1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
|
/*
* Copyright 2013 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "tgsi/tgsi_parse.h"
#include "util/u_async_debug.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
#include "amd_kernel_code_t.h"
#include "si_build_pm4.h"
#include "si_compute.h"
#define COMPUTE_DBG(rscreen, fmt, args...) \
do { \
if ((rscreen->debug_flags & DBG(COMPUTE))) fprintf(stderr, fmt, ##args); \
} while (0);
struct dispatch_packet {
uint16_t header;
uint16_t setup;
uint16_t workgroup_size_x;
uint16_t workgroup_size_y;
uint16_t workgroup_size_z;
uint16_t reserved0;
uint32_t grid_size_x;
uint32_t grid_size_y;
uint32_t grid_size_z;
uint32_t private_segment_size;
uint32_t group_segment_size;
uint64_t kernel_object;
uint64_t kernarg_address;
uint64_t reserved2;
};
static const amd_kernel_code_t *si_compute_get_code_object(
const struct si_compute *program,
uint64_t symbol_offset)
{
if (!program->use_code_object_v2) {
return NULL;
}
return (const amd_kernel_code_t*)
(program->shader.binary.code + symbol_offset);
}
static void code_object_to_config(const amd_kernel_code_t *code_object,
struct si_shader_config *out_config) {
uint32_t rsrc1 = code_object->compute_pgm_resource_registers;
uint32_t rsrc2 = code_object->compute_pgm_resource_registers >> 32;
out_config->num_sgprs = code_object->wavefront_sgpr_count;
out_config->num_vgprs = code_object->workitem_vgpr_count;
out_config->float_mode = G_00B028_FLOAT_MODE(rsrc1);
out_config->rsrc1 = rsrc1;
out_config->lds_size = MAX2(out_config->lds_size, G_00B84C_LDS_SIZE(rsrc2));
out_config->rsrc2 = rsrc2;
out_config->scratch_bytes_per_wave =
align(code_object->workitem_private_segment_byte_size * 64, 1024);
}
/* Asynchronous compute shader compilation. */
static void si_create_compute_state_async(void *job, int thread_index)
{
struct si_compute *program = (struct si_compute *)job;
struct si_shader *shader = &program->shader;
struct si_shader_selector sel;
struct si_compiler *compiler;
struct pipe_debug_callback *debug = &program->compiler_ctx_state.debug;
assert(!debug->debug_message || debug->async);
assert(thread_index >= 0);
assert(thread_index < ARRAY_SIZE(program->screen->compiler));
compiler = &program->screen->compiler[thread_index];
memset(&sel, 0, sizeof(sel));
sel.screen = program->screen;
if (program->ir_type == PIPE_SHADER_IR_TGSI) {
tgsi_scan_shader(program->ir.tgsi, &sel.info);
sel.tokens = program->ir.tgsi;
} else {
assert(program->ir_type == PIPE_SHADER_IR_NIR);
sel.nir = program->ir.nir;
si_nir_scan_shader(sel.nir, &sel.info);
si_lower_nir(&sel);
}
sel.type = PIPE_SHADER_COMPUTE;
sel.local_size = program->local_size;
si_get_active_slot_masks(&sel.info,
&program->active_const_and_shader_buffers,
&program->active_samplers_and_images);
program->shader.selector = &sel;
program->shader.is_monolithic = true;
program->uses_grid_size = sel.info.uses_grid_size;
program->uses_block_size = sel.info.uses_block_size;
program->uses_bindless_samplers = sel.info.uses_bindless_samplers;
program->uses_bindless_images = sel.info.uses_bindless_images;
if (si_shader_create(program->screen, compiler, &program->shader, debug)) {
program->shader.compilation_failed = true;
} else {
bool scratch_enabled = shader->config.scratch_bytes_per_wave > 0;
unsigned user_sgprs = SI_NUM_RESOURCE_SGPRS +
(sel.info.uses_grid_size ? 3 : 0) +
(sel.info.uses_block_size ? 3 : 0);
shader->config.rsrc1 =
S_00B848_VGPRS((shader->config.num_vgprs - 1) / 4) |
S_00B848_SGPRS((shader->config.num_sgprs - 1) / 8) |
S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(shader->config.float_mode);
shader->config.rsrc2 =
S_00B84C_USER_SGPR(user_sgprs) |
S_00B84C_SCRATCH_EN(scratch_enabled) |
S_00B84C_TGID_X_EN(sel.info.uses_block_id[0]) |
S_00B84C_TGID_Y_EN(sel.info.uses_block_id[1]) |
S_00B84C_TGID_Z_EN(sel.info.uses_block_id[2]) |
S_00B84C_TIDIG_COMP_CNT(sel.info.uses_thread_id[2] ? 2 :
sel.info.uses_thread_id[1] ? 1 : 0) |
S_00B84C_LDS_SIZE(shader->config.lds_size);
program->variable_group_size =
sel.info.properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] == 0;
}
if (program->ir_type == PIPE_SHADER_IR_TGSI)
FREE(program->ir.tgsi);
program->shader.selector = NULL;
}
static void *si_create_compute_state(
struct pipe_context *ctx,
const struct pipe_compute_state *cso)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_screen *sscreen = (struct si_screen *)ctx->screen;
struct si_compute *program = CALLOC_STRUCT(si_compute);
pipe_reference_init(&program->reference, 1);
program->screen = (struct si_screen *)ctx->screen;
program->ir_type = cso->ir_type;
program->local_size = cso->req_local_mem;
program->private_size = cso->req_private_mem;
program->input_size = cso->req_input_mem;
program->use_code_object_v2 = cso->ir_type == PIPE_SHADER_IR_NATIVE;
if (cso->ir_type != PIPE_SHADER_IR_NATIVE) {
if (cso->ir_type == PIPE_SHADER_IR_TGSI) {
program->ir.tgsi = tgsi_dup_tokens(cso->prog);
if (!program->ir.tgsi) {
FREE(program);
return NULL;
}
} else {
assert(cso->ir_type == PIPE_SHADER_IR_NIR);
program->ir.nir = (struct nir_shader *) cso->prog;
}
program->compiler_ctx_state.debug = sctx->debug;
program->compiler_ctx_state.is_debug_context = sctx->is_debug;
p_atomic_inc(&sscreen->num_shaders_created);
util_queue_fence_init(&program->ready);
struct util_async_debug_callback async_debug;
bool wait =
(sctx->debug.debug_message && !sctx->debug.async) ||
sctx->is_debug ||
si_can_dump_shader(sscreen, PIPE_SHADER_COMPUTE);
if (wait) {
u_async_debug_init(&async_debug);
program->compiler_ctx_state.debug = async_debug.base;
}
util_queue_add_job(&sscreen->shader_compiler_queue,
program, &program->ready,
si_create_compute_state_async, NULL);
if (wait) {
util_queue_fence_wait(&program->ready);
u_async_debug_drain(&async_debug, &sctx->debug);
u_async_debug_cleanup(&async_debug);
}
} else {
const struct pipe_llvm_program_header *header;
const char *code;
header = cso->prog;
code = cso->prog + sizeof(struct pipe_llvm_program_header);
ac_elf_read(code, header->num_bytes, &program->shader.binary);
if (program->use_code_object_v2) {
const amd_kernel_code_t *code_object =
si_compute_get_code_object(program, 0);
code_object_to_config(code_object, &program->shader.config);
} else {
si_shader_binary_read_config(&program->shader.binary,
&program->shader.config, 0);
}
si_shader_dump(sctx->screen, &program->shader, &sctx->debug,
PIPE_SHADER_COMPUTE, stderr, true);
if (si_shader_binary_upload(sctx->screen, &program->shader) < 0) {
fprintf(stderr, "LLVM failed to upload shader\n");
FREE(program);
return NULL;
}
}
return program;
}
static void si_bind_compute_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context*)ctx;
struct si_compute *program = (struct si_compute*)state;
sctx->cs_shader_state.program = program;
if (!program)
return;
/* Wait because we need active slot usage masks. */
if (program->ir_type != PIPE_SHADER_IR_NATIVE)
util_queue_fence_wait(&program->ready);
si_set_active_descriptors(sctx,
SI_DESCS_FIRST_COMPUTE +
SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS,
program->active_const_and_shader_buffers);
si_set_active_descriptors(sctx,
SI_DESCS_FIRST_COMPUTE +
SI_SHADER_DESCS_SAMPLERS_AND_IMAGES,
program->active_samplers_and_images);
}
static void si_set_global_binding(
struct pipe_context *ctx, unsigned first, unsigned n,
struct pipe_resource **resources,
uint32_t **handles)
{
unsigned i;
struct si_context *sctx = (struct si_context*)ctx;
struct si_compute *program = sctx->cs_shader_state.program;
assert(first + n <= MAX_GLOBAL_BUFFERS);
if (!resources) {
for (i = 0; i < n; i++) {
pipe_resource_reference(&program->global_buffers[first + i], NULL);
}
return;
}
for (i = 0; i < n; i++) {
uint64_t va;
uint32_t offset;
pipe_resource_reference(&program->global_buffers[first + i], resources[i]);
va = r600_resource(resources[i])->gpu_address;
offset = util_le32_to_cpu(*handles[i]);
va += offset;
va = util_cpu_to_le64(va);
memcpy(handles[i], &va, sizeof(va));
}
}
static void si_initialize_compute(struct si_context *sctx)
{
struct radeon_winsys_cs *cs = sctx->gfx_cs;
uint64_t bc_va;
radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
/* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1 */
radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
radeon_emit(cs, S_00B85C_SH0_CU_EN(0xffff) | S_00B85C_SH1_CU_EN(0xffff));
if (sctx->chip_class >= CIK) {
/* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
radeon_set_sh_reg_seq(cs,
R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
radeon_emit(cs, S_00B864_SH0_CU_EN(0xffff) |
S_00B864_SH1_CU_EN(0xffff));
radeon_emit(cs, S_00B868_SH0_CU_EN(0xffff) |
S_00B868_SH1_CU_EN(0xffff));
}
/* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
* and is now per pipe, so it should be handled in the
* kernel if we want to use something other than the default value,
* which is now 0x22f.
*/
if (sctx->chip_class <= SI) {
/* XXX: This should be:
* (number of compute units) * 4 * (waves per simd) - 1 */
radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
0x190 /* Default value */);
}
/* Set the pointer to border colors. */
bc_va = sctx->border_color_buffer->gpu_address;
if (sctx->chip_class >= CIK) {
radeon_set_uconfig_reg_seq(cs, R_030E00_TA_CS_BC_BASE_ADDR, 2);
radeon_emit(cs, bc_va >> 8); /* R_030E00_TA_CS_BC_BASE_ADDR */
radeon_emit(cs, S_030E04_ADDRESS(bc_va >> 40)); /* R_030E04_TA_CS_BC_BASE_ADDR_HI */
} else {
if (sctx->screen->info.si_TA_CS_BC_BASE_ADDR_allowed) {
radeon_set_config_reg(cs, R_00950C_TA_CS_BC_BASE_ADDR,
bc_va >> 8);
}
}
sctx->cs_shader_state.emitted_program = NULL;
sctx->cs_shader_state.initialized = true;
}
static bool si_setup_compute_scratch_buffer(struct si_context *sctx,
struct si_shader *shader,
struct si_shader_config *config)
{
uint64_t scratch_bo_size, scratch_needed;
scratch_bo_size = 0;
scratch_needed = config->scratch_bytes_per_wave * sctx->scratch_waves;
if (sctx->compute_scratch_buffer)
scratch_bo_size = sctx->compute_scratch_buffer->b.b.width0;
if (scratch_bo_size < scratch_needed) {
r600_resource_reference(&sctx->compute_scratch_buffer, NULL);
sctx->compute_scratch_buffer =
si_aligned_buffer_create(&sctx->screen->b,
SI_RESOURCE_FLAG_UNMAPPABLE,
PIPE_USAGE_DEFAULT,
scratch_needed, 256);
if (!sctx->compute_scratch_buffer)
return false;
}
if (sctx->compute_scratch_buffer != shader->scratch_bo && scratch_needed) {
uint64_t scratch_va = sctx->compute_scratch_buffer->gpu_address;
si_shader_apply_scratch_relocs(shader, scratch_va);
if (si_shader_binary_upload(sctx->screen, shader))
return false;
r600_resource_reference(&shader->scratch_bo,
sctx->compute_scratch_buffer);
}
return true;
}
static bool si_switch_compute_shader(struct si_context *sctx,
struct si_compute *program,
struct si_shader *shader,
const amd_kernel_code_t *code_object,
unsigned offset)
{
struct radeon_winsys_cs *cs = sctx->gfx_cs;
struct si_shader_config inline_config = {0};
struct si_shader_config *config;
uint64_t shader_va;
if (sctx->cs_shader_state.emitted_program == program &&
sctx->cs_shader_state.offset == offset)
return true;
if (program->ir_type != PIPE_SHADER_IR_NATIVE) {
config = &shader->config;
} else {
unsigned lds_blocks;
config = &inline_config;
if (code_object) {
code_object_to_config(code_object, config);
} else {
si_shader_binary_read_config(&shader->binary, config, offset);
}
lds_blocks = config->lds_size;
/* XXX: We are over allocating LDS. For SI, the shader reports
* LDS in blocks of 256 bytes, so if there are 4 bytes lds
* allocated in the shader and 4 bytes allocated by the state
* tracker, then we will set LDS_SIZE to 512 bytes rather than 256.
*/
if (sctx->chip_class <= SI) {
lds_blocks += align(program->local_size, 256) >> 8;
} else {
lds_blocks += align(program->local_size, 512) >> 9;
}
/* TODO: use si_multiwave_lds_size_workaround */
assert(lds_blocks <= 0xFF);
config->rsrc2 &= C_00B84C_LDS_SIZE;
config->rsrc2 |= S_00B84C_LDS_SIZE(lds_blocks);
}
if (!si_setup_compute_scratch_buffer(sctx, shader, config))
return false;
if (shader->scratch_bo) {
COMPUTE_DBG(sctx->screen, "Waves: %u; Scratch per wave: %u bytes; "
"Total Scratch: %u bytes\n", sctx->scratch_waves,
config->scratch_bytes_per_wave,
config->scratch_bytes_per_wave *
sctx->scratch_waves);
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
shader->scratch_bo, RADEON_USAGE_READWRITE,
RADEON_PRIO_SCRATCH_BUFFER);
}
/* Prefetch the compute shader to TC L2.
*
* We should also prefetch graphics shaders if a compute dispatch was
* the last command, and the compute shader if a draw call was the last
* command. However, that would add more complexity and we're likely
* to get a shader state change in that case anyway.
*/
if (sctx->chip_class >= CIK) {
cik_prefetch_TC_L2_async(sctx, &program->shader.bo->b.b,
0, program->shader.bo->b.b.width0);
}
shader_va = shader->bo->gpu_address + offset;
if (program->use_code_object_v2) {
/* Shader code is placed after the amd_kernel_code_t
* struct. */
shader_va += sizeof(amd_kernel_code_t);
}
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, shader->bo,
RADEON_USAGE_READ, RADEON_PRIO_SHADER_BINARY);
radeon_set_sh_reg_seq(cs, R_00B830_COMPUTE_PGM_LO, 2);
radeon_emit(cs, shader_va >> 8);
radeon_emit(cs, S_00B834_DATA(shader_va >> 40));
radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2);
radeon_emit(cs, config->rsrc1);
radeon_emit(cs, config->rsrc2);
COMPUTE_DBG(sctx->screen, "COMPUTE_PGM_RSRC1: 0x%08x "
"COMPUTE_PGM_RSRC2: 0x%08x\n", config->rsrc1, config->rsrc2);
radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
S_00B860_WAVES(sctx->scratch_waves)
| S_00B860_WAVESIZE(config->scratch_bytes_per_wave >> 10));
sctx->cs_shader_state.emitted_program = program;
sctx->cs_shader_state.offset = offset;
sctx->cs_shader_state.uses_scratch =
config->scratch_bytes_per_wave != 0;
return true;
}
static void setup_scratch_rsrc_user_sgprs(struct si_context *sctx,
const amd_kernel_code_t *code_object,
unsigned user_sgpr)
{
struct radeon_winsys_cs *cs = sctx->gfx_cs;
uint64_t scratch_va = sctx->compute_scratch_buffer->gpu_address;
unsigned max_private_element_size = AMD_HSA_BITS_GET(
code_object->code_properties,
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE);
uint32_t scratch_dword0 = scratch_va & 0xffffffff;
uint32_t scratch_dword1 =
S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
S_008F04_SWIZZLE_ENABLE(1);
/* Disable address clamping */
uint32_t scratch_dword2 = 0xffffffff;
uint32_t scratch_dword3 =
S_008F0C_INDEX_STRIDE(3) |
S_008F0C_ADD_TID_ENABLE(1);
if (sctx->chip_class >= GFX9) {
assert(max_private_element_size == 1); /* always 4 bytes on GFX9 */
} else {
scratch_dword3 |= S_008F0C_ELEMENT_SIZE(max_private_element_size);
if (sctx->chip_class < VI) {
/* BUF_DATA_FORMAT is ignored, but it cannot be
* BUF_DATA_FORMAT_INVALID. */
scratch_dword3 |=
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_8);
}
}
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
(user_sgpr * 4), 4);
radeon_emit(cs, scratch_dword0);
radeon_emit(cs, scratch_dword1);
radeon_emit(cs, scratch_dword2);
radeon_emit(cs, scratch_dword3);
}
static void si_setup_user_sgprs_co_v2(struct si_context *sctx,
const amd_kernel_code_t *code_object,
const struct pipe_grid_info *info,
uint64_t kernel_args_va)
{
struct si_compute *program = sctx->cs_shader_state.program;
struct radeon_winsys_cs *cs = sctx->gfx_cs;
static const enum amd_code_property_mask_t workgroup_count_masks [] = {
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X,
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y,
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z
};
unsigned i, user_sgpr = 0;
if (AMD_HSA_BITS_GET(code_object->code_properties,
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER)) {
if (code_object->workitem_private_segment_byte_size > 0) {
setup_scratch_rsrc_user_sgprs(sctx, code_object,
user_sgpr);
}
user_sgpr += 4;
}
if (AMD_HSA_BITS_GET(code_object->code_properties,
AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR)) {
struct dispatch_packet dispatch;
unsigned dispatch_offset;
struct r600_resource *dispatch_buf = NULL;
uint64_t dispatch_va;
/* Upload dispatch ptr */
memset(&dispatch, 0, sizeof(dispatch));
dispatch.workgroup_size_x = util_cpu_to_le16(info->block[0]);
dispatch.workgroup_size_y = util_cpu_to_le16(info->block[1]);
dispatch.workgroup_size_z = util_cpu_to_le16(info->block[2]);
dispatch.grid_size_x = util_cpu_to_le32(info->grid[0] * info->block[0]);
dispatch.grid_size_y = util_cpu_to_le32(info->grid[1] * info->block[1]);
dispatch.grid_size_z = util_cpu_to_le32(info->grid[2] * info->block[2]);
dispatch.private_segment_size = util_cpu_to_le32(program->private_size);
dispatch.group_segment_size = util_cpu_to_le32(program->local_size);
dispatch.kernarg_address = util_cpu_to_le64(kernel_args_va);
u_upload_data(sctx->b.const_uploader, 0, sizeof(dispatch),
256, &dispatch, &dispatch_offset,
(struct pipe_resource**)&dispatch_buf);
if (!dispatch_buf) {
fprintf(stderr, "Error: Failed to allocate dispatch "
"packet.");
}
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dispatch_buf,
RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
dispatch_va = dispatch_buf->gpu_address + dispatch_offset;
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
(user_sgpr * 4), 2);
radeon_emit(cs, dispatch_va);
radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(dispatch_va >> 32) |
S_008F04_STRIDE(0));
r600_resource_reference(&dispatch_buf, NULL);
user_sgpr += 2;
}
if (AMD_HSA_BITS_GET(code_object->code_properties,
AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR)) {
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0 +
(user_sgpr * 4), 2);
radeon_emit(cs, kernel_args_va);
radeon_emit(cs, S_008F04_BASE_ADDRESS_HI (kernel_args_va >> 32) |
S_008F04_STRIDE(0));
user_sgpr += 2;
}
for (i = 0; i < 3 && user_sgpr < 16; i++) {
if (code_object->code_properties & workgroup_count_masks[i]) {
radeon_set_sh_reg_seq(cs,
R_00B900_COMPUTE_USER_DATA_0 +
(user_sgpr * 4), 1);
radeon_emit(cs, info->grid[i]);
user_sgpr += 1;
}
}
}
static bool si_upload_compute_input(struct si_context *sctx,
const amd_kernel_code_t *code_object,
const struct pipe_grid_info *info)
{
struct radeon_winsys_cs *cs = sctx->gfx_cs;
struct si_compute *program = sctx->cs_shader_state.program;
struct r600_resource *input_buffer = NULL;
unsigned kernel_args_size;
unsigned num_work_size_bytes = program->use_code_object_v2 ? 0 : 36;
uint32_t kernel_args_offset = 0;
uint32_t *kernel_args;
void *kernel_args_ptr;
uint64_t kernel_args_va;
unsigned i;
/* The extra num_work_size_bytes are for work group / work item size information */
kernel_args_size = program->input_size + num_work_size_bytes;
u_upload_alloc(sctx->b.const_uploader, 0, kernel_args_size,
sctx->screen->info.tcc_cache_line_size,
&kernel_args_offset,
(struct pipe_resource**)&input_buffer, &kernel_args_ptr);
if (unlikely(!kernel_args_ptr))
return false;
kernel_args = (uint32_t*)kernel_args_ptr;
kernel_args_va = input_buffer->gpu_address + kernel_args_offset;
if (!code_object) {
for (i = 0; i < 3; i++) {
kernel_args[i] = util_cpu_to_le32(info->grid[i]);
kernel_args[i + 3] = util_cpu_to_le32(info->grid[i] * info->block[i]);
kernel_args[i + 6] = util_cpu_to_le32(info->block[i]);
}
}
memcpy(kernel_args + (num_work_size_bytes / 4), info->input,
program->input_size);
for (i = 0; i < (kernel_args_size / 4); i++) {
COMPUTE_DBG(sctx->screen, "input %u : %u\n", i,
kernel_args[i]);
}
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, input_buffer,
RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
if (code_object) {
si_setup_user_sgprs_co_v2(sctx, code_object, info, kernel_args_va);
} else {
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
radeon_emit(cs, kernel_args_va);
radeon_emit(cs, S_008F04_BASE_ADDRESS_HI (kernel_args_va >> 32) |
S_008F04_STRIDE(0));
}
r600_resource_reference(&input_buffer, NULL);
return true;
}
static void si_setup_tgsi_grid(struct si_context *sctx,
const struct pipe_grid_info *info)
{
struct si_compute *program = sctx->cs_shader_state.program;
struct radeon_winsys_cs *cs = sctx->gfx_cs;
unsigned grid_size_reg = R_00B900_COMPUTE_USER_DATA_0 +
4 * SI_NUM_RESOURCE_SGPRS;
unsigned block_size_reg = grid_size_reg +
/* 12 bytes = 3 dwords. */
12 * program->uses_grid_size;
if (info->indirect) {
if (program->uses_grid_size) {
uint64_t base_va = r600_resource(info->indirect)->gpu_address;
uint64_t va = base_va + info->indirect_offset;
int i;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
r600_resource(info->indirect),
RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
for (i = 0; i < 3; ++i) {
radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
radeon_emit(cs, COPY_DATA_SRC_SEL(COPY_DATA_MEM) |
COPY_DATA_DST_SEL(COPY_DATA_REG));
radeon_emit(cs, (va + 4 * i));
radeon_emit(cs, (va + 4 * i) >> 32);
radeon_emit(cs, (grid_size_reg >> 2) + i);
radeon_emit(cs, 0);
}
}
} else {
if (program->uses_grid_size) {
radeon_set_sh_reg_seq(cs, grid_size_reg, 3);
radeon_emit(cs, info->grid[0]);
radeon_emit(cs, info->grid[1]);
radeon_emit(cs, info->grid[2]);
}
if (program->variable_group_size && program->uses_block_size) {
radeon_set_sh_reg_seq(cs, block_size_reg, 3);
radeon_emit(cs, info->block[0]);
radeon_emit(cs, info->block[1]);
radeon_emit(cs, info->block[2]);
}
}
}
static void si_emit_dispatch_packets(struct si_context *sctx,
const struct pipe_grid_info *info)
{
struct si_screen *sscreen = sctx->screen;
struct radeon_winsys_cs *cs = sctx->gfx_cs;
bool render_cond_bit = sctx->render_cond && !sctx->render_cond_force_off;
unsigned waves_per_threadgroup =
DIV_ROUND_UP(info->block[0] * info->block[1] * info->block[2], 64);
unsigned compute_resource_limits =
S_00B854_SIMD_DEST_CNTL(waves_per_threadgroup % 4 == 0);
if (sctx->chip_class >= CIK) {
unsigned num_cu_per_se = sscreen->info.num_good_compute_units /
sscreen->info.max_se;
/* Force even distribution on all SIMDs in CU if the workgroup
* size is 64. This has shown some good improvements if # of CUs
* per SE is not a multiple of 4.
*/
if (num_cu_per_se % 4 && waves_per_threadgroup == 1)
compute_resource_limits |= S_00B854_FORCE_SIMD_DIST(1);
}
radeon_set_sh_reg(cs, R_00B854_COMPUTE_RESOURCE_LIMITS,
compute_resource_limits);
radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3);
radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(info->block[0]));
radeon_emit(cs, S_00B820_NUM_THREAD_FULL(info->block[1]));
radeon_emit(cs, S_00B824_NUM_THREAD_FULL(info->block[2]));
unsigned dispatch_initiator =
S_00B800_COMPUTE_SHADER_EN(1) |
S_00B800_FORCE_START_AT_000(1) |
/* If the KMD allows it (there is a KMD hw register for it),
* allow launching waves out-of-order. (same as Vulkan) */
S_00B800_ORDER_MODE(sctx->chip_class >= CIK);
if (info->indirect) {
uint64_t base_va = r600_resource(info->indirect)->gpu_address;
radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
r600_resource(info->indirect),
RADEON_USAGE_READ, RADEON_PRIO_DRAW_INDIRECT);
radeon_emit(cs, PKT3(PKT3_SET_BASE, 2, 0) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 1);
radeon_emit(cs, base_va);
radeon_emit(cs, base_va >> 32);
radeon_emit(cs, PKT3(PKT3_DISPATCH_INDIRECT, 1, render_cond_bit) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, info->indirect_offset);
radeon_emit(cs, dispatch_initiator);
} else {
radeon_emit(cs, PKT3(PKT3_DISPATCH_DIRECT, 3, render_cond_bit) |
PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, info->grid[0]);
radeon_emit(cs, info->grid[1]);
radeon_emit(cs, info->grid[2]);
radeon_emit(cs, dispatch_initiator);
}
}
static void si_launch_grid(
struct pipe_context *ctx, const struct pipe_grid_info *info)
{
struct si_context *sctx = (struct si_context*)ctx;
struct si_compute *program = sctx->cs_shader_state.program;
const amd_kernel_code_t *code_object =
si_compute_get_code_object(program, info->pc);
int i;
/* HW bug workaround when CS threadgroups > 256 threads and async
* compute isn't used, i.e. only one compute job can run at a time.
* If async compute is possible, the threadgroup size must be limited
* to 256 threads on all queues to avoid the bug.
* Only SI and certain CIK chips are affected.
*/
bool cs_regalloc_hang =
(sctx->chip_class == SI ||
sctx->family == CHIP_BONAIRE ||
sctx->family == CHIP_KABINI) &&
info->block[0] * info->block[1] * info->block[2] > 256;
if (cs_regalloc_hang)
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
SI_CONTEXT_CS_PARTIAL_FLUSH;
if (program->ir_type != PIPE_SHADER_IR_NATIVE &&
program->shader.compilation_failed)
return;
if (sctx->last_num_draw_calls != sctx->num_draw_calls) {
si_update_fb_dirtiness_after_rendering(sctx);
sctx->last_num_draw_calls = sctx->num_draw_calls;
}
si_decompress_textures(sctx, 1 << PIPE_SHADER_COMPUTE);
/* Add buffer sizes for memory checking in need_cs_space. */
si_context_add_resource_size(sctx, &program->shader.bo->b.b);
/* TODO: add the scratch buffer */
if (info->indirect) {
si_context_add_resource_size(sctx, info->indirect);
/* Indirect buffers use TC L2 on GFX9, but not older hw. */
if (sctx->chip_class <= VI &&
r600_resource(info->indirect)->TC_L2_dirty) {
sctx->flags |= SI_CONTEXT_WRITEBACK_GLOBAL_L2;
r600_resource(info->indirect)->TC_L2_dirty = false;
}
}
si_need_gfx_cs_space(sctx);
if (!sctx->cs_shader_state.initialized)
si_initialize_compute(sctx);
if (sctx->flags)
si_emit_cache_flush(sctx);
if (!si_switch_compute_shader(sctx, program, &program->shader,
code_object, info->pc))
return;
si_upload_compute_shader_descriptors(sctx);
si_emit_compute_shader_pointers(sctx);
if (si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond)) {
sctx->atoms.s.render_cond.emit(sctx);
si_set_atom_dirty(sctx, &sctx->atoms.s.render_cond, false);
}
if ((program->input_size ||
program->ir_type == PIPE_SHADER_IR_NATIVE) &&
unlikely(!si_upload_compute_input(sctx, code_object, info))) {
return;
}
/* Global buffers */
for (i = 0; i < MAX_GLOBAL_BUFFERS; i++) {
struct r600_resource *buffer =
r600_resource(program->global_buffers[i]);
if (!buffer) {
continue;
}
radeon_add_to_buffer_list(sctx, sctx->gfx_cs, buffer,
RADEON_USAGE_READWRITE,
RADEON_PRIO_COMPUTE_GLOBAL);
}
if (program->ir_type != PIPE_SHADER_IR_NATIVE)
si_setup_tgsi_grid(sctx, info);
si_emit_dispatch_packets(sctx, info);
if (unlikely(sctx->current_saved_cs)) {
si_trace_emit(sctx);
si_log_compute_state(sctx, sctx->log);
}
sctx->compute_is_busy = true;
sctx->num_compute_calls++;
if (sctx->cs_shader_state.uses_scratch)
sctx->num_spill_compute_calls++;
if (cs_regalloc_hang)
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
}
void si_destroy_compute(struct si_compute *program)
{
if (program->ir_type != PIPE_SHADER_IR_NATIVE) {
util_queue_drop_job(&program->screen->shader_compiler_queue,
&program->ready);
util_queue_fence_destroy(&program->ready);
}
si_shader_destroy(&program->shader);
FREE(program);
}
static void si_delete_compute_state(struct pipe_context *ctx, void* state){
struct si_compute *program = (struct si_compute *)state;
struct si_context *sctx = (struct si_context*)ctx;
if (!state)
return;
if (program == sctx->cs_shader_state.program)
sctx->cs_shader_state.program = NULL;
if (program == sctx->cs_shader_state.emitted_program)
sctx->cs_shader_state.emitted_program = NULL;
si_compute_reference(&program, NULL);
}
static void si_set_compute_resources(struct pipe_context * ctx_,
unsigned start, unsigned count,
struct pipe_surface ** surfaces) { }
void si_init_compute_functions(struct si_context *sctx)
{
sctx->b.create_compute_state = si_create_compute_state;
sctx->b.delete_compute_state = si_delete_compute_state;
sctx->b.bind_compute_state = si_bind_compute_state;
/* ctx->context.create_sampler_view = evergreen_compute_create_sampler_view; */
sctx->b.set_compute_resources = si_set_compute_resources;
sctx->b.set_global_binding = si_set_global_binding;
sctx->b.launch_grid = si_launch_grid;
}
|