1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
|
/*
* Copyright 2013 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "radeonsi/si_pipe.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
#include <inttypes.h>
#include <stdio.h>
bool si_rings_is_buffer_referenced(struct si_context *sctx,
struct pb_buffer *buf,
enum radeon_bo_usage usage)
{
if (sctx->ws->cs_is_buffer_referenced(sctx->gfx_cs, buf, usage)) {
return true;
}
if (radeon_emitted(sctx->dma_cs, 0) &&
sctx->ws->cs_is_buffer_referenced(sctx->dma_cs, buf, usage)) {
return true;
}
return false;
}
void *si_buffer_map_sync_with_rings(struct si_context *sctx,
struct r600_resource *resource,
unsigned usage)
{
enum radeon_bo_usage rusage = RADEON_USAGE_READWRITE;
bool busy = false;
assert(!(resource->flags & RADEON_FLAG_SPARSE));
if (usage & PIPE_TRANSFER_UNSYNCHRONIZED) {
return sctx->ws->buffer_map(resource->buf, NULL, usage);
}
if (!(usage & PIPE_TRANSFER_WRITE)) {
/* have to wait for the last write */
rusage = RADEON_USAGE_WRITE;
}
if (radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size) &&
sctx->ws->cs_is_buffer_referenced(sctx->gfx_cs,
resource->buf, rusage)) {
if (usage & PIPE_TRANSFER_DONTBLOCK) {
si_flush_gfx_cs(sctx, PIPE_FLUSH_ASYNC, NULL);
return NULL;
} else {
si_flush_gfx_cs(sctx, 0, NULL);
busy = true;
}
}
if (radeon_emitted(sctx->dma_cs, 0) &&
sctx->ws->cs_is_buffer_referenced(sctx->dma_cs,
resource->buf, rusage)) {
if (usage & PIPE_TRANSFER_DONTBLOCK) {
si_flush_dma_cs(sctx, PIPE_FLUSH_ASYNC, NULL);
return NULL;
} else {
si_flush_dma_cs(sctx, 0, NULL);
busy = true;
}
}
if (busy || !sctx->ws->buffer_wait(resource->buf, 0, rusage)) {
if (usage & PIPE_TRANSFER_DONTBLOCK) {
return NULL;
} else {
/* We will be wait for the GPU. Wait for any offloaded
* CS flush to complete to avoid busy-waiting in the winsys. */
sctx->ws->cs_sync_flush(sctx->gfx_cs);
if (sctx->dma_cs)
sctx->ws->cs_sync_flush(sctx->dma_cs);
}
}
/* Setting the CS to NULL will prevent doing checks we have done already. */
return sctx->ws->buffer_map(resource->buf, NULL, usage);
}
void si_init_resource_fields(struct si_screen *sscreen,
struct r600_resource *res,
uint64_t size, unsigned alignment)
{
struct r600_texture *rtex = (struct r600_texture*)res;
res->bo_size = size;
res->bo_alignment = alignment;
res->flags = 0;
res->texture_handle_allocated = false;
res->image_handle_allocated = false;
switch (res->b.b.usage) {
case PIPE_USAGE_STREAM:
res->flags = RADEON_FLAG_GTT_WC;
/* fall through */
case PIPE_USAGE_STAGING:
/* Transfers are likely to occur more often with these
* resources. */
res->domains = RADEON_DOMAIN_GTT;
break;
case PIPE_USAGE_DYNAMIC:
/* Older kernels didn't always flush the HDP cache before
* CS execution
*/
if (sscreen->info.drm_major == 2 &&
sscreen->info.drm_minor < 40) {
res->domains = RADEON_DOMAIN_GTT;
res->flags |= RADEON_FLAG_GTT_WC;
break;
}
/* fall through */
case PIPE_USAGE_DEFAULT:
case PIPE_USAGE_IMMUTABLE:
default:
/* Not listing GTT here improves performance in some
* apps. */
res->domains = RADEON_DOMAIN_VRAM;
res->flags |= RADEON_FLAG_GTT_WC;
break;
}
if (res->b.b.target == PIPE_BUFFER &&
res->b.b.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
/* Use GTT for all persistent mappings with older
* kernels, because they didn't always flush the HDP
* cache before CS execution.
*
* Write-combined CPU mappings are fine, the kernel
* ensures all CPU writes finish before the GPU
* executes a command stream.
*/
if (sscreen->info.drm_major == 2 &&
sscreen->info.drm_minor < 40)
res->domains = RADEON_DOMAIN_GTT;
}
/* Tiled textures are unmappable. Always put them in VRAM. */
if ((res->b.b.target != PIPE_BUFFER && !rtex->surface.is_linear) ||
res->b.b.flags & SI_RESOURCE_FLAG_UNMAPPABLE) {
res->domains = RADEON_DOMAIN_VRAM;
res->flags |= RADEON_FLAG_NO_CPU_ACCESS |
RADEON_FLAG_GTT_WC;
}
/* Displayable and shareable surfaces are not suballocated. */
if (res->b.b.bind & (PIPE_BIND_SHARED | PIPE_BIND_SCANOUT))
res->flags |= RADEON_FLAG_NO_SUBALLOC; /* shareable */
else
res->flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
if (sscreen->debug_flags & DBG(NO_WC))
res->flags &= ~RADEON_FLAG_GTT_WC;
if (res->b.b.flags & SI_RESOURCE_FLAG_READ_ONLY)
res->flags |= RADEON_FLAG_READ_ONLY;
if (res->b.b.flags & SI_RESOURCE_FLAG_32BIT)
res->flags |= RADEON_FLAG_32BIT;
/* Set expected VRAM and GART usage for the buffer. */
res->vram_usage = 0;
res->gart_usage = 0;
res->max_forced_staging_uploads = 0;
res->b.max_forced_staging_uploads = 0;
if (res->domains & RADEON_DOMAIN_VRAM) {
res->vram_usage = size;
res->max_forced_staging_uploads =
res->b.max_forced_staging_uploads =
sscreen->info.has_dedicated_vram &&
size >= sscreen->info.vram_vis_size / 4 ? 1 : 0;
} else if (res->domains & RADEON_DOMAIN_GTT) {
res->gart_usage = size;
}
}
bool si_alloc_resource(struct si_screen *sscreen,
struct r600_resource *res)
{
struct pb_buffer *old_buf, *new_buf;
/* Allocate a new resource. */
new_buf = sscreen->ws->buffer_create(sscreen->ws, res->bo_size,
res->bo_alignment,
res->domains, res->flags);
if (!new_buf) {
return false;
}
/* Replace the pointer such that if res->buf wasn't NULL, it won't be
* NULL. This should prevent crashes with multiple contexts using
* the same buffer where one of the contexts invalidates it while
* the others are using it. */
old_buf = res->buf;
res->buf = new_buf; /* should be atomic */
res->gpu_address = sscreen->ws->buffer_get_virtual_address(res->buf);
if (res->flags & RADEON_FLAG_32BIT) {
uint64_t start = res->gpu_address;
uint64_t last = start + res->bo_size - 1;
(void)start;
(void)last;
assert((start >> 32) == sscreen->info.address32_hi);
assert((last >> 32) == sscreen->info.address32_hi);
}
pb_reference(&old_buf, NULL);
util_range_set_empty(&res->valid_buffer_range);
res->TC_L2_dirty = false;
/* Print debug information. */
if (sscreen->debug_flags & DBG(VM) && res->b.b.target == PIPE_BUFFER) {
fprintf(stderr, "VM start=0x%"PRIX64" end=0x%"PRIX64" | Buffer %"PRIu64" bytes\n",
res->gpu_address, res->gpu_address + res->buf->size,
res->buf->size);
}
return true;
}
static void si_buffer_destroy(struct pipe_screen *screen,
struct pipe_resource *buf)
{
struct r600_resource *rbuffer = r600_resource(buf);
threaded_resource_deinit(buf);
util_range_destroy(&rbuffer->valid_buffer_range);
pb_reference(&rbuffer->buf, NULL);
FREE(rbuffer);
}
/* Reallocate the buffer a update all resource bindings where the buffer is
* bound.
*
* This is used to avoid CPU-GPU synchronizations, because it makes the buffer
* idle by discarding its contents.
*/
static bool
si_invalidate_buffer(struct si_context *sctx,
struct r600_resource *rbuffer)
{
/* Shared buffers can't be reallocated. */
if (rbuffer->b.is_shared)
return false;
/* Sparse buffers can't be reallocated. */
if (rbuffer->flags & RADEON_FLAG_SPARSE)
return false;
/* In AMD_pinned_memory, the user pointer association only gets
* broken when the buffer is explicitly re-allocated.
*/
if (rbuffer->b.is_user_ptr)
return false;
/* Check if mapping this buffer would cause waiting for the GPU. */
if (si_rings_is_buffer_referenced(sctx, rbuffer->buf, RADEON_USAGE_READWRITE) ||
!sctx->ws->buffer_wait(rbuffer->buf, 0, RADEON_USAGE_READWRITE)) {
uint64_t old_va = rbuffer->gpu_address;
/* Reallocate the buffer in the same pipe_resource. */
si_alloc_resource(sctx->screen, rbuffer);
si_rebind_buffer(sctx, &rbuffer->b.b, old_va);
} else {
util_range_set_empty(&rbuffer->valid_buffer_range);
}
return true;
}
/* Replace the storage of dst with src. */
void si_replace_buffer_storage(struct pipe_context *ctx,
struct pipe_resource *dst,
struct pipe_resource *src)
{
struct si_context *sctx = (struct si_context*)ctx;
struct r600_resource *rdst = r600_resource(dst);
struct r600_resource *rsrc = r600_resource(src);
uint64_t old_gpu_address = rdst->gpu_address;
pb_reference(&rdst->buf, rsrc->buf);
rdst->gpu_address = rsrc->gpu_address;
rdst->b.b.bind = rsrc->b.b.bind;
rdst->b.max_forced_staging_uploads = rsrc->b.max_forced_staging_uploads;
rdst->max_forced_staging_uploads = rsrc->max_forced_staging_uploads;
rdst->flags = rsrc->flags;
assert(rdst->vram_usage == rsrc->vram_usage);
assert(rdst->gart_usage == rsrc->gart_usage);
assert(rdst->bo_size == rsrc->bo_size);
assert(rdst->bo_alignment == rsrc->bo_alignment);
assert(rdst->domains == rsrc->domains);
si_rebind_buffer(sctx, dst, old_gpu_address);
}
static void si_invalidate_resource(struct pipe_context *ctx,
struct pipe_resource *resource)
{
struct si_context *sctx = (struct si_context*)ctx;
struct r600_resource *rbuffer = r600_resource(resource);
/* We currently only do anyting here for buffers */
if (resource->target == PIPE_BUFFER)
(void)si_invalidate_buffer(sctx, rbuffer);
}
static void *si_buffer_get_transfer(struct pipe_context *ctx,
struct pipe_resource *resource,
unsigned usage,
const struct pipe_box *box,
struct pipe_transfer **ptransfer,
void *data, struct r600_resource *staging,
unsigned offset)
{
struct si_context *sctx = (struct si_context*)ctx;
struct r600_transfer *transfer;
if (usage & TC_TRANSFER_MAP_THREADED_UNSYNC)
transfer = slab_alloc(&sctx->pool_transfers_unsync);
else
transfer = slab_alloc(&sctx->pool_transfers);
transfer->b.b.resource = NULL;
pipe_resource_reference(&transfer->b.b.resource, resource);
transfer->b.b.level = 0;
transfer->b.b.usage = usage;
transfer->b.b.box = *box;
transfer->b.b.stride = 0;
transfer->b.b.layer_stride = 0;
transfer->b.staging = NULL;
transfer->offset = offset;
transfer->staging = staging;
*ptransfer = &transfer->b.b;
return data;
}
static void *si_buffer_transfer_map(struct pipe_context *ctx,
struct pipe_resource *resource,
unsigned level,
unsigned usage,
const struct pipe_box *box,
struct pipe_transfer **ptransfer)
{
struct si_context *sctx = (struct si_context*)ctx;
struct r600_resource *rbuffer = r600_resource(resource);
uint8_t *data;
assert(box->x + box->width <= resource->width0);
/* From GL_AMD_pinned_memory issues:
*
* 4) Is glMapBuffer on a shared buffer guaranteed to return the
* same system address which was specified at creation time?
*
* RESOLVED: NO. The GL implementation might return a different
* virtual mapping of that memory, although the same physical
* page will be used.
*
* So don't ever use staging buffers.
*/
if (rbuffer->b.is_user_ptr)
usage |= PIPE_TRANSFER_PERSISTENT;
/* See if the buffer range being mapped has never been initialized,
* in which case it can be mapped unsynchronized. */
if (!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
TC_TRANSFER_MAP_NO_INFER_UNSYNCHRONIZED)) &&
usage & PIPE_TRANSFER_WRITE &&
!rbuffer->b.is_shared &&
!util_ranges_intersect(&rbuffer->valid_buffer_range, box->x, box->x + box->width)) {
usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
}
/* If discarding the entire range, discard the whole resource instead. */
if (usage & PIPE_TRANSFER_DISCARD_RANGE &&
box->x == 0 && box->width == resource->width0) {
usage |= PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE;
}
/* If a buffer in VRAM is too large and the range is discarded, don't
* map it directly. This makes sure that the buffer stays in VRAM.
*/
bool force_discard_range = false;
if (usage & (PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE |
PIPE_TRANSFER_DISCARD_RANGE) &&
!(usage & PIPE_TRANSFER_PERSISTENT) &&
/* Try not to decrement the counter if it's not positive. Still racy,
* but it makes it harder to wrap the counter from INT_MIN to INT_MAX. */
rbuffer->max_forced_staging_uploads > 0 &&
p_atomic_dec_return(&rbuffer->max_forced_staging_uploads) >= 0) {
usage &= ~(PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE |
PIPE_TRANSFER_UNSYNCHRONIZED);
usage |= PIPE_TRANSFER_DISCARD_RANGE;
force_discard_range = true;
}
if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE &&
!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
TC_TRANSFER_MAP_NO_INVALIDATE))) {
assert(usage & PIPE_TRANSFER_WRITE);
if (si_invalidate_buffer(sctx, rbuffer)) {
/* At this point, the buffer is always idle. */
usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
} else {
/* Fall back to a temporary buffer. */
usage |= PIPE_TRANSFER_DISCARD_RANGE;
}
}
if ((usage & PIPE_TRANSFER_DISCARD_RANGE) &&
((!(usage & (PIPE_TRANSFER_UNSYNCHRONIZED |
PIPE_TRANSFER_PERSISTENT))) ||
(rbuffer->flags & RADEON_FLAG_SPARSE))) {
assert(usage & PIPE_TRANSFER_WRITE);
/* Check if mapping this buffer would cause waiting for the GPU.
*/
if (rbuffer->flags & RADEON_FLAG_SPARSE ||
force_discard_range ||
si_rings_is_buffer_referenced(sctx, rbuffer->buf, RADEON_USAGE_READWRITE) ||
!sctx->ws->buffer_wait(rbuffer->buf, 0, RADEON_USAGE_READWRITE)) {
/* Do a wait-free write-only transfer using a temporary buffer. */
unsigned offset;
struct r600_resource *staging = NULL;
u_upload_alloc(ctx->stream_uploader, 0,
box->width + (box->x % SI_MAP_BUFFER_ALIGNMENT),
sctx->screen->info.tcc_cache_line_size,
&offset, (struct pipe_resource**)&staging,
(void**)&data);
if (staging) {
data += box->x % SI_MAP_BUFFER_ALIGNMENT;
return si_buffer_get_transfer(ctx, resource, usage, box,
ptransfer, data, staging, offset);
} else if (rbuffer->flags & RADEON_FLAG_SPARSE) {
return NULL;
}
} else {
/* At this point, the buffer is always idle (we checked it above). */
usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
}
}
/* Use a staging buffer in cached GTT for reads. */
else if (((usage & PIPE_TRANSFER_READ) &&
!(usage & PIPE_TRANSFER_PERSISTENT) &&
(rbuffer->domains & RADEON_DOMAIN_VRAM ||
rbuffer->flags & RADEON_FLAG_GTT_WC)) ||
(rbuffer->flags & RADEON_FLAG_SPARSE)) {
struct r600_resource *staging;
assert(!(usage & TC_TRANSFER_MAP_THREADED_UNSYNC));
staging = (struct r600_resource*) pipe_buffer_create(
ctx->screen, 0, PIPE_USAGE_STAGING,
box->width + (box->x % SI_MAP_BUFFER_ALIGNMENT));
if (staging) {
/* Copy the VRAM buffer to the staging buffer. */
sctx->dma_copy(ctx, &staging->b.b, 0,
box->x % SI_MAP_BUFFER_ALIGNMENT,
0, 0, resource, 0, box);
data = si_buffer_map_sync_with_rings(sctx, staging,
usage & ~PIPE_TRANSFER_UNSYNCHRONIZED);
if (!data) {
r600_resource_reference(&staging, NULL);
return NULL;
}
data += box->x % SI_MAP_BUFFER_ALIGNMENT;
return si_buffer_get_transfer(ctx, resource, usage, box,
ptransfer, data, staging, 0);
} else if (rbuffer->flags & RADEON_FLAG_SPARSE) {
return NULL;
}
}
data = si_buffer_map_sync_with_rings(sctx, rbuffer, usage);
if (!data) {
return NULL;
}
data += box->x;
return si_buffer_get_transfer(ctx, resource, usage, box,
ptransfer, data, NULL, 0);
}
static void si_buffer_do_flush_region(struct pipe_context *ctx,
struct pipe_transfer *transfer,
const struct pipe_box *box)
{
struct r600_transfer *rtransfer = (struct r600_transfer*)transfer;
struct r600_resource *rbuffer = r600_resource(transfer->resource);
if (rtransfer->staging) {
struct pipe_resource *dst, *src;
unsigned soffset;
struct pipe_box dma_box;
dst = transfer->resource;
src = &rtransfer->staging->b.b;
soffset = rtransfer->offset + box->x % SI_MAP_BUFFER_ALIGNMENT;
u_box_1d(soffset, box->width, &dma_box);
/* Copy the staging buffer into the original one. */
ctx->resource_copy_region(ctx, dst, 0, box->x, 0, 0, src, 0, &dma_box);
}
util_range_add(&rbuffer->valid_buffer_range, box->x,
box->x + box->width);
}
static void si_buffer_flush_region(struct pipe_context *ctx,
struct pipe_transfer *transfer,
const struct pipe_box *rel_box)
{
unsigned required_usage = PIPE_TRANSFER_WRITE |
PIPE_TRANSFER_FLUSH_EXPLICIT;
if ((transfer->usage & required_usage) == required_usage) {
struct pipe_box box;
u_box_1d(transfer->box.x + rel_box->x, rel_box->width, &box);
si_buffer_do_flush_region(ctx, transfer, &box);
}
}
static void si_buffer_transfer_unmap(struct pipe_context *ctx,
struct pipe_transfer *transfer)
{
struct si_context *sctx = (struct si_context*)ctx;
struct r600_transfer *rtransfer = (struct r600_transfer*)transfer;
if (transfer->usage & PIPE_TRANSFER_WRITE &&
!(transfer->usage & PIPE_TRANSFER_FLUSH_EXPLICIT))
si_buffer_do_flush_region(ctx, transfer, &transfer->box);
r600_resource_reference(&rtransfer->staging, NULL);
assert(rtransfer->b.staging == NULL); /* for threaded context only */
pipe_resource_reference(&transfer->resource, NULL);
/* Don't use pool_transfers_unsync. We are always in the driver
* thread. */
slab_free(&sctx->pool_transfers, transfer);
}
static void si_buffer_subdata(struct pipe_context *ctx,
struct pipe_resource *buffer,
unsigned usage, unsigned offset,
unsigned size, const void *data)
{
struct pipe_transfer *transfer = NULL;
struct pipe_box box;
uint8_t *map = NULL;
u_box_1d(offset, size, &box);
map = si_buffer_transfer_map(ctx, buffer, 0,
PIPE_TRANSFER_WRITE |
PIPE_TRANSFER_DISCARD_RANGE |
usage,
&box, &transfer);
if (!map)
return;
memcpy(map, data, size);
si_buffer_transfer_unmap(ctx, transfer);
}
static const struct u_resource_vtbl si_buffer_vtbl =
{
NULL, /* get_handle */
si_buffer_destroy, /* resource_destroy */
si_buffer_transfer_map, /* transfer_map */
si_buffer_flush_region, /* transfer_flush_region */
si_buffer_transfer_unmap, /* transfer_unmap */
};
static struct r600_resource *
si_alloc_buffer_struct(struct pipe_screen *screen,
const struct pipe_resource *templ)
{
struct r600_resource *rbuffer;
rbuffer = MALLOC_STRUCT(r600_resource);
rbuffer->b.b = *templ;
rbuffer->b.b.next = NULL;
pipe_reference_init(&rbuffer->b.b.reference, 1);
rbuffer->b.b.screen = screen;
rbuffer->b.vtbl = &si_buffer_vtbl;
threaded_resource_init(&rbuffer->b.b);
rbuffer->buf = NULL;
rbuffer->bind_history = 0;
rbuffer->TC_L2_dirty = false;
util_range_init(&rbuffer->valid_buffer_range);
return rbuffer;
}
static struct pipe_resource *si_buffer_create(struct pipe_screen *screen,
const struct pipe_resource *templ,
unsigned alignment)
{
struct si_screen *sscreen = (struct si_screen*)screen;
struct r600_resource *rbuffer = si_alloc_buffer_struct(screen, templ);
if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE)
rbuffer->b.b.flags |= SI_RESOURCE_FLAG_UNMAPPABLE;
si_init_resource_fields(sscreen, rbuffer, templ->width0, alignment);
if (templ->flags & PIPE_RESOURCE_FLAG_SPARSE)
rbuffer->flags |= RADEON_FLAG_SPARSE;
if (!si_alloc_resource(sscreen, rbuffer)) {
FREE(rbuffer);
return NULL;
}
return &rbuffer->b.b;
}
struct pipe_resource *si_aligned_buffer_create(struct pipe_screen *screen,
unsigned flags,
unsigned usage,
unsigned size,
unsigned alignment)
{
struct pipe_resource buffer;
memset(&buffer, 0, sizeof buffer);
buffer.target = PIPE_BUFFER;
buffer.format = PIPE_FORMAT_R8_UNORM;
buffer.bind = 0;
buffer.usage = usage;
buffer.flags = flags;
buffer.width0 = size;
buffer.height0 = 1;
buffer.depth0 = 1;
buffer.array_size = 1;
return si_buffer_create(screen, &buffer, alignment);
}
static struct pipe_resource *
si_buffer_from_user_memory(struct pipe_screen *screen,
const struct pipe_resource *templ,
void *user_memory)
{
struct si_screen *sscreen = (struct si_screen*)screen;
struct radeon_winsys *ws = sscreen->ws;
struct r600_resource *rbuffer = si_alloc_buffer_struct(screen, templ);
rbuffer->domains = RADEON_DOMAIN_GTT;
rbuffer->flags = 0;
rbuffer->b.is_user_ptr = true;
util_range_add(&rbuffer->valid_buffer_range, 0, templ->width0);
util_range_add(&rbuffer->b.valid_buffer_range, 0, templ->width0);
/* Convert a user pointer to a buffer. */
rbuffer->buf = ws->buffer_from_ptr(ws, user_memory, templ->width0);
if (!rbuffer->buf) {
FREE(rbuffer);
return NULL;
}
rbuffer->gpu_address = ws->buffer_get_virtual_address(rbuffer->buf);
rbuffer->vram_usage = 0;
rbuffer->gart_usage = templ->width0;
return &rbuffer->b.b;
}
static struct pipe_resource *si_resource_create(struct pipe_screen *screen,
const struct pipe_resource *templ)
{
if (templ->target == PIPE_BUFFER) {
return si_buffer_create(screen, templ, 256);
} else {
return si_texture_create(screen, templ);
}
}
static bool si_resource_commit(struct pipe_context *pctx,
struct pipe_resource *resource,
unsigned level, struct pipe_box *box,
bool commit)
{
struct si_context *ctx = (struct si_context *)pctx;
struct r600_resource *res = r600_resource(resource);
/*
* Since buffer commitment changes cannot be pipelined, we need to
* (a) flush any pending commands that refer to the buffer we're about
* to change, and
* (b) wait for threaded submit to finish, including those that were
* triggered by some other, earlier operation.
*/
if (radeon_emitted(ctx->gfx_cs, ctx->initial_gfx_cs_size) &&
ctx->ws->cs_is_buffer_referenced(ctx->gfx_cs,
res->buf, RADEON_USAGE_READWRITE)) {
si_flush_gfx_cs(ctx, PIPE_FLUSH_ASYNC, NULL);
}
if (radeon_emitted(ctx->dma_cs, 0) &&
ctx->ws->cs_is_buffer_referenced(ctx->dma_cs,
res->buf, RADEON_USAGE_READWRITE)) {
si_flush_dma_cs(ctx, PIPE_FLUSH_ASYNC, NULL);
}
ctx->ws->cs_sync_flush(ctx->dma_cs);
ctx->ws->cs_sync_flush(ctx->gfx_cs);
assert(resource->target == PIPE_BUFFER);
return ctx->ws->buffer_commit(res->buf, box->x, box->width, commit);
}
void si_init_screen_buffer_functions(struct si_screen *sscreen)
{
sscreen->b.resource_create = si_resource_create;
sscreen->b.resource_destroy = u_resource_destroy_vtbl;
sscreen->b.resource_from_user_memory = si_buffer_from_user_memory;
}
void si_init_buffer_functions(struct si_context *sctx)
{
sctx->b.invalidate_resource = si_invalidate_resource;
sctx->b.transfer_map = u_transfer_map_vtbl;
sctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
sctx->b.transfer_unmap = u_transfer_unmap_vtbl;
sctx->b.texture_subdata = u_default_texture_subdata;
sctx->b.buffer_subdata = si_buffer_subdata;
sctx->b.resource_commit = si_resource_commit;
}
|