1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Tom Stellard <thomas.stellard@amd.com>
* Michel Dänzer <michel.daenzer@amd.com>
* Christian König <christian.koenig@amd.com>
*/
/* The compiler middle-end architecture: Explaining (non-)monolithic shaders
* -------------------------------------------------------------------------
*
* Typically, there is one-to-one correspondence between API and HW shaders,
* that is, for every API shader, there is exactly one shader binary in
* the driver.
*
* The problem with that is that we also have to emulate some API states
* (e.g. alpha-test, and many others) in shaders too. The two obvious ways
* to deal with it are:
* - each shader has multiple variants for each combination of emulated states,
* and the variants are compiled on demand, possibly relying on a shader
* cache for good performance
* - patch shaders at the binary level
*
* This driver uses something completely different. The emulated states are
* usually implemented at the beginning or end of shaders. Therefore, we can
* split the shader into 3 parts:
* - prolog part (shader code dependent on states)
* - main part (the API shader)
* - epilog part (shader code dependent on states)
*
* Each part is compiled as a separate shader and the final binaries are
* concatenated. This type of shader is called non-monolithic, because it
* consists of multiple independent binaries. Creating a new shader variant
* is therefore only a concatenation of shader parts (binaries) and doesn't
* involve any compilation. The main shader parts are the only parts that are
* compiled when applications create shader objects. The prolog and epilog
* parts are compiled on the first use and saved, so that their binaries can
* be reused by many other shaders.
*
* One of the roles of the prolog part is to compute vertex buffer addresses
* for vertex shaders. A few of the roles of the epilog part are color buffer
* format conversions in pixel shaders that we have to do manually, and write
* tessellation factors in tessellation control shaders. The prolog and epilog
* have many other important responsibilities in various shader stages.
* They don't just "emulate legacy stuff".
*
* Monolithic shaders are shaders where the parts are combined before LLVM
* compilation, and the whole thing is compiled and optimized as one unit with
* one binary on the output. The result is the same as the non-monolithic
* shader, but the final code can be better, because LLVM can optimize across
* all shader parts. Monolithic shaders aren't usually used except for these
* special cases:
*
* 1) Some rarely-used states require modification of the main shader part
* itself, and in such cases, only the monolithic shader variant is
* compiled, and that's always done on the first use.
*
* 2) When we do cross-stage optimizations for separate shader objects and
* e.g. eliminate unused shader varyings, the resulting optimized shader
* variants are always compiled as monolithic shaders, and always
* asynchronously (i.e. not stalling ongoing rendering). We call them
* "optimized monolithic" shaders. The important property here is that
* the non-monolithic unoptimized shader variant is always available for use
* when the asynchronous compilation of the optimized shader is not done
* yet.
*
* Starting with GFX9 chips, some shader stages are merged, and the number of
* shader parts per shader increased. The complete new list of shader parts is:
* - 1st shader: prolog part
* - 1st shader: main part
* - 2nd shader: prolog part
* - 2nd shader: main part
* - 2nd shader: epilog part
*/
/* How linking shader inputs and outputs between vertex, tessellation, and
* geometry shaders works.
*
* Inputs and outputs between shaders are stored in a buffer. This buffer
* lives in LDS (typical case for tessellation), but it can also live
* in memory (ESGS). Each input or output has a fixed location within a vertex.
* The highest used input or output determines the stride between vertices.
*
* Since GS and tessellation are only possible in the OpenGL core profile,
* only these semantics are valid for per-vertex data:
*
* Name Location
*
* POSITION 0
* PSIZE 1
* CLIPDIST0..1 2..3
* CULLDIST0..1 (not implemented)
* GENERIC0..31 4..35
*
* For example, a shader only writing GENERIC0 has the output stride of 5.
*
* Only these semantics are valid for per-patch data:
*
* Name Location
*
* TESSOUTER 0
* TESSINNER 1
* PATCH0..29 2..31
*
* That's how independent shaders agree on input and output locations.
* The si_shader_io_get_unique_index function assigns the locations.
*
* For tessellation, other required information for calculating the input and
* output addresses like the vertex stride, the patch stride, and the offsets
* where per-vertex and per-patch data start, is passed to the shader via
* user data SGPRs. The offsets and strides are calculated at draw time and
* aren't available at compile time.
*/
#ifndef SI_SHADER_H
#define SI_SHADER_H
#include <llvm-c/Core.h> /* LLVMModuleRef */
#include <llvm-c/TargetMachine.h>
#include "tgsi/tgsi_scan.h"
#include "util/u_queue.h"
#include "si_state.h"
struct ac_shader_binary;
#define SI_MAX_VS_OUTPUTS 40
/* SGPR user data indices */
enum {
/* GFX9 merged shaders have RW_BUFFERS among the first 8 system SGPRs,
* and these two are used for other purposes.
*/
SI_SGPR_RW_BUFFERS, /* rings (& stream-out, VS only) */
SI_SGPR_RW_BUFFERS_HI,
SI_SGPR_CONST_BUFFERS,
SI_SGPR_CONST_BUFFERS_HI,
SI_SGPR_SAMPLERS, /* images & sampler states interleaved */
SI_SGPR_SAMPLERS_HI,
SI_SGPR_IMAGES,
SI_SGPR_IMAGES_HI,
SI_SGPR_SHADER_BUFFERS,
SI_SGPR_SHADER_BUFFERS_HI,
SI_NUM_RESOURCE_SGPRS,
/* all VS variants */
SI_SGPR_VERTEX_BUFFERS = SI_NUM_RESOURCE_SGPRS,
SI_SGPR_VERTEX_BUFFERS_HI,
SI_SGPR_BASE_VERTEX,
SI_SGPR_START_INSTANCE,
SI_SGPR_DRAWID,
SI_SGPR_VS_STATE_BITS,
SI_VS_NUM_USER_SGPR,
/* TES */
SI_SGPR_TES_OFFCHIP_LAYOUT = SI_NUM_RESOURCE_SGPRS,
SI_SGPR_TES_OFFCHIP_ADDR_BASE64K,
SI_TES_NUM_USER_SGPR,
/* GFX6-8: TCS only */
GFX6_SGPR_TCS_OFFCHIP_LAYOUT = SI_NUM_RESOURCE_SGPRS,
GFX6_SGPR_TCS_OUT_OFFSETS,
GFX6_SGPR_TCS_OUT_LAYOUT,
GFX6_SGPR_TCS_IN_LAYOUT,
GFX6_SGPR_TCS_OFFCHIP_ADDR_BASE64K,
GFX6_SGPR_TCS_FACTOR_ADDR_BASE64K,
GFX6_TCS_NUM_USER_SGPR,
/* GFX9: Merged LS-HS (VS-TCS) only. */
GFX9_SGPR_TCS_OFFCHIP_LAYOUT = SI_VS_NUM_USER_SGPR,
GFX9_SGPR_TCS_OUT_OFFSETS,
GFX9_SGPR_TCS_OUT_LAYOUT,
GFX9_SGPR_TCS_OFFCHIP_ADDR_BASE64K,
GFX9_SGPR_TCS_FACTOR_ADDR_BASE64K,
GFX9_SGPR_unused_to_align_the_next_pointer,
GFX9_SGPR_TCS_CONST_BUFFERS,
GFX9_SGPR_TCS_CONST_BUFFERS_HI,
GFX9_SGPR_TCS_SAMPLERS, /* images & sampler states interleaved */
GFX9_SGPR_TCS_SAMPLERS_HI,
GFX9_SGPR_TCS_IMAGES,
GFX9_SGPR_TCS_IMAGES_HI,
GFX9_SGPR_TCS_SHADER_BUFFERS,
GFX9_SGPR_TCS_SHADER_BUFFERS_HI,
GFX9_TCS_NUM_USER_SGPR,
/* GFX9: Merged ES-GS (VS-GS or TES-GS). */
GFX9_SGPR_GS_CONST_BUFFERS = SI_VS_NUM_USER_SGPR,
GFX9_SGPR_GS_CONST_BUFFERS_HI,
GFX9_SGPR_GS_SAMPLERS,
GFX9_SGPR_GS_SAMPLERS_HI,
GFX9_SGPR_GS_IMAGES,
GFX9_SGPR_GS_IMAGES_HI,
GFX9_SGPR_GS_SHADER_BUFFERS,
GFX9_SGPR_GS_SHADER_BUFFERS_HI,
GFX9_GS_NUM_USER_SGPR,
/* GS limits */
GFX6_GS_NUM_USER_SGPR = SI_NUM_RESOURCE_SGPRS,
SI_GSCOPY_NUM_USER_SGPR = SI_SGPR_RW_BUFFERS_HI + 1,
/* PS only */
SI_SGPR_ALPHA_REF = SI_NUM_RESOURCE_SGPRS,
SI_PS_NUM_USER_SGPR,
};
/* LLVM function parameter indices */
enum {
SI_NUM_RESOURCE_PARAMS = 5,
/* PS only parameters */
SI_PARAM_ALPHA_REF = SI_NUM_RESOURCE_PARAMS,
SI_PARAM_PRIM_MASK,
SI_PARAM_PERSP_SAMPLE,
SI_PARAM_PERSP_CENTER,
SI_PARAM_PERSP_CENTROID,
SI_PARAM_PERSP_PULL_MODEL,
SI_PARAM_LINEAR_SAMPLE,
SI_PARAM_LINEAR_CENTER,
SI_PARAM_LINEAR_CENTROID,
SI_PARAM_LINE_STIPPLE_TEX,
SI_PARAM_POS_X_FLOAT,
SI_PARAM_POS_Y_FLOAT,
SI_PARAM_POS_Z_FLOAT,
SI_PARAM_POS_W_FLOAT,
SI_PARAM_FRONT_FACE,
SI_PARAM_ANCILLARY,
SI_PARAM_SAMPLE_COVERAGE,
SI_PARAM_POS_FIXED_PT,
SI_NUM_PARAMS = SI_PARAM_POS_FIXED_PT + 9, /* +8 for COLOR[0..1] */
};
/* Fields of driver-defined VS state SGPR. */
/* Clamp vertex color output (only used in VS as VS). */
#define S_VS_STATE_CLAMP_VERTEX_COLOR(x) (((unsigned)(x) & 0x1) << 0)
#define C_VS_STATE_CLAMP_VERTEX_COLOR 0xFFFFFFFE
#define S_VS_STATE_INDEXED(x) (((unsigned)(x) & 0x1) << 1)
#define C_VS_STATE_INDEXED 0xFFFFFFFD
#define S_VS_STATE_LS_OUT_PATCH_SIZE(x) (((unsigned)(x) & 0x1FFF) << 8)
#define C_VS_STATE_LS_OUT_PATCH_SIZE 0xFFE000FF
#define S_VS_STATE_LS_OUT_VERTEX_SIZE(x) (((unsigned)(x) & 0xFF) << 24)
#define C_VS_STATE_LS_OUT_VERTEX_SIZE 0x00FFFFFF
/* SI-specific system values. */
enum {
TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI = TGSI_SEMANTIC_COUNT,
TGSI_SEMANTIC_DEFAULT_TESSINNER_SI,
};
/* For VS shader key fix_fetch. */
enum {
SI_FIX_FETCH_NONE = 0,
SI_FIX_FETCH_A2_SNORM,
SI_FIX_FETCH_A2_SSCALED,
SI_FIX_FETCH_A2_SINT,
SI_FIX_FETCH_RGBA_32_UNORM,
SI_FIX_FETCH_RGBX_32_UNORM,
SI_FIX_FETCH_RGBA_32_SNORM,
SI_FIX_FETCH_RGBX_32_SNORM,
SI_FIX_FETCH_RGBA_32_USCALED,
SI_FIX_FETCH_RGBA_32_SSCALED,
SI_FIX_FETCH_RGBA_32_FIXED,
SI_FIX_FETCH_RGBX_32_FIXED,
SI_FIX_FETCH_RG_64_FLOAT,
SI_FIX_FETCH_RGB_64_FLOAT,
SI_FIX_FETCH_RGBA_64_FLOAT,
SI_FIX_FETCH_RGB_8, /* A = 1.0 */
SI_FIX_FETCH_RGB_8_INT, /* A = 1 */
SI_FIX_FETCH_RGB_16,
SI_FIX_FETCH_RGB_16_INT,
};
struct si_shader;
/* State of the context creating the shader object. */
struct si_compiler_ctx_state {
/* Should only be used by si_init_shader_selector_async and
* si_build_shader_variant if thread_index == -1 (non-threaded). */
LLVMTargetMachineRef tm;
/* Used if thread_index == -1 or if debug.async is true. */
struct pipe_debug_callback debug;
/* Used for creating the log string for gallium/ddebug. */
bool is_debug_context;
};
/* A shader selector is a gallium CSO and contains shader variants and
* binaries for one TGSI program. This can be shared by multiple contexts.
*/
struct si_shader_selector {
struct pipe_reference reference;
struct si_screen *screen;
struct util_queue_fence ready;
struct si_compiler_ctx_state compiler_ctx_state;
mtx_t mutex;
struct si_shader *first_variant; /* immutable after the first variant */
struct si_shader *last_variant; /* mutable */
/* The compiled TGSI shader expecting a prolog and/or epilog (not
* uploaded to a buffer).
*/
struct si_shader *main_shader_part;
struct si_shader *main_shader_part_ls; /* as_ls is set in the key */
struct si_shader *main_shader_part_es; /* as_es is set in the key */
struct si_shader *gs_copy_shader;
struct tgsi_token *tokens;
struct pipe_stream_output_info so;
struct tgsi_shader_info info;
/* PIPE_SHADER_[VERTEX|FRAGMENT|...] */
unsigned type;
bool vs_needs_prolog;
/* GS parameters. */
unsigned esgs_itemsize;
unsigned gs_input_verts_per_prim;
unsigned gs_output_prim;
unsigned gs_max_out_vertices;
unsigned gs_num_invocations;
unsigned max_gs_stream; /* count - 1 */
unsigned gsvs_vertex_size;
unsigned max_gsvs_emit_size;
/* PS parameters. */
unsigned color_attr_index[2];
unsigned db_shader_control;
/* Set 0xf or 0x0 (4 bits) per each written output.
* ANDed with spi_shader_col_format.
*/
unsigned colors_written_4bit;
/* CS parameters */
unsigned local_size;
uint64_t outputs_written; /* "get_unique_index" bits */
uint32_t patch_outputs_written; /* "get_unique_index" bits */
uint32_t outputs_written2; /* "get_unique_index2" bits */
uint64_t inputs_read; /* "get_unique_index" bits */
uint32_t inputs_read2; /* "get_unique_index2" bits */
};
/* Valid shader configurations:
*
* API shaders VS | TCS | TES | GS |pass| PS
* are compiled as: | | | |thru|
* | | | | |
* Only VS & PS: VS | | | | | PS
* GFX6 - with GS: ES | | | GS | VS | PS
* - with tess: LS | HS | VS | | | PS
* - with both: LS | HS | ES | GS | VS | PS
* GFX9 - with GS: -> | | | GS | VS | PS
* - with tess: -> | HS | VS | | | PS
* - with both: -> | HS | -> | GS | VS | PS
*
* -> = merged with the next stage
*/
/* Common VS bits between the shader key and the prolog key. */
struct si_vs_prolog_bits {
unsigned instance_divisors[SI_MAX_ATTRIBS];
};
/* Common TCS bits between the shader key and the epilog key. */
struct si_tcs_epilog_bits {
unsigned prim_mode:3;
unsigned tes_reads_tess_factors:1;
};
struct si_gs_prolog_bits {
unsigned tri_strip_adj_fix:1;
};
/* Common PS bits between the shader key and the prolog key. */
struct si_ps_prolog_bits {
unsigned color_two_side:1;
unsigned flatshade_colors:1;
unsigned poly_stipple:1;
unsigned force_persp_sample_interp:1;
unsigned force_linear_sample_interp:1;
unsigned force_persp_center_interp:1;
unsigned force_linear_center_interp:1;
unsigned bc_optimize_for_persp:1;
unsigned bc_optimize_for_linear:1;
};
/* Common PS bits between the shader key and the epilog key. */
struct si_ps_epilog_bits {
unsigned spi_shader_col_format;
unsigned color_is_int8:8;
unsigned color_is_int10:8;
unsigned last_cbuf:3;
unsigned alpha_func:3;
unsigned alpha_to_one:1;
unsigned poly_line_smoothing:1;
unsigned clamp_color:1;
};
union si_shader_part_key {
struct {
struct si_vs_prolog_bits states;
unsigned num_input_sgprs:6;
/* For merged stages such as LS-HS, HS input VGPRs are first. */
unsigned num_merged_next_stage_vgprs:3;
unsigned last_input:4;
unsigned as_ls:1;
/* Prologs for monolithic shaders shouldn't set EXEC. */
unsigned is_monolithic:1;
} vs_prolog;
struct {
struct si_tcs_epilog_bits states;
} tcs_epilog;
struct {
struct si_gs_prolog_bits states;
/* Prologs of monolithic shaders shouldn't set EXEC. */
unsigned is_monolithic:1;
} gs_prolog;
struct {
struct si_ps_prolog_bits states;
unsigned num_input_sgprs:6;
unsigned num_input_vgprs:5;
/* Color interpolation and two-side color selection. */
unsigned colors_read:8; /* color input components read */
unsigned num_interp_inputs:5; /* BCOLOR is at this location */
unsigned face_vgpr_index:5;
unsigned wqm:1;
char color_attr_index[2];
char color_interp_vgpr_index[2]; /* -1 == constant */
} ps_prolog;
struct {
struct si_ps_epilog_bits states;
unsigned colors_written:8;
unsigned writes_z:1;
unsigned writes_stencil:1;
unsigned writes_samplemask:1;
} ps_epilog;
};
struct si_shader_key {
/* Prolog and epilog flags. */
union {
struct {
struct si_vs_prolog_bits prolog;
} vs;
struct {
struct si_vs_prolog_bits ls_prolog; /* for merged LS-HS */
struct si_shader_selector *ls; /* for merged LS-HS */
struct si_tcs_epilog_bits epilog;
} tcs; /* tessellation control shader */
struct {
struct si_vs_prolog_bits vs_prolog; /* for merged ES-GS */
struct si_shader_selector *es; /* for merged ES-GS */
struct si_gs_prolog_bits prolog;
} gs;
struct {
struct si_ps_prolog_bits prolog;
struct si_ps_epilog_bits epilog;
} ps;
} part;
/* These two are initially set according to the NEXT_SHADER property,
* or guessed if the property doesn't seem correct.
*/
unsigned as_es:1; /* export shader, which precedes GS */
unsigned as_ls:1; /* local shader, which precedes TCS */
/* Flags for monolithic compilation only. */
struct {
/* One byte for every input: SI_FIX_FETCH_* enums. */
uint8_t vs_fix_fetch[SI_MAX_ATTRIBS];
uint64_t ff_tcs_inputs_to_copy; /* for fixed-func TCS */
/* When PS needs PrimID and GS is disabled. */
unsigned vs_export_prim_id:1;
} mono;
/* Optimization flags for asynchronous compilation only. */
struct {
struct {
uint64_t kill_outputs; /* "get_unique_index" bits */
uint32_t kill_outputs2; /* "get_unique_index2" bits */
unsigned clip_disable:1;
} hw_vs; /* HW VS (it can be VS, TES, GS) */
/* For shaders where monolithic variants have better code.
*
* This is a flag that has no effect on code generation,
* but forces monolithic shaders to be used as soon as
* possible, because it's in the "opt" group.
*/
unsigned prefer_mono:1;
} opt;
};
struct si_shader_config {
unsigned num_sgprs;
unsigned num_vgprs;
unsigned spilled_sgprs;
unsigned spilled_vgprs;
unsigned private_mem_vgprs;
unsigned lds_size;
unsigned spi_ps_input_ena;
unsigned spi_ps_input_addr;
unsigned float_mode;
unsigned scratch_bytes_per_wave;
unsigned rsrc1;
unsigned rsrc2;
};
/* GCN-specific shader info. */
struct si_shader_info {
ubyte vs_output_param_offset[SI_MAX_VS_OUTPUTS];
ubyte num_input_sgprs;
ubyte num_input_vgprs;
char face_vgpr_index;
bool uses_instanceid;
ubyte nr_pos_exports;
ubyte nr_param_exports;
};
struct si_shader {
struct si_compiler_ctx_state compiler_ctx_state;
struct si_shader_selector *selector;
struct si_shader_selector *previous_stage_sel; /* for refcounting */
struct si_shader *next_variant;
struct si_shader_part *prolog;
struct si_shader *previous_stage; /* for GFX9 */
struct si_shader_part *prolog2;
struct si_shader_part *epilog;
struct si_pm4_state *pm4;
struct r600_resource *bo;
struct r600_resource *scratch_bo;
struct si_shader_key key;
struct util_queue_fence optimized_ready;
bool compilation_failed;
bool is_monolithic;
bool is_optimized;
bool is_binary_shared;
bool is_gs_copy_shader;
/* The following data is all that's needed for binary shaders. */
struct ac_shader_binary binary;
struct si_shader_config config;
struct si_shader_info info;
/* Shader key + LLVM IR + disassembly + statistics.
* Generated for debug contexts only.
*/
char *shader_log;
size_t shader_log_size;
};
struct si_shader_part {
struct si_shader_part *next;
union si_shader_part_key key;
struct ac_shader_binary binary;
struct si_shader_config config;
};
/* si_shader.c */
struct si_shader *
si_generate_gs_copy_shader(struct si_screen *sscreen,
LLVMTargetMachineRef tm,
struct si_shader_selector *gs_selector,
struct pipe_debug_callback *debug);
int si_compile_tgsi_shader(struct si_screen *sscreen,
LLVMTargetMachineRef tm,
struct si_shader *shader,
bool is_monolithic,
struct pipe_debug_callback *debug);
int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
struct si_shader *shader,
struct pipe_debug_callback *debug);
void si_shader_destroy(struct si_shader *shader);
unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index);
unsigned si_shader_io_get_unique_index2(unsigned name, unsigned index);
int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader);
void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
struct pipe_debug_callback *debug, unsigned processor,
FILE *f, bool check_debug_option);
void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
unsigned *lds_size);
void si_shader_apply_scratch_relocs(struct si_context *sctx,
struct si_shader *shader,
struct si_shader_config *config,
uint64_t scratch_va);
void si_shader_binary_read_config(struct ac_shader_binary *binary,
struct si_shader_config *conf,
unsigned symbol_offset);
unsigned si_get_spi_shader_z_format(bool writes_z, bool writes_stencil,
bool writes_samplemask);
const char *si_get_shader_name(struct si_shader *shader, unsigned processor);
/* Inline helpers. */
/* Return the pointer to the main shader part's pointer. */
static inline struct si_shader **
si_get_main_shader_part(struct si_shader_selector *sel,
struct si_shader_key *key)
{
if (key->as_ls)
return &sel->main_shader_part_ls;
if (key->as_es)
return &sel->main_shader_part_es;
return &sel->main_shader_part;
}
#endif
|