aboutsummaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeonsi/si_shader_tgsi_setup.c
blob: b486be257495d862763c63230086ef784866fdb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "si_shader_internal.h"
#include "si_pipe.h"
#include "ac_llvm_util.h"
#include "util/u_memory.h"

enum si_llvm_calling_convention {
	RADEON_LLVM_AMDGPU_VS = 87,
	RADEON_LLVM_AMDGPU_GS = 88,
	RADEON_LLVM_AMDGPU_PS = 89,
	RADEON_LLVM_AMDGPU_CS = 90,
	RADEON_LLVM_AMDGPU_HS = 93,
};

struct si_llvm_diagnostics {
	struct pipe_debug_callback *debug;
	unsigned retval;
};

static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
{
	struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
	LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
	char *description = LLVMGetDiagInfoDescription(di);
	const char *severity_str = NULL;

	switch (severity) {
	case LLVMDSError:
		severity_str = "error";
		break;
	case LLVMDSWarning:
		severity_str = "warning";
		break;
	case LLVMDSRemark:
		severity_str = "remark";
		break;
	case LLVMDSNote:
		severity_str = "note";
		break;
	default:
		severity_str = "unknown";
	}

	pipe_debug_message(diag->debug, SHADER_INFO,
			   "LLVM diagnostic (%s): %s", severity_str, description);

	if (severity == LLVMDSError) {
		diag->retval = 1;
		fprintf(stderr,"LLVM triggered Diagnostic Handler: %s\n", description);
	}

	LLVMDisposeMessage(description);
}

/**
 * Compile an LLVM module to machine code.
 *
 * @returns 0 for success, 1 for failure
 */
unsigned si_llvm_compile(LLVMModuleRef M, struct ac_shader_binary *binary,
			 struct ac_llvm_compiler *compiler,
			 struct pipe_debug_callback *debug)
{
	struct si_llvm_diagnostics diag;
	LLVMContextRef llvm_ctx;

	diag.debug = debug;
	diag.retval = 0;

	/* Setup Diagnostic Handler*/
	llvm_ctx = LLVMGetModuleContext(M);

	LLVMContextSetDiagnosticHandler(llvm_ctx, si_diagnostic_handler, &diag);

	/* Compile IR. */
	if (!ac_compile_module_to_binary(compiler->passes, M, binary))
		diag.retval = 1;

	if (diag.retval != 0)
		pipe_debug_message(debug, SHADER_INFO, "LLVM compile failed");
	return diag.retval;
}

LLVMTypeRef tgsi2llvmtype(struct lp_build_tgsi_context *bld_base,
			  enum tgsi_opcode_type type)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);

	switch (type) {
	case TGSI_TYPE_UNSIGNED:
	case TGSI_TYPE_SIGNED:
		return ctx->ac.i32;
	case TGSI_TYPE_UNSIGNED64:
	case TGSI_TYPE_SIGNED64:
		return ctx->ac.i64;
	case TGSI_TYPE_DOUBLE:
		return ctx->ac.f64;
	case TGSI_TYPE_UNTYPED:
	case TGSI_TYPE_FLOAT:
		return ctx->ac.f32;
	default: break;
	}
	return 0;
}

LLVMValueRef bitcast(struct lp_build_tgsi_context *bld_base,
		     enum tgsi_opcode_type type, LLVMValueRef value)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	LLVMTypeRef dst_type = tgsi2llvmtype(bld_base, type);

	if (dst_type)
		return LLVMBuildBitCast(ctx->ac.builder, value, dst_type, "");
	else
		return value;
}

/**
 * Return a value that is equal to the given i32 \p index if it lies in [0,num)
 * or an undefined value in the same interval otherwise.
 */
LLVMValueRef si_llvm_bound_index(struct si_shader_context *ctx,
				 LLVMValueRef index,
				 unsigned num)
{
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef c_max = LLVMConstInt(ctx->i32, num - 1, 0);
	LLVMValueRef cc;

	if (util_is_power_of_two_or_zero(num)) {
		index = LLVMBuildAnd(builder, index, c_max, "");
	} else {
		/* In theory, this MAX pattern should result in code that is
		 * as good as the bit-wise AND above.
		 *
		 * In practice, LLVM generates worse code (at the time of
		 * writing), because its value tracking is not strong enough.
		 */
		cc = LLVMBuildICmp(builder, LLVMIntULE, index, c_max, "");
		index = LLVMBuildSelect(builder, cc, index, c_max, "");
	}

	return index;
}

static LLVMValueRef emit_swizzle(struct lp_build_tgsi_context *bld_base,
				 LLVMValueRef value,
				 unsigned swizzle_x,
				 unsigned swizzle_y,
				 unsigned swizzle_z,
				 unsigned swizzle_w)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	LLVMValueRef swizzles[4];

	swizzles[0] = LLVMConstInt(ctx->i32, swizzle_x, 0);
	swizzles[1] = LLVMConstInt(ctx->i32, swizzle_y, 0);
	swizzles[2] = LLVMConstInt(ctx->i32, swizzle_z, 0);
	swizzles[3] = LLVMConstInt(ctx->i32, swizzle_w, 0);

	return LLVMBuildShuffleVector(ctx->ac.builder,
				      value,
				      LLVMGetUndef(LLVMTypeOf(value)),
				      LLVMConstVector(swizzles, 4), "");
}

/**
 * Return the description of the array covering the given temporary register
 * index.
 */
static unsigned
get_temp_array_id(struct lp_build_tgsi_context *bld_base,
		  unsigned reg_index,
		  const struct tgsi_ind_register *reg)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	unsigned num_arrays = ctx->bld_base.info->array_max[TGSI_FILE_TEMPORARY];
	unsigned i;

	if (reg && reg->ArrayID > 0 && reg->ArrayID <= num_arrays)
		return reg->ArrayID;

	for (i = 0; i < num_arrays; i++) {
		const struct tgsi_array_info *array = &ctx->temp_arrays[i];

		if (reg_index >= array->range.First && reg_index <= array->range.Last)
			return i + 1;
	}

	return 0;
}

static struct tgsi_declaration_range
get_array_range(struct lp_build_tgsi_context *bld_base,
		unsigned File, unsigned reg_index,
		const struct tgsi_ind_register *reg)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	struct tgsi_declaration_range range;

	if (File == TGSI_FILE_TEMPORARY) {
		unsigned array_id = get_temp_array_id(bld_base, reg_index, reg);
		if (array_id)
			return ctx->temp_arrays[array_id - 1].range;
	}

	range.First = 0;
	range.Last = bld_base->info->file_max[File];
	return range;
}

/**
 * For indirect registers, construct a pointer directly to the requested
 * element using getelementptr if possible.
 *
 * Returns NULL if the insertelement/extractelement fallback for array access
 * must be used.
 */
static LLVMValueRef
get_pointer_into_array(struct si_shader_context *ctx,
		       unsigned file,
		       unsigned swizzle,
		       unsigned reg_index,
		       const struct tgsi_ind_register *reg_indirect)
{
	unsigned array_id;
	struct tgsi_array_info *array;
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef idxs[2];
	LLVMValueRef index;
	LLVMValueRef alloca;

	if (file != TGSI_FILE_TEMPORARY)
		return NULL;

	array_id = get_temp_array_id(&ctx->bld_base, reg_index, reg_indirect);
	if (!array_id)
		return NULL;

	alloca = ctx->temp_array_allocas[array_id - 1];
	if (!alloca)
		return NULL;

	array = &ctx->temp_arrays[array_id - 1];

	if (!(array->writemask & (1 << swizzle)))
		return ctx->undef_alloca;

	index = si_get_indirect_index(ctx, reg_indirect, 1,
				      reg_index - ctx->temp_arrays[array_id - 1].range.First);

	/* Ensure that the index is within a valid range, to guard against
	 * VM faults and overwriting critical data (e.g. spilled resource
	 * descriptors).
	 *
	 * TODO It should be possible to avoid the additional instructions
	 * if LLVM is changed so that it guarantuees:
	 * 1. the scratch space descriptor isolates the current wave (this
	 *    could even save the scratch offset SGPR at the cost of an
	 *    additional SALU instruction)
	 * 2. the memory for allocas must be allocated at the _end_ of the
	 *    scratch space (after spilled registers)
	 */
	index = si_llvm_bound_index(ctx, index, array->range.Last - array->range.First + 1);

	index = LLVMBuildMul(
		builder, index,
		LLVMConstInt(ctx->i32, util_bitcount(array->writemask), 0),
		"");
	index = LLVMBuildAdd(
		builder, index,
		LLVMConstInt(ctx->i32,
			     util_bitcount(array->writemask & ((1 << swizzle) - 1)), 0),
		"");
	idxs[0] = ctx->i32_0;
	idxs[1] = index;
	return LLVMBuildGEP(ctx->ac.builder, alloca, idxs, 2, "");
}

LLVMValueRef
si_llvm_emit_fetch_64bit(struct lp_build_tgsi_context *bld_base,
			 LLVMTypeRef type,
			 LLVMValueRef ptr,
			 LLVMValueRef ptr2)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	LLVMValueRef result;

	result = LLVMGetUndef(LLVMVectorType(ctx->i32, 2));

	result = LLVMBuildInsertElement(ctx->ac.builder,
					result,
					ac_to_integer(&ctx->ac, ptr),
					ctx->i32_0, "");
	result = LLVMBuildInsertElement(ctx->ac.builder,
					result,
					ac_to_integer(&ctx->ac, ptr2),
					ctx->i32_1, "");
	return LLVMBuildBitCast(ctx->ac.builder, result, type, "");
}

static LLVMValueRef
emit_array_fetch(struct lp_build_tgsi_context *bld_base,
		 unsigned File, enum tgsi_opcode_type type,
		 struct tgsi_declaration_range range,
		 unsigned swizzle)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	unsigned i, size = range.Last - range.First + 1;
	LLVMTypeRef vec = LLVMVectorType(tgsi2llvmtype(bld_base, type), size);
	LLVMValueRef result = LLVMGetUndef(vec);

	struct tgsi_full_src_register tmp_reg = {};
	tmp_reg.Register.File = File;

	for (i = 0; i < size; ++i) {
		tmp_reg.Register.Index = i + range.First;
		LLVMValueRef temp = si_llvm_emit_fetch(bld_base, &tmp_reg, type, swizzle);
		result = LLVMBuildInsertElement(ctx->ac.builder, result, temp,
			LLVMConstInt(ctx->i32, i, 0), "array_vector");
	}
	return result;
}

static LLVMValueRef
load_value_from_array(struct lp_build_tgsi_context *bld_base,
		      unsigned file,
		      enum tgsi_opcode_type type,
		      unsigned swizzle,
		      unsigned reg_index,
		      const struct tgsi_ind_register *reg_indirect)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef ptr;

	ptr = get_pointer_into_array(ctx, file, swizzle, reg_index, reg_indirect);
	if (ptr) {
		LLVMValueRef val = LLVMBuildLoad(builder, ptr, "");
		if (tgsi_type_is_64bit(type)) {
			LLVMValueRef ptr_hi, val_hi;
			ptr_hi = LLVMBuildGEP(builder, ptr, &ctx->i32_1, 1, "");
			val_hi = LLVMBuildLoad(builder, ptr_hi, "");
			val = si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
						       val, val_hi);
		}

		return val;
	} else {
		struct tgsi_declaration_range range =
			get_array_range(bld_base, file, reg_index, reg_indirect);
		LLVMValueRef index =
			si_get_indirect_index(ctx, reg_indirect, 1, reg_index - range.First);
		LLVMValueRef array =
			emit_array_fetch(bld_base, file, type, range, swizzle);
		return LLVMBuildExtractElement(builder, array, index, "");
	}
}

static void
store_value_to_array(struct lp_build_tgsi_context *bld_base,
		     LLVMValueRef value,
		     unsigned file,
		     unsigned chan_index,
		     unsigned reg_index,
		     const struct tgsi_ind_register *reg_indirect)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef ptr;

	ptr = get_pointer_into_array(ctx, file, chan_index, reg_index, reg_indirect);
	if (ptr) {
		LLVMBuildStore(builder, value, ptr);
	} else {
		unsigned i, size;
		struct tgsi_declaration_range range = get_array_range(bld_base, file, reg_index, reg_indirect);
		LLVMValueRef index = si_get_indirect_index(ctx, reg_indirect, 1, reg_index - range.First);
		LLVMValueRef array =
			emit_array_fetch(bld_base, file, TGSI_TYPE_FLOAT, range, chan_index);
		LLVMValueRef temp_ptr;

		array = LLVMBuildInsertElement(builder, array, value, index, "");

		size = range.Last - range.First + 1;
		for (i = 0; i < size; ++i) {
			switch(file) {
			case TGSI_FILE_OUTPUT:
				temp_ptr = ctx->outputs[i + range.First][chan_index];
				break;

			case TGSI_FILE_TEMPORARY:
				if (range.First + i >= ctx->temps_count)
					continue;
				temp_ptr = ctx->temps[(i + range.First) * TGSI_NUM_CHANNELS + chan_index];
				break;

			default:
				continue;
			}
			value = LLVMBuildExtractElement(builder, array,
				LLVMConstInt(ctx->i32, i, 0), "");
			LLVMBuildStore(builder, value, temp_ptr);
		}
	}
}

/* If this is true, preload FS inputs at the beginning of shaders. Otherwise,
 * reload them at each use. This must be true if the shader is using
 * derivatives and KILL, because KILL can leave the WQM and then a lazy
 * input load isn't in the WQM anymore.
 */
static bool si_preload_fs_inputs(struct si_shader_context *ctx)
{
	struct si_shader_selector *sel = ctx->shader->selector;

	return sel->info.uses_derivatives &&
	       sel->info.uses_kill;
}

static LLVMValueRef
get_output_ptr(struct lp_build_tgsi_context *bld_base, unsigned index,
	       unsigned chan)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);

	assert(index <= ctx->bld_base.info->file_max[TGSI_FILE_OUTPUT]);
	return ctx->outputs[index][chan];
}

LLVMValueRef si_llvm_emit_fetch(struct lp_build_tgsi_context *bld_base,
				const struct tgsi_full_src_register *reg,
				enum tgsi_opcode_type type,
				unsigned swizzle)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef result = NULL, ptr, ptr2;

	if (swizzle == ~0) {
		LLVMValueRef values[TGSI_NUM_CHANNELS];
		unsigned chan;
		for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
			values[chan] = si_llvm_emit_fetch(bld_base, reg, type, chan);
		}
		return ac_build_gather_values(&ctx->ac, values,
					      TGSI_NUM_CHANNELS);
	}

	if (reg->Register.Indirect) {
		LLVMValueRef load = load_value_from_array(bld_base, reg->Register.File, type,
				swizzle, reg->Register.Index, &reg->Indirect);
		return bitcast(bld_base, type, load);
	}

	switch(reg->Register.File) {
	case TGSI_FILE_IMMEDIATE: {
		LLVMTypeRef ctype = tgsi2llvmtype(bld_base, type);
		if (tgsi_type_is_64bit(type)) {
			result = LLVMGetUndef(LLVMVectorType(ctx->i32, 2));
			result = LLVMConstInsertElement(result,
							ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle],
							ctx->i32_0);
			result = LLVMConstInsertElement(result,
							ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle + 1],
							ctx->i32_1);
			return LLVMConstBitCast(result, ctype);
		} else {
			return LLVMConstBitCast(ctx->imms[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle], ctype);
		}
	}

	case TGSI_FILE_INPUT: {
		unsigned index = reg->Register.Index;
		LLVMValueRef input[4];

		/* I don't think doing this for vertex shaders is beneficial.
		 * For those, we want to make sure the VMEM loads are executed
		 * only once. Fragment shaders don't care much, because
		 * v_interp instructions are much cheaper than VMEM loads.
		 */
		if (!si_preload_fs_inputs(ctx) &&
		    ctx->bld_base.info->processor == PIPE_SHADER_FRAGMENT)
			ctx->load_input(ctx, index, &ctx->input_decls[index], input);
		else
			memcpy(input, &ctx->inputs[index * 4], sizeof(input));

		result = input[swizzle];

		if (tgsi_type_is_64bit(type)) {
			ptr = result;
			ptr2 = input[swizzle + 1];
			return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
							ptr, ptr2);
		}
		break;
	}

	case TGSI_FILE_TEMPORARY:
		if (reg->Register.Index >= ctx->temps_count)
			return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
		ptr = ctx->temps[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle];
		if (tgsi_type_is_64bit(type)) {
			ptr2 = ctx->temps[reg->Register.Index * TGSI_NUM_CHANNELS + swizzle + 1];
			return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
							LLVMBuildLoad(builder, ptr, ""),
							LLVMBuildLoad(builder, ptr2, ""));
		}
		result = LLVMBuildLoad(builder, ptr, "");
		break;

	case TGSI_FILE_OUTPUT:
		ptr = get_output_ptr(bld_base, reg->Register.Index, swizzle);
		if (tgsi_type_is_64bit(type)) {
			ptr2 = get_output_ptr(bld_base, reg->Register.Index, swizzle + 1);
			return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
							LLVMBuildLoad(builder, ptr, ""),
							LLVMBuildLoad(builder, ptr2, ""));
		}
		result = LLVMBuildLoad(builder, ptr, "");
		break;

	default:
		return LLVMGetUndef(tgsi2llvmtype(bld_base, type));
	}

	return bitcast(bld_base, type, result);
}

static LLVMValueRef fetch_system_value(struct lp_build_tgsi_context *bld_base,
				       const struct tgsi_full_src_register *reg,
				       enum tgsi_opcode_type type,
				       unsigned swizzle)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef cval = ctx->system_values[reg->Register.Index];

	if (tgsi_type_is_64bit(type)) {
		LLVMValueRef lo, hi;

		assert(swizzle == 0 || swizzle == 2);

		lo = LLVMBuildExtractElement(
			builder, cval, LLVMConstInt(ctx->i32, swizzle, 0), "");
		hi = LLVMBuildExtractElement(
			builder, cval, LLVMConstInt(ctx->i32, swizzle + 1, 0), "");

		return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
						lo, hi);
	}

	if (LLVMGetTypeKind(LLVMTypeOf(cval)) == LLVMVectorTypeKind) {
		cval = LLVMBuildExtractElement(
			builder, cval, LLVMConstInt(ctx->i32, swizzle, 0), "");
	} else {
		assert(swizzle == 0);
	}

	return bitcast(bld_base, type, cval);
}

static void emit_declaration(struct lp_build_tgsi_context *bld_base,
			     const struct tgsi_full_declaration *decl)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	LLVMBuilderRef builder = ctx->ac.builder;
	unsigned first, last, i;
	switch(decl->Declaration.File) {
	case TGSI_FILE_ADDRESS:
	{
		 unsigned idx;
		for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
			unsigned chan;
			for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
				 ctx->addrs[idx][chan] = ac_build_alloca_undef(
					&ctx->ac, ctx->i32, "");
			}
		}
		break;
	}

	case TGSI_FILE_TEMPORARY:
	{
		char name[18] = "";
		LLVMValueRef array_alloca = NULL;
		unsigned decl_size;
		unsigned writemask = decl->Declaration.UsageMask;
		first = decl->Range.First;
		last = decl->Range.Last;
		decl_size = 4 * ((last - first) + 1);

		if (decl->Declaration.Array) {
			unsigned id = decl->Array.ArrayID - 1;
			unsigned array_size;

			writemask &= ctx->temp_arrays[id].writemask;
			ctx->temp_arrays[id].writemask = writemask;
			array_size = ((last - first) + 1) * util_bitcount(writemask);

			/* If the array has more than 16 elements, store it
			 * in memory using an alloca that spans the entire
			 * array.
			 *
			 * Otherwise, store each array element individually.
			 * We will then generate vectors (per-channel, up to
			 * <16 x float> if the usagemask is a single bit) for
			 * indirect addressing.
			 *
			 * Note that 16 is the number of vector elements that
			 * LLVM will store in a register, so theoretically an
			 * array with up to 4 * 16 = 64 elements could be
			 * handled this way, but whether that's a good idea
			 * depends on VGPR register pressure elsewhere.
			 *
			 * FIXME: We shouldn't need to have the non-alloca
			 * code path for arrays. LLVM should be smart enough to
			 * promote allocas into registers when profitable.
			 */
			if (array_size > 16 ||
			    !ctx->screen->llvm_has_working_vgpr_indexing) {
				array_alloca = ac_build_alloca_undef(&ctx->ac,
					LLVMArrayType(ctx->f32,
						      array_size), "array");
				ctx->temp_array_allocas[id] = array_alloca;
			}
		}

		if (!ctx->temps_count) {
			ctx->temps_count = bld_base->info->file_max[TGSI_FILE_TEMPORARY] + 1;
			ctx->temps = MALLOC(TGSI_NUM_CHANNELS * ctx->temps_count * sizeof(LLVMValueRef));
		}
		if (!array_alloca) {
			for (i = 0; i < decl_size; ++i) {
#ifdef DEBUG
				snprintf(name, sizeof(name), "TEMP%d.%c",
					 first + i / 4, "xyzw"[i % 4]);
#endif
				ctx->temps[first * TGSI_NUM_CHANNELS + i] =
					ac_build_alloca_undef(&ctx->ac,
							      ctx->f32,
							      name);
			}
		} else {
			LLVMValueRef idxs[2] = {
				ctx->i32_0,
				NULL
			};
			unsigned j = 0;

			if (writemask != TGSI_WRITEMASK_XYZW &&
			    !ctx->undef_alloca) {
				/* Create a dummy alloca. We use it so that we
				 * have a pointer that is safe to load from if
				 * a shader ever reads from a channel that
				 * it never writes to.
				 */
				ctx->undef_alloca = ac_build_alloca_undef(
					&ctx->ac, ctx->f32, "undef");
			}

			for (i = 0; i < decl_size; ++i) {
				LLVMValueRef ptr;
				if (writemask & (1 << (i % 4))) {
#ifdef DEBUG
					snprintf(name, sizeof(name), "TEMP%d.%c",
						 first + i / 4, "xyzw"[i % 4]);
#endif
					idxs[1] = LLVMConstInt(ctx->i32, j, 0);
					ptr = LLVMBuildGEP(builder, array_alloca, idxs, 2, name);
					j++;
				} else {
					ptr = ctx->undef_alloca;
				}
				ctx->temps[first * TGSI_NUM_CHANNELS + i] = ptr;
			}
		}
		break;
	}
	case TGSI_FILE_INPUT:
	{
		unsigned idx;
		for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
			if (ctx->load_input &&
			    ctx->input_decls[idx].Declaration.File != TGSI_FILE_INPUT) {
				ctx->input_decls[idx] = *decl;
				ctx->input_decls[idx].Range.First = idx;
				ctx->input_decls[idx].Range.Last = idx;
				ctx->input_decls[idx].Semantic.Index += idx - decl->Range.First;

				if (si_preload_fs_inputs(ctx) ||
				    bld_base->info->processor != PIPE_SHADER_FRAGMENT)
					ctx->load_input(ctx, idx, &ctx->input_decls[idx],
							&ctx->inputs[idx * 4]);
			}
		}
	}
	break;

	case TGSI_FILE_SYSTEM_VALUE:
	{
		unsigned idx;
		for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
			si_load_system_value(ctx, idx, decl);
		}
	}
	break;

	case TGSI_FILE_OUTPUT:
	{
		char name[16] = "";
		unsigned idx;
		for (idx = decl->Range.First; idx <= decl->Range.Last; idx++) {
			unsigned chan;
			assert(idx < RADEON_LLVM_MAX_OUTPUTS);
			if (ctx->outputs[idx][0])
				continue;
			for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
#ifdef DEBUG
				snprintf(name, sizeof(name), "OUT%d.%c",
					 idx, "xyzw"[chan % 4]);
#endif
				ctx->outputs[idx][chan] = ac_build_alloca_undef(
					&ctx->ac, ctx->f32, name);
			}
		}
		break;
	}

	case TGSI_FILE_MEMORY:
		si_tgsi_declare_compute_memory(ctx, decl);
		break;

	default:
		break;
	}
}

void si_llvm_emit_store(struct lp_build_tgsi_context *bld_base,
			const struct tgsi_full_instruction *inst,
			const struct tgsi_opcode_info *info,
			unsigned index,
			LLVMValueRef dst[4])
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	const struct tgsi_full_dst_register *reg = &inst->Dst[index];
	LLVMBuilderRef builder = ctx->ac.builder;
	LLVMValueRef temp_ptr, temp_ptr2 = NULL;
	bool is_vec_store = false;
	enum tgsi_opcode_type dtype = tgsi_opcode_infer_dst_type(inst->Instruction.Opcode, index);

	if (dst[0]) {
		LLVMTypeKind k = LLVMGetTypeKind(LLVMTypeOf(dst[0]));
		is_vec_store = (k == LLVMVectorTypeKind);
	}

	if (is_vec_store) {
		LLVMValueRef values[4] = {};
		uint32_t writemask = reg->Register.WriteMask;
		while (writemask) {
			unsigned chan = u_bit_scan(&writemask);
			LLVMValueRef index = LLVMConstInt(ctx->i32, chan, 0);
			values[chan]  = LLVMBuildExtractElement(ctx->ac.builder,
							dst[0], index, "");
		}
		bld_base->emit_store(bld_base, inst, info, index, values);
		return;
	}

	uint32_t writemask = reg->Register.WriteMask;
	while (writemask) {
		unsigned chan_index = u_bit_scan(&writemask);
		LLVMValueRef value = dst[chan_index];

		if (tgsi_type_is_64bit(dtype) && (chan_index == 1 || chan_index == 3))
			continue;
		if (inst->Instruction.Saturate)
			value = ac_build_clamp(&ctx->ac, value);

		if (reg->Register.File == TGSI_FILE_ADDRESS) {
			temp_ptr = ctx->addrs[reg->Register.Index][chan_index];
			LLVMBuildStore(builder, value, temp_ptr);
			continue;
		}

		if (!tgsi_type_is_64bit(dtype))
			value = ac_to_float(&ctx->ac, value);

		if (reg->Register.Indirect) {
			unsigned file = reg->Register.File;
			unsigned reg_index = reg->Register.Index;
			store_value_to_array(bld_base, value, file, chan_index,
					     reg_index, &reg->Indirect);
		} else {
			switch(reg->Register.File) {
			case TGSI_FILE_OUTPUT:
				temp_ptr = ctx->outputs[reg->Register.Index][chan_index];
				if (tgsi_type_is_64bit(dtype))
					temp_ptr2 = ctx->outputs[reg->Register.Index][chan_index + 1];
				break;

			case TGSI_FILE_TEMPORARY:
			{
				if (reg->Register.Index >= ctx->temps_count)
					continue;

				temp_ptr = ctx->temps[ TGSI_NUM_CHANNELS * reg->Register.Index + chan_index];
				if (tgsi_type_is_64bit(dtype))
					temp_ptr2 = ctx->temps[ TGSI_NUM_CHANNELS * reg->Register.Index + chan_index + 1];

				break;
			}
			default:
				return;
			}
			if (!tgsi_type_is_64bit(dtype))
				LLVMBuildStore(builder, value, temp_ptr);
			else {
				LLVMValueRef ptr = LLVMBuildBitCast(builder, value,
								    LLVMVectorType(ctx->i32, 2), "");
				LLVMValueRef val2;
				value = LLVMBuildExtractElement(builder, ptr,
								ctx->i32_0, "");
				val2 = LLVMBuildExtractElement(builder, ptr,
							       ctx->i32_1, "");

				LLVMBuildStore(builder, ac_to_float(&ctx->ac, value), temp_ptr);
				LLVMBuildStore(builder, ac_to_float(&ctx->ac, val2), temp_ptr2);
			}
		}
	}
}

static int get_line(int pc)
{
	/* Subtract 1 so that the number shown is that of the corresponding
	 * opcode in the TGSI dump, e.g. an if block has the same suffix as
	 * the instruction number of the corresponding TGSI IF.
	 */
	return pc - 1;
}

static void bgnloop_emit(const struct lp_build_tgsi_action *action,
			 struct lp_build_tgsi_context *bld_base,
			 struct lp_build_emit_data *emit_data)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	ac_build_bgnloop(&ctx->ac, get_line(bld_base->pc));
}

static void brk_emit(const struct lp_build_tgsi_action *action,
		     struct lp_build_tgsi_context *bld_base,
		     struct lp_build_emit_data *emit_data)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	ac_build_break(&ctx->ac);
}

static void cont_emit(const struct lp_build_tgsi_action *action,
		      struct lp_build_tgsi_context *bld_base,
		      struct lp_build_emit_data *emit_data)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	ac_build_continue(&ctx->ac);
}

static void else_emit(const struct lp_build_tgsi_action *action,
		      struct lp_build_tgsi_context *bld_base,
		      struct lp_build_emit_data *emit_data)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	ac_build_else(&ctx->ac, get_line(bld_base->pc));
}

static void endif_emit(const struct lp_build_tgsi_action *action,
		       struct lp_build_tgsi_context *bld_base,
		       struct lp_build_emit_data *emit_data)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	ac_build_endif(&ctx->ac, get_line(bld_base->pc));
}

static void endloop_emit(const struct lp_build_tgsi_action *action,
			 struct lp_build_tgsi_context *bld_base,
			 struct lp_build_emit_data *emit_data)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	ac_build_endloop(&ctx->ac, get_line(bld_base->pc));
}

static void if_emit(const struct lp_build_tgsi_action *action,
		    struct lp_build_tgsi_context *bld_base,
		    struct lp_build_emit_data *emit_data)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	ac_build_if(&ctx->ac, emit_data->args[0], get_line(bld_base->pc));
}

static void uif_emit(const struct lp_build_tgsi_action *action,
		     struct lp_build_tgsi_context *bld_base,
		     struct lp_build_emit_data *emit_data)
{
	struct si_shader_context *ctx = si_shader_context(bld_base);
	ac_build_uif(&ctx->ac, emit_data->args[0], get_line(bld_base->pc));
}

static void emit_immediate(struct lp_build_tgsi_context *bld_base,
			   const struct tgsi_full_immediate *imm)
{
	unsigned i;
	struct si_shader_context *ctx = si_shader_context(bld_base);

	for (i = 0; i < 4; ++i) {
		ctx->imms[ctx->imms_num * TGSI_NUM_CHANNELS + i] =
				LLVMConstInt(ctx->i32, imm->u[i].Uint, false   );
	}

	ctx->imms_num++;
}

void si_llvm_context_init(struct si_shader_context *ctx,
			  struct si_screen *sscreen,
			  struct ac_llvm_compiler *compiler)
{
	struct lp_type type;

	/* Initialize the gallivm object:
	 * We are only using the module, context, and builder fields of this struct.
	 * This should be enough for us to be able to pass our gallivm struct to the
	 * helper functions in the gallivm module.
	 */
	memset(ctx, 0, sizeof(*ctx));
	ctx->screen = sscreen;
	ctx->compiler = compiler;

	ac_llvm_context_init(&ctx->ac, sscreen->info.chip_class, sscreen->info.family);
	ctx->ac.module = ac_create_module(compiler->tm, ctx->ac.context);

	enum ac_float_mode float_mode =
		sscreen->debug_flags & DBG(UNSAFE_MATH) ?
			AC_FLOAT_MODE_UNSAFE_FP_MATH :
			AC_FLOAT_MODE_NO_SIGNED_ZEROS_FP_MATH;
	ctx->ac.builder = ac_create_builder(ctx->ac.context, float_mode);

	ctx->gallivm.context = ctx->ac.context;
	ctx->gallivm.module = ctx->ac.module;
	ctx->gallivm.builder = ctx->ac.builder;

	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;

	type.floating = true;
	type.fixed = false;
	type.sign = true;
	type.norm = false;
	type.width = 32;
	type.length = 1;

	lp_build_context_init(&bld_base->base, &ctx->gallivm, type);
	lp_build_context_init(&ctx->bld_base.uint_bld, &ctx->gallivm, lp_uint_type(type));
	lp_build_context_init(&ctx->bld_base.int_bld, &ctx->gallivm, lp_int_type(type));
	type.width *= 2;
	lp_build_context_init(&ctx->bld_base.dbl_bld, &ctx->gallivm, type);
	lp_build_context_init(&ctx->bld_base.uint64_bld, &ctx->gallivm, lp_uint_type(type));
	lp_build_context_init(&ctx->bld_base.int64_bld, &ctx->gallivm, lp_int_type(type));

	bld_base->soa = 1;
	bld_base->emit_swizzle = emit_swizzle;
	bld_base->emit_declaration = emit_declaration;
	bld_base->emit_immediate = emit_immediate;

	bld_base->op_actions[TGSI_OPCODE_BGNLOOP].emit = bgnloop_emit;
	bld_base->op_actions[TGSI_OPCODE_BRK].emit = brk_emit;
	bld_base->op_actions[TGSI_OPCODE_CONT].emit = cont_emit;
	bld_base->op_actions[TGSI_OPCODE_IF].emit = if_emit;
	bld_base->op_actions[TGSI_OPCODE_UIF].emit = uif_emit;
	bld_base->op_actions[TGSI_OPCODE_ELSE].emit = else_emit;
	bld_base->op_actions[TGSI_OPCODE_ENDIF].emit = endif_emit;
	bld_base->op_actions[TGSI_OPCODE_ENDLOOP].emit = endloop_emit;

	si_shader_context_init_alu(&ctx->bld_base);
	si_shader_context_init_mem(ctx);

	ctx->voidt = LLVMVoidTypeInContext(ctx->ac.context);
	ctx->i1 = LLVMInt1TypeInContext(ctx->ac.context);
	ctx->i8 = LLVMInt8TypeInContext(ctx->ac.context);
	ctx->i32 = LLVMInt32TypeInContext(ctx->ac.context);
	ctx->i64 = LLVMInt64TypeInContext(ctx->ac.context);
	ctx->i128 = LLVMIntTypeInContext(ctx->ac.context, 128);
	ctx->f32 = LLVMFloatTypeInContext(ctx->ac.context);
	ctx->v2i32 = LLVMVectorType(ctx->i32, 2);
	ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
	ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
	ctx->v8i32 = LLVMVectorType(ctx->i32, 8);

	ctx->i32_0 = LLVMConstInt(ctx->i32, 0, 0);
	ctx->i32_1 = LLVMConstInt(ctx->i32, 1, 0);
}

/* Set the context to a certain TGSI shader. Can be called repeatedly
 * to change the shader. */
void si_llvm_context_set_tgsi(struct si_shader_context *ctx,
			      struct si_shader *shader)
{
	const struct tgsi_shader_info *info = NULL;
	const struct tgsi_token *tokens = NULL;

	if (shader && shader->selector) {
		info = &shader->selector->info;
		tokens = shader->selector->tokens;
	}

	ctx->shader = shader;
	ctx->type = info ? info->processor : -1;
	ctx->bld_base.info = info;

	/* Clean up the old contents. */
	FREE(ctx->temp_arrays);
	ctx->temp_arrays = NULL;
	FREE(ctx->temp_array_allocas);
	ctx->temp_array_allocas = NULL;

	FREE(ctx->imms);
	ctx->imms = NULL;
	ctx->imms_num = 0;

	FREE(ctx->temps);
	ctx->temps = NULL;
	ctx->temps_count = 0;

	if (!info)
		return;

	ctx->num_const_buffers = util_last_bit(info->const_buffers_declared);
	ctx->num_shader_buffers = util_last_bit(info->shader_buffers_declared);

	ctx->num_samplers = util_last_bit(info->samplers_declared);
	ctx->num_images = util_last_bit(info->images_declared);

	if (!tokens)
		return;

	if (info->array_max[TGSI_FILE_TEMPORARY] > 0) {
		int size = info->array_max[TGSI_FILE_TEMPORARY];

		ctx->temp_arrays = CALLOC(size, sizeof(ctx->temp_arrays[0]));
		ctx->temp_array_allocas = CALLOC(size, sizeof(ctx->temp_array_allocas[0]));

		tgsi_scan_arrays(tokens, TGSI_FILE_TEMPORARY, size,
				 ctx->temp_arrays);
	}
	if (info->file_max[TGSI_FILE_IMMEDIATE] >= 0) {
		int size = info->file_max[TGSI_FILE_IMMEDIATE] + 1;
		ctx->imms = MALLOC(size * TGSI_NUM_CHANNELS * sizeof(LLVMValueRef));
	}

	/* Re-set these to start with a clean slate. */
	ctx->bld_base.num_instructions = 0;
	ctx->bld_base.pc = 0;
	memset(ctx->outputs, 0, sizeof(ctx->outputs));

	ctx->bld_base.emit_store = si_llvm_emit_store;
	ctx->bld_base.emit_fetch_funcs[TGSI_FILE_IMMEDIATE] = si_llvm_emit_fetch;
	ctx->bld_base.emit_fetch_funcs[TGSI_FILE_INPUT] = si_llvm_emit_fetch;
	ctx->bld_base.emit_fetch_funcs[TGSI_FILE_TEMPORARY] = si_llvm_emit_fetch;
	ctx->bld_base.emit_fetch_funcs[TGSI_FILE_OUTPUT] = si_llvm_emit_fetch;
	ctx->bld_base.emit_fetch_funcs[TGSI_FILE_SYSTEM_VALUE] = fetch_system_value;
}

void si_llvm_create_func(struct si_shader_context *ctx,
			 const char *name,
			 LLVMTypeRef *return_types, unsigned num_return_elems,
			 LLVMTypeRef *ParamTypes, unsigned ParamCount)
{
	LLVMTypeRef main_fn_type, ret_type;
	LLVMBasicBlockRef main_fn_body;
	enum si_llvm_calling_convention call_conv;
	unsigned real_shader_type;

	if (num_return_elems)
		ret_type = LLVMStructTypeInContext(ctx->ac.context,
						   return_types,
						   num_return_elems, true);
	else
		ret_type = ctx->voidt;

	/* Setup the function */
	ctx->return_type = ret_type;
	main_fn_type = LLVMFunctionType(ret_type, ParamTypes, ParamCount, 0);
	ctx->main_fn = LLVMAddFunction(ctx->gallivm.module, name, main_fn_type);
	main_fn_body = LLVMAppendBasicBlockInContext(ctx->ac.context,
			ctx->main_fn, "main_body");
	LLVMPositionBuilderAtEnd(ctx->ac.builder, main_fn_body);

	real_shader_type = ctx->type;

	/* LS is merged into HS (TCS), and ES is merged into GS. */
	if (ctx->screen->info.chip_class >= GFX9) {
		if (ctx->shader->key.as_ls)
			real_shader_type = PIPE_SHADER_TESS_CTRL;
		else if (ctx->shader->key.as_es)
			real_shader_type = PIPE_SHADER_GEOMETRY;
	}

	switch (real_shader_type) {
	case PIPE_SHADER_VERTEX:
	case PIPE_SHADER_TESS_EVAL:
		call_conv = RADEON_LLVM_AMDGPU_VS;
		break;
	case PIPE_SHADER_TESS_CTRL:
		call_conv = RADEON_LLVM_AMDGPU_HS;
		break;
	case PIPE_SHADER_GEOMETRY:
		call_conv = RADEON_LLVM_AMDGPU_GS;
		break;
	case PIPE_SHADER_FRAGMENT:
		call_conv = RADEON_LLVM_AMDGPU_PS;
		break;
	case PIPE_SHADER_COMPUTE:
		call_conv = RADEON_LLVM_AMDGPU_CS;
		break;
	default:
		unreachable("Unhandle shader type");
	}

	LLVMSetFunctionCallConv(ctx->main_fn, call_conv);
}

void si_llvm_optimize_module(struct si_shader_context *ctx)
{
	/* Dump LLVM IR before any optimization passes */
	if (ctx->screen->debug_flags & DBG(PREOPT_IR) &&
	    si_can_dump_shader(ctx->screen, ctx->type))
		LLVMDumpModule(ctx->gallivm.module);

	/* Run the pass */
	LLVMRunPassManager(ctx->compiler->passmgr, ctx->gallivm.module);
	LLVMDisposeBuilder(ctx->ac.builder);
}

void si_llvm_dispose(struct si_shader_context *ctx)
{
	LLVMDisposeModule(ctx->gallivm.module);
	LLVMContextDispose(ctx->gallivm.context);
	FREE(ctx->temp_arrays);
	ctx->temp_arrays = NULL;
	FREE(ctx->temp_array_allocas);
	ctx->temp_array_allocas = NULL;
	FREE(ctx->temps);
	ctx->temps = NULL;
	ctx->temps_count = 0;
	FREE(ctx->imms);
	ctx->imms = NULL;
	ctx->imms_num = 0;
	ac_llvm_context_dispose(&ctx->ac);
}