r0, m); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * 1)
result[2] = r0;
m = _simd_load1_ps(pMatrix + 3*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 3*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 3*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 3*4 + 3); // m[row][3]
result[3] = _simd_add_ps(r0, m); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * 1)
}
INLINE
void _simd_mat4x3_vec3_w1_multiply(
simdvector& result,
const float *pMatrix,
const simdvector& v)
{
simdscalar m;
simdscalar r0;
simdscalar r1;
m = _simd_load1_ps(pMatrix + 0*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 0*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 0*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 0*4 + 3); // m[row][3]
r0 = _simd_add_ps(r0, m); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * 1)
result[0] = r0;
m = _simd_load1_ps(pMatrix + 1*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 1*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 1*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 1*4 + 3); // m[row][3]
r0 = _simd_add_ps(r0, m); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * 1)
result[1] = r0;
m = _simd_load1_ps(pMatrix + 2*4 + 0); // m[row][0]
r0 = _simd_mul_ps(m, v[0]); // (m00 * v.x)
m = _simd_load1_ps(pMatrix + 2*4 + 1); // m[row][1]
r1 = _simd_mul_ps(m, v[1]); // (m1 * v.y)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y)
m = _simd_load1_ps(pMatrix + 2*4 + 2); // m[row][2]
r1 = _simd_mul_ps(m, v[2]); // (m2 * v.z)
r0 = _simd_add_ps(r0, r1); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z)
m = _simd_load1_ps(pMatrix + 2*4 + 3); // m[row][3]
r0 = _simd_add_ps(r0, m); // (m0 * v.x) + (m1 * v.y) + (m2 * v.z) + (m2 * 1)
result[2] = r0;
result[3] = _simd_set1_ps(1.0f);
}
//////////////////////////////////////////////////////////////////////////
/// @brief Compute plane equation vA * vX + vB * vY + vC
INLINE simdscalar vplaneps(simdscalar vA, simdscalar vB, simdscalar vC, simdscalar &vX, simdscalar &vY)
{
simdscalar vOut = _simd_fmadd_ps(vA, vX, vC);
vOut = _simd_fmadd_ps(vB, vY, vOut);
return vOut;
}
//////////////////////////////////////////////////////////////////////////
/// @brief Interpolates a single component.
/// @param vI - barycentric I
/// @param vJ - barycentric J
/// @param pInterpBuffer - pointer to attribute barycentric coeffs
template<UINT Attrib, UINT Comp>
static INLINE simdscalar InterpolateComponent(simdscalar vI, simdscalar vJ, const float *pInterpBuffer)
{
const float *pInterpA = &pInterpBuffer[Attrib * 12 + 0 + Comp];
const float *pInterpB = &pInterpBuffer[Attrib * 12 + 4 + Comp];
const float *pInterpC = &pInterpBuffer[Attrib * 12 + 8 + Comp];
simdscalar vA = _simd_broadcast_ss(pInterpA);
simdscalar vB = _simd_broadcast_ss(pInterpB);
simdscalar vC = _simd_broadcast_ss(pInterpC);
simdscalar vk = _simd_sub_ps(_simd_sub_ps(_simd_set1_ps(1.0f), vI), vJ);
vC = _simd_mul_ps(vk, vC);
return vplaneps(vA, vB, vC, vI, vJ);
}
INLINE
UINT pdep_u32(UINT a, UINT mask)
{
#if KNOB_ARCH==KNOB_ARCH_AVX2
return _pdep_u32(a, mask);
#else
UINT result = 0;
// copied from http://wm.ite.pl/articles/pdep-soft-emu.html
// using bsf instead of funky loop
DWORD maskIndex;
while (_BitScanForward(&maskIndex, mask))
{
// 1. isolate lowest set bit of mask
const UINT lowest = 1 << maskIndex;
// 2. populate LSB from src
const UINT LSB = (UINT)((int)(a << 31) >> 31);
// 3. copy bit from mask
result |= LSB & lowest;
// 4. clear lowest bit
mask &= ~lowest;
// 5. prepare for next iteration
a >>= 1;
}
return result;
#endif
}
INLINE
UINT pext_u32(UINT a, UINT mask)
{
#if KNOB_ARCH==KNOB_ARCH_AVX2
return _pext_u32(a, mask);
#else
UINT result = 0;
DWORD maskIndex;
uint32_t currentBit = 0;
while (_BitScanForward(&maskIndex, mask))
{
// 1. isolate lowest set bit of mask
const UINT lowest = 1 << maskIndex;
// 2. copy bit from mask
result |= ((a & lowest) > 0) << currentBit++;
// 3. clear lowest bit
mask &= ~lowest;
}
return result;
#endif
}
#endif//__SWR_SIMDINTRIN_H__
|