1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "util/u_memory.h"
#include "radeon/r600_pipe_common.h"
#include "radeon/radeon_elf_util.h"
#include "radeon/radeon_llvm_util.h"
#include "radeon/r600_cs.h"
#include "si_pipe.h"
#include "si_shader.h"
#include "sid.h"
#define MAX_GLOBAL_BUFFERS 20
/* XXX: Even though we don't pass the scratch buffer via user sgprs any more
* LLVM still expects that we specify 4 USER_SGPRS so it can remain compatible
* with older mesa. */
#define NUM_USER_SGPRS 4
struct si_compute {
struct si_context *ctx;
unsigned local_size;
unsigned private_size;
unsigned input_size;
struct si_shader shader;
unsigned num_user_sgprs;
struct r600_resource *input_buffer;
struct pipe_resource *global_buffers[MAX_GLOBAL_BUFFERS];
#if HAVE_LLVM < 0x0306
unsigned num_kernels;
struct si_shader *kernels;
LLVMContextRef llvm_ctx;
#endif
};
static void init_scratch_buffer(struct si_context *sctx, struct si_compute *program)
{
unsigned scratch_bytes = 0;
uint64_t scratch_buffer_va;
unsigned i;
/* Compute the scratch buffer size using the maximum number of waves.
* This way we don't need to recompute it for each kernel launch. */
unsigned scratch_waves = 32 * sctx->screen->b.info.max_compute_units;
for (i = 0; i < program->shader.binary.global_symbol_count; i++) {
unsigned offset =
program->shader.binary.global_symbol_offsets[i];
unsigned scratch_bytes_needed;
si_shader_binary_read_config(sctx->screen,
&program->shader, offset);
scratch_bytes_needed = program->shader.scratch_bytes_per_wave;
scratch_bytes = MAX2(scratch_bytes, scratch_bytes_needed);
}
if (scratch_bytes == 0)
return;
program->shader.scratch_bo = (struct r600_resource*)
si_resource_create_custom(sctx->b.b.screen,
PIPE_USAGE_DEFAULT,
scratch_bytes * scratch_waves);
scratch_buffer_va = program->shader.scratch_bo->gpu_address;
/* apply_scratch_relocs needs scratch_bytes_per_wave to be set
* to the maximum bytes needed, so it can compute the stride
* correctly.
*/
program->shader.scratch_bytes_per_wave = scratch_bytes;
/* Patch the shader with the scratch buffer address. */
si_shader_apply_scratch_relocs(sctx,
&program->shader, scratch_buffer_va);
}
static void *si_create_compute_state(
struct pipe_context *ctx,
const struct pipe_compute_state *cso)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_compute *program = CALLOC_STRUCT(si_compute);
const struct pipe_llvm_program_header *header;
const char *code;
header = cso->prog;
code = cso->prog + sizeof(struct pipe_llvm_program_header);
program->ctx = sctx;
program->local_size = cso->req_local_mem;
program->private_size = cso->req_private_mem;
program->input_size = cso->req_input_mem;
#if HAVE_LLVM < 0x0306
{
unsigned i;
program->llvm_ctx = LLVMContextCreate();
program->num_kernels = radeon_llvm_get_num_kernels(program->llvm_ctx,
code, header->num_bytes);
program->kernels = CALLOC(sizeof(struct si_shader),
program->num_kernels);
for (i = 0; i < program->num_kernels; i++) {
LLVMModuleRef mod = radeon_llvm_get_kernel_module(program->llvm_ctx, i,
code, header->num_bytes);
si_compile_llvm(sctx->screen, &program->kernels[i], sctx->tm,
mod);
LLVMDisposeModule(mod);
}
}
#else
radeon_elf_read(code, header->num_bytes, &program->shader.binary);
/* init_scratch_buffer patches the shader code with the scratch address,
* so we need to call it before si_shader_binary_read() which uploads
* the shader code to the GPU.
*/
init_scratch_buffer(sctx, program);
si_shader_binary_read(sctx->screen, &program->shader);
#endif
program->input_buffer = si_resource_create_custom(sctx->b.b.screen,
PIPE_USAGE_IMMUTABLE, program->input_size);
return program;
}
static void si_bind_compute_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context*)ctx;
sctx->cs_shader_state.program = (struct si_compute*)state;
}
static void si_set_global_binding(
struct pipe_context *ctx, unsigned first, unsigned n,
struct pipe_resource **resources,
uint32_t **handles)
{
unsigned i;
struct si_context *sctx = (struct si_context*)ctx;
struct si_compute *program = sctx->cs_shader_state.program;
if (!resources) {
for (i = first; i < first + n; i++) {
pipe_resource_reference(&program->global_buffers[i], NULL);
}
return;
}
for (i = first; i < first + n; i++) {
uint64_t va;
uint32_t offset;
pipe_resource_reference(&program->global_buffers[i], resources[i]);
va = r600_resource(resources[i])->gpu_address;
offset = util_le32_to_cpu(*handles[i]);
va += offset;
va = util_cpu_to_le64(va);
memcpy(handles[i], &va, sizeof(va));
}
}
/**
* This function computes the value for R_00B860_COMPUTE_TMPRING_SIZE.WAVES
* /p block_layout is the number of threads in each work group.
* /p grid layout is the number of work groups.
*/
static unsigned compute_num_waves_for_scratch(
const struct radeon_info *info,
const uint *block_layout,
const uint *grid_layout)
{
unsigned num_sh = MAX2(info->max_sh_per_se, 1);
unsigned num_se = MAX2(info->max_se, 1);
unsigned num_blocks = 1;
unsigned threads_per_block = 1;
unsigned waves_per_block;
unsigned waves_per_sh;
unsigned waves;
unsigned scratch_waves;
unsigned i;
for (i = 0; i < 3; i++) {
threads_per_block *= block_layout[i];
num_blocks *= grid_layout[i];
}
waves_per_block = align(threads_per_block, 64) / 64;
waves = waves_per_block * num_blocks;
waves_per_sh = align(waves, num_sh * num_se) / (num_sh * num_se);
scratch_waves = waves_per_sh * num_sh * num_se;
if (waves_per_block > waves_per_sh) {
scratch_waves = waves_per_block * num_sh * num_se;
}
return scratch_waves;
}
static void si_launch_grid(
struct pipe_context *ctx,
const uint *block_layout, const uint *grid_layout,
uint32_t pc, const void *input)
{
struct si_context *sctx = (struct si_context*)ctx;
struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs;
struct si_compute *program = sctx->cs_shader_state.program;
struct si_pm4_state *pm4 = CALLOC_STRUCT(si_pm4_state);
struct r600_resource *input_buffer = program->input_buffer;
unsigned kernel_args_size;
unsigned num_work_size_bytes = 36;
uint32_t kernel_args_offset = 0;
uint32_t *kernel_args;
uint64_t kernel_args_va;
uint64_t scratch_buffer_va = 0;
uint64_t shader_va;
unsigned arg_user_sgpr_count = NUM_USER_SGPRS;
unsigned i;
struct si_shader *shader = &program->shader;
unsigned lds_blocks;
unsigned num_waves_for_scratch;
#if HAVE_LLVM < 0x0306
shader = &program->kernels[pc];
#endif
radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0) | PKT3_SHADER_TYPE_S(1));
radeon_emit(cs, 0x80000000);
radeon_emit(cs, 0x80000000);
sctx->b.flags |= SI_CONTEXT_INV_TC_L1 |
SI_CONTEXT_INV_TC_L2 |
SI_CONTEXT_INV_ICACHE |
SI_CONTEXT_INV_KCACHE |
SI_CONTEXT_FLUSH_WITH_INV_L2 |
SI_CONTEXT_FLAG_COMPUTE;
si_emit_cache_flush(sctx, NULL);
pm4->compute_pkt = true;
#if HAVE_LLVM >= 0x0306
/* Read the config information */
si_shader_binary_read_config(sctx->screen, shader, pc);
#endif
/* Upload the kernel arguments */
/* The extra num_work_size_bytes are for work group / work item size information */
kernel_args_size = program->input_size + num_work_size_bytes + 8 /* For scratch va */;
kernel_args = sctx->b.ws->buffer_map(input_buffer->cs_buf,
sctx->b.rings.gfx.cs, PIPE_TRANSFER_WRITE);
for (i = 0; i < 3; i++) {
kernel_args[i] = grid_layout[i];
kernel_args[i + 3] = grid_layout[i] * block_layout[i];
kernel_args[i + 6] = block_layout[i];
}
num_waves_for_scratch = compute_num_waves_for_scratch(
&sctx->screen->b.info, block_layout, grid_layout);
memcpy(kernel_args + (num_work_size_bytes / 4), input, program->input_size);
if (shader->scratch_bytes_per_wave > 0) {
COMPUTE_DBG(sctx->screen, "Waves: %u; Scratch per wave: %u bytes; "
"Total Scratch: %u bytes\n", num_waves_for_scratch,
shader->scratch_bytes_per_wave,
shader->scratch_bytes_per_wave *
num_waves_for_scratch);
radeon_add_to_buffer_list(&sctx->b, &sctx->b.rings.gfx,
shader->scratch_bo,
RADEON_USAGE_READWRITE,
RADEON_PRIO_SHADER_RESOURCE_RW);
scratch_buffer_va = shader->scratch_bo->gpu_address;
}
for (i = 0; i < (kernel_args_size / 4); i++) {
COMPUTE_DBG(sctx->screen, "input %u : %u\n", i,
kernel_args[i]);
}
kernel_args_va = input_buffer->gpu_address;
kernel_args_va += kernel_args_offset;
radeon_add_to_buffer_list(&sctx->b, &sctx->b.rings.gfx, input_buffer,
RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA);
si_pm4_set_reg(pm4, R_00B900_COMPUTE_USER_DATA_0, kernel_args_va);
si_pm4_set_reg(pm4, R_00B900_COMPUTE_USER_DATA_0 + 4, S_008F04_BASE_ADDRESS_HI (kernel_args_va >> 32) | S_008F04_STRIDE(0));
si_pm4_set_reg(pm4, R_00B900_COMPUTE_USER_DATA_0 + 8, scratch_buffer_va);
si_pm4_set_reg(pm4, R_00B900_COMPUTE_USER_DATA_0 + 12,
S_008F04_BASE_ADDRESS_HI(scratch_buffer_va >> 32)
| S_008F04_STRIDE(shader->scratch_bytes_per_wave / 64));
si_pm4_set_reg(pm4, R_00B810_COMPUTE_START_X, 0);
si_pm4_set_reg(pm4, R_00B814_COMPUTE_START_Y, 0);
si_pm4_set_reg(pm4, R_00B818_COMPUTE_START_Z, 0);
si_pm4_set_reg(pm4, R_00B81C_COMPUTE_NUM_THREAD_X,
S_00B81C_NUM_THREAD_FULL(block_layout[0]));
si_pm4_set_reg(pm4, R_00B820_COMPUTE_NUM_THREAD_Y,
S_00B820_NUM_THREAD_FULL(block_layout[1]));
si_pm4_set_reg(pm4, R_00B824_COMPUTE_NUM_THREAD_Z,
S_00B824_NUM_THREAD_FULL(block_layout[2]));
/* Global buffers */
for (i = 0; i < MAX_GLOBAL_BUFFERS; i++) {
struct r600_resource *buffer =
(struct r600_resource*)program->global_buffers[i];
if (!buffer) {
continue;
}
radeon_add_to_buffer_list(&sctx->b, &sctx->b.rings.gfx, buffer,
RADEON_USAGE_READWRITE,
RADEON_PRIO_SHADER_RESOURCE_RW);
}
/* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
* and is now per pipe, so it should be handled in the
* kernel if we want to use something other than the default value,
* which is now 0x22f.
*/
if (sctx->b.chip_class <= SI) {
/* XXX: This should be:
* (number of compute units) * 4 * (waves per simd) - 1 */
si_pm4_set_reg(pm4, R_00B82C_COMPUTE_MAX_WAVE_ID,
0x190 /* Default value */);
}
shader_va = shader->bo->gpu_address;
#if HAVE_LLVM >= 0x0306
shader_va += pc;
#endif
radeon_add_to_buffer_list(&sctx->b, &sctx->b.rings.gfx, shader->bo,
RADEON_USAGE_READ, RADEON_PRIO_SHADER_DATA);
si_pm4_set_reg(pm4, R_00B830_COMPUTE_PGM_LO, shader_va >> 8);
si_pm4_set_reg(pm4, R_00B834_COMPUTE_PGM_HI, shader_va >> 40);
si_pm4_set_reg(pm4, R_00B848_COMPUTE_PGM_RSRC1,
/* We always use at least 3 VGPRS, these come from
* TIDIG_COMP_CNT.
* XXX: The compiler should account for this.
*/
S_00B848_VGPRS((MAX2(3, shader->num_vgprs) - 1) / 4)
/* We always use at least 4 + arg_user_sgpr_count. The 4 extra
* sgprs are from TGID_X_EN, TGID_Y_EN, TGID_Z_EN, TG_SIZE_EN
* XXX: The compiler should account for this.
*/
| S_00B848_SGPRS(((MAX2(4 + arg_user_sgpr_count,
shader->num_sgprs)) - 1) / 8)
| S_00B028_FLOAT_MODE(shader->float_mode))
;
lds_blocks = shader->lds_size;
/* XXX: We are over allocating LDS. For SI, the shader reports LDS in
* blocks of 256 bytes, so if there are 4 bytes lds allocated in
* the shader and 4 bytes allocated by the state tracker, then
* we will set LDS_SIZE to 512 bytes rather than 256.
*/
if (sctx->b.chip_class <= SI) {
lds_blocks += align(program->local_size, 256) >> 8;
} else {
lds_blocks += align(program->local_size, 512) >> 9;
}
assert(lds_blocks <= 0xFF);
si_pm4_set_reg(pm4, R_00B84C_COMPUTE_PGM_RSRC2,
S_00B84C_SCRATCH_EN(shader->scratch_bytes_per_wave > 0)
| S_00B84C_USER_SGPR(arg_user_sgpr_count)
| S_00B84C_TGID_X_EN(1)
| S_00B84C_TGID_Y_EN(1)
| S_00B84C_TGID_Z_EN(1)
| S_00B84C_TG_SIZE_EN(1)
| S_00B84C_TIDIG_COMP_CNT(2)
| S_00B84C_LDS_SIZE(lds_blocks)
| S_00B84C_EXCP_EN(0))
;
si_pm4_set_reg(pm4, R_00B854_COMPUTE_RESOURCE_LIMITS, 0);
si_pm4_set_reg(pm4, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0,
S_00B858_SH0_CU_EN(0xffff /* Default value */)
| S_00B858_SH1_CU_EN(0xffff /* Default value */))
;
si_pm4_set_reg(pm4, R_00B85C_COMPUTE_STATIC_THREAD_MGMT_SE1,
S_00B85C_SH0_CU_EN(0xffff /* Default value */)
| S_00B85C_SH1_CU_EN(0xffff /* Default value */))
;
num_waves_for_scratch =
MIN2(num_waves_for_scratch,
32 * sctx->screen->b.info.max_compute_units);
si_pm4_set_reg(pm4, R_00B860_COMPUTE_TMPRING_SIZE,
/* The maximum value for WAVES is 32 * num CU.
* If you program this value incorrectly, the GPU will hang if
* COMPUTE_PGM_RSRC2.SCRATCH_EN is enabled.
*/
S_00B860_WAVES(num_waves_for_scratch)
| S_00B860_WAVESIZE(shader->scratch_bytes_per_wave >> 10))
;
si_pm4_cmd_begin(pm4, PKT3_DISPATCH_DIRECT);
si_pm4_cmd_add(pm4, grid_layout[0]); /* Thread groups DIM_X */
si_pm4_cmd_add(pm4, grid_layout[1]); /* Thread groups DIM_Y */
si_pm4_cmd_add(pm4, grid_layout[2]); /* Thread gropus DIM_Z */
si_pm4_cmd_add(pm4, 1); /* DISPATCH_INITIATOR */
si_pm4_cmd_end(pm4, false);
si_pm4_emit(sctx, pm4);
#if 0
fprintf(stderr, "cdw: %i\n", sctx->cs->cdw);
for (i = 0; i < sctx->cs->cdw; i++) {
fprintf(stderr, "%4i : 0x%08X\n", i, sctx->cs->buf[i]);
}
#endif
si_pm4_free_state(sctx, pm4, ~0);
sctx->b.flags |= SI_CONTEXT_CS_PARTIAL_FLUSH |
SI_CONTEXT_INV_TC_L1 |
SI_CONTEXT_INV_TC_L2 |
SI_CONTEXT_INV_ICACHE |
SI_CONTEXT_INV_KCACHE |
SI_CONTEXT_FLAG_COMPUTE;
si_emit_cache_flush(sctx, NULL);
}
static void si_delete_compute_state(struct pipe_context *ctx, void* state){
struct si_compute *program = (struct si_compute *)state;
if (!state) {
return;
}
#if HAVE_LLVM < 0x0306
if (program->kernels) {
for (int i = 0; i < program->num_kernels; i++){
if (program->kernels[i].bo){
si_shader_destroy(ctx, &program->kernels[i]);
}
}
FREE(program->kernels);
}
if (program->llvm_ctx){
LLVMContextDispose(program->llvm_ctx);
}
#else
FREE(program->shader.binary.config);
FREE(program->shader.binary.rodata);
FREE(program->shader.binary.global_symbol_offsets);
si_shader_destroy(ctx, &program->shader);
#endif
pipe_resource_reference(
(struct pipe_resource **)&program->input_buffer, NULL);
FREE(program);
}
static void si_set_compute_resources(struct pipe_context * ctx_,
unsigned start, unsigned count,
struct pipe_surface ** surfaces) { }
void si_init_compute_functions(struct si_context *sctx)
{
sctx->b.b.create_compute_state = si_create_compute_state;
sctx->b.b.delete_compute_state = si_delete_compute_state;
sctx->b.b.bind_compute_state = si_bind_compute_state;
/* ctx->context.create_sampler_view = evergreen_compute_create_sampler_view; */
sctx->b.b.set_compute_resources = si_set_compute_resources;
sctx->b.b.set_global_binding = si_set_global_binding;
sctx->b.b.launch_grid = si_launch_grid;
}
|