1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
|
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "util/u_memory.h"
#include "util/u_prim.h"
#include "ac_llvm_cull.h"
static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4);
}
static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4);
}
static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
}
static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9);
}
static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9);
}
static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12);
}
static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
{
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
LLVMConstInt(ctx->ac.i32, GFX10_GS_QUERY_BUF, false));
}
static LLVMValueRef ngg_get_initial_edgeflag(struct si_shader_context *ctx, unsigned index)
{
if (ctx->type == PIPE_SHADER_VERTEX) {
LLVMValueRef tmp;
tmp = LLVMBuildLShr(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id),
LLVMConstInt(ctx->ac.i32, 8 + index, false), "");
return LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, "");
}
return ctx->ac.i1false;
}
/**
* Return the number of vertices as a constant in \p num_vertices,
* and return a more precise value as LLVMValueRef from the function.
*/
static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx,
unsigned *num_vertices)
{
const struct si_shader_info *info = &ctx->shader->selector->info;
if (ctx->type == PIPE_SHADER_VERTEX) {
if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
/* Blits always use axis-aligned rectangles with 3 vertices. */
*num_vertices = 3;
return LLVMConstInt(ctx->ac.i32, 3, 0);
} else {
/* We always build up all three indices for the prim export
* independent of the primitive type. The additional garbage
* data shouldn't hurt. This number doesn't matter with
* NGG passthrough.
*/
*num_vertices = 3;
/* Extract OUTPRIM field. */
LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, "");
}
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
*num_vertices = 1;
else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
*num_vertices = 2;
else
*num_vertices = 3;
return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
}
}
bool gfx10_ngg_export_prim_early(struct si_shader *shader)
{
struct si_shader_selector *sel = shader->selector;
assert(shader->key.as_ngg && !shader->key.as_es);
return sel->type != PIPE_SHADER_GEOMETRY &&
!sel->info.writes_edgeflag;
}
void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
{
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
ngg_get_vtx_cnt(ctx),
ngg_get_prim_cnt(ctx));
}
void gfx10_ngg_build_export_prim(struct si_shader_context *ctx,
LLVMValueRef user_edgeflags[3],
LLVMValueRef prim_passthrough)
{
LLVMBuilderRef builder = ctx->ac.builder;
if (gfx10_is_ngg_passthrough(ctx->shader) ||
ctx->shader->key.opt.ngg_culling) {
ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
{
struct ac_ngg_prim prim = {};
if (prim_passthrough)
prim.passthrough = prim_passthrough;
else
prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
/* This is only used with NGG culling, which returns the NGG
* passthrough prim export encoding.
*/
if (ctx->shader->selector->info.writes_edgeflag) {
unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS;
LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0);
unsigned num_vertices;
ngg_get_vertices_per_prim(ctx, &num_vertices);
for (unsigned i = 0; i < num_vertices; i++) {
unsigned shift = 9 + i*10;
LLVMValueRef edge;
edge = LLVMBuildLoad(builder, user_edgeflags[i], "");
edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, "");
edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), "");
edgeflags = LLVMBuildOr(builder, edgeflags, edge, "");
}
prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, "");
}
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 6001);
return;
}
ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
{
struct ac_ngg_prim prim = {};
ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
prim.isnull = ctx->ac.i1false;
prim.index[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
prim.index[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
prim.index[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
for (unsigned i = 0; i < prim.num_vertices; ++i) {
prim.edgeflag[i] = ngg_get_initial_edgeflag(ctx, i);
if (ctx->shader->selector->info.writes_edgeflag) {
LLVMValueRef edge;
edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
edge = LLVMBuildAnd(ctx->ac.builder, prim.edgeflag[i], edge, "");
prim.edgeflag[i] = edge;
}
}
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 6001);
}
static void build_streamout_vertex(struct si_shader_context *ctx,
LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
unsigned stream, LLVMValueRef offset_vtx,
LLVMValueRef vertexptr)
{
struct si_shader_info *info = &ctx->shader->selector->info;
struct pipe_stream_output_info *so = &ctx->shader->selector->so;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef offset[4] = {};
LLVMValueRef tmp;
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (!wg_offset_dw[buffer])
continue;
tmp = LLVMBuildMul(builder, offset_vtx,
LLVMConstInt(ctx->ac.i32, so->stride[buffer], false), "");
tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
}
for (unsigned i = 0; i < so->num_outputs; ++i) {
if (so->output[i].stream != stream)
continue;
unsigned reg = so->output[i].register_index;
struct si_shader_output_values out;
out.semantic_name = info->output_semantic_name[reg];
out.semantic_index = info->output_semantic_index[reg];
for (unsigned comp = 0; comp < 4; comp++) {
tmp = ac_build_gep0(&ctx->ac, vertexptr,
LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false));
out.values[comp] = LLVMBuildLoad(builder, tmp, "");
out.vertex_stream[comp] =
(info->output_streams[reg] >> (2 * comp)) & 3;
}
si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out);
}
}
struct ngg_streamout {
LLVMValueRef num_vertices;
/* per-thread data */
LLVMValueRef prim_enable[4]; /* i1 per stream */
LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
/* Output */
LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
};
/**
* Build streamout logic.
*
* Implies a barrier.
*
* Writes number of emitted primitives to gs_ngg_scratch[4:8].
*
* Clobbers gs_ngg_scratch[8:].
*/
static void build_streamout(struct si_shader_context *ctx,
struct ngg_streamout *nggso)
{
struct si_shader_info *info = &ctx->shader->selector->info;
struct pipe_stream_output_info *so = &ctx->shader->selector->so;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef tmp, tmp2;
LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
LLVMValueRef so_buffer[4] = {};
unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
(nggso->vertices[2] ? 1 : 0);
LLVMValueRef prim_stride_dw[4] = {};
LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
int stream_for_buffer[4] = { -1, -1, -1, -1 };
unsigned bufmask_for_stream[4] = {};
bool isgs = ctx->type == PIPE_SHADER_GEOMETRY;
unsigned scratch_emit_base = isgs ? 4 : 0;
LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
unsigned scratch_offset_base = isgs ? 8 : 4;
LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
/* Determine the mapping of streamout buffers to vertex streams. */
for (unsigned i = 0; i < so->num_outputs; ++i) {
unsigned buf = so->output[i].output_buffer;
unsigned stream = so->output[i].stream;
assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
stream_for_buffer[buf] = stream;
bufmask_for_stream[stream] |= 1 << buf;
}
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == -1)
continue;
assert(so->stride[buffer]);
tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false);
prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
prim_stride_dw_vgpr = ac_build_writelane(
&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
LLVMConstInt(ctx->ac.i32, buffer, false));
so_buffer[buffer] = ac_build_load_to_sgpr(
&ctx->ac, buf_ptr,
LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
}
tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5200);
{
LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
/* Advance the streamout offsets in GDS. */
LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
ac_build_ifcc(&ctx->ac, tmp, 5210);
{
if (isgs) {
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
tmp = LLVMBuildLoad(builder, tmp, "");
} else {
tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0,
ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
}
LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
unsigned swizzle[4];
int unused_stream = -1;
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream]) {
unused_stream = stream;
break;
}
}
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] >= 0) {
swizzle[buffer] = stream_for_buffer[buffer];
} else {
assert(unused_stream >= 0);
swizzle[buffer] = unused_stream;
}
}
tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
LLVMValueRef args[] = {
LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
tmp,
ctx->ac.i32_0, // ordering
ctx->ac.i32_0, // scope
ctx->ac.i1false, // isVolatile
LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
ctx->ac.i1true, // wave release
ctx->ac.i1true, // wave done
};
tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
ctx->ac.i32, args, ARRAY_SIZE(args), 0);
/* Keep offsets in a VGPR for quick retrieval via readlane by
* the first wave for bounds checking, and also store in LDS
* for retrieval by all waves later. */
LLVMBuildStore(builder, tmp, offsets_vgpr);
tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
scratch_offset_basev, "");
tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
LLVMBuildStore(builder, tmp, tmp2);
}
ac_build_endif(&ctx->ac, 5210);
/* Determine the max emit per buffer. This is done via the SALU, in part
* because LLVM can't generate divide-by-multiply if we try to do this
* via VALU with one lane per buffer.
*/
LLVMValueRef max_emit[4] = {};
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == -1)
continue;
LLVMValueRef bufsize_dw =
LLVMBuildLShr(builder,
LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
i32_2, "");
tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
LLVMValueRef offset_dw =
ac_build_readlane(&ctx->ac, tmp,
LLVMConstInt(ctx->ac.i32, buffer, false));
tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, "");
}
/* Determine the number of emitted primitives per stream and fixup the
* GDS counter if necessary.
*
* This is complicated by the fact that a single stream can emit to
* multiple buffers (but luckily not vice versa).
*/
LLVMValueRef emit_vgpr = ctx->ac.i32_0;
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
LLVMValueRef generated =
ac_build_readlane(&ctx->ac, tmp,
LLVMConstInt(ctx->ac.i32, stream, false));
LLVMValueRef emit = generated;
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == stream)
emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
}
emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
LLVMConstInt(ctx->ac.i32, stream, false));
/* Fixup the offset using a plain GDS atomic if we overflowed. */
tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
tmp = LLVMBuildLShr(builder,
LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
ac_get_thread_id(&ctx->ac), "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5222);
{
tmp = LLVMBuildSub(builder, generated, emit, "");
tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
LLVMAtomicOrderingMonotonic, false);
}
ac_build_endif(&ctx->ac, 5222);
ac_build_endif(&ctx->ac, 5221);
}
tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
ac_build_ifcc(&ctx->ac, tmp, 5225);
{
tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
scratch_emit_basev, "");
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
LLVMBuildStore(builder, emit_vgpr, tmp);
}
ac_build_endif(&ctx->ac, 5225);
}
ac_build_endif(&ctx->ac, 5200);
/* Determine the workgroup-relative per-thread / primitive offset into
* the streamout buffers */
struct ac_wg_scan primemit_scan[4] = {};
if (isgs) {
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
primemit_scan[stream].enable_exclusive = true;
primemit_scan[stream].op = nir_op_iadd;
primemit_scan[stream].src = nggso->prim_enable[stream];
primemit_scan[stream].scratch =
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
primemit_scan[stream].numwaves = get_tgsize(ctx);
primemit_scan[stream].maxwaves = 8;
ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
}
}
ac_build_s_barrier(&ctx->ac);
/* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
LLVMValueRef wgoffset_dw[4] = {};
{
LLVMValueRef scratch_vgpr;
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] >= 0) {
wgoffset_dw[buffer] = ac_build_readlane(
&ctx->ac, scratch_vgpr,
LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
}
}
for (unsigned stream = 0; stream < 4; ++stream) {
if (info->num_stream_output_components[stream]) {
nggso->emit[stream] = ac_build_readlane(
&ctx->ac, scratch_vgpr,
LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
}
}
}
/* Write out primitive data */
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
if (isgs) {
ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
} else {
primemit_scan[stream].result_exclusive = tid;
}
tmp = LLVMBuildICmp(builder, LLVMIntULT,
primemit_scan[stream].result_exclusive,
nggso->emit[stream], "");
tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
ac_build_ifcc(&ctx->ac, tmp, 5240);
{
LLVMValueRef offset_vtx =
LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
nggso->num_vertices, "");
for (unsigned i = 0; i < max_num_vertices; ++i) {
tmp = LLVMBuildICmp(builder, LLVMIntULT,
LLVMConstInt(ctx->ac.i32, i, false),
nggso->num_vertices, "");
ac_build_ifcc(&ctx->ac, tmp, 5241);
build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
stream, offset_vtx, nggso->vertices[i]);
ac_build_endif(&ctx->ac, 5241);
offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
}
}
ac_build_endif(&ctx->ac, 5240);
}
}
/* LDS layout of ES vertex data for NGG culling. */
enum {
/* Byte 0: Boolean ES thread accepted (unculled) flag, and later the old
* ES thread ID. After vertex compaction, compacted ES threads
* store the old thread ID here to copy input VGPRs from uncompacted
* ES threads.
* Byte 1: New ES thread ID, loaded by GS to prepare the prim export value.
* Byte 2: TES rel patch ID
* Byte 3: Unused
*/
lds_byte0_accept_flag = 0,
lds_byte0_old_thread_id = 0,
lds_byte1_new_thread_id,
lds_byte2_tes_rel_patch_id,
lds_byte3_unused,
lds_packed_data = 0, /* lds_byteN_... */
lds_pos_x,
lds_pos_y,
lds_pos_z,
lds_pos_w,
lds_pos_x_div_w,
lds_pos_y_div_w,
/* If VS: */
lds_vertex_id,
lds_instance_id, /* optional */
/* If TES: */
lds_tes_u = lds_vertex_id,
lds_tes_v = lds_instance_id,
lds_tes_patch_id, /* optional */
};
static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx,
LLVMValueRef ptr, unsigned byte_index)
{
assert(byte_index < 4);
LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
LLVMValueRef index = LLVMConstInt(ctx->ac.i32, byte_index, 0);
return LLVMBuildGEP(ctx->ac.builder,
LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""),
&index, 1, "");
}
static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
{
unsigned lds_vertex_size = 0;
/* The edgeflag is always stored in the last element that's also
* used for padding to reduce LDS bank conflicts. */
if (shader->selector->so.num_outputs)
lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
if (shader->selector->info.writes_edgeflag)
lds_vertex_size = MAX2(lds_vertex_size, 1);
/* LDS size for passing data from GS to ES.
* GS stores Primitive IDs into LDS at the address corresponding
* to the ES thread of the provoking vertex. All ES threads
* load and export PrimitiveID for their thread.
*/
if (shader->selector->type == PIPE_SHADER_VERTEX &&
shader->key.mono.u.vs_export_prim_id)
lds_vertex_size = MAX2(lds_vertex_size, 1);
if (shader->key.opt.ngg_culling) {
if (shader->selector->type == PIPE_SHADER_VERTEX) {
STATIC_ASSERT(lds_instance_id + 1 == 9);
lds_vertex_size = MAX2(lds_vertex_size, 9);
} else {
assert(shader->selector->type == PIPE_SHADER_TESS_EVAL);
if (shader->selector->info.uses_primid ||
shader->key.mono.u.vs_export_prim_id) {
STATIC_ASSERT(lds_tes_patch_id + 2 == 11);
lds_vertex_size = MAX2(lds_vertex_size, 11);
} else {
STATIC_ASSERT(lds_tes_v + 1 == 9);
lds_vertex_size = MAX2(lds_vertex_size, 9);
}
}
}
return lds_vertex_size;
}
/**
* Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
* for the vertex outputs.
*/
static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx,
LLVMValueRef vtxid)
{
/* The extra dword is used to avoid LDS bank conflicts. */
unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
}
static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx,
LLVMValueRef ret, struct ac_arg param,
unsigned return_index)
{
LLVMValueRef v = ac_get_arg(&ctx->ac, param);
for (unsigned i = 0; i < 4; i++) {
ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
ac_llvm_extract_elem(&ctx->ac, v, i),
return_index + i, "");
}
return ret;
}
static void load_bitmasks_2x64(struct si_shader_context *ctx,
LLVMValueRef lds_ptr, unsigned dw_offset,
LLVMValueRef mask[2], LLVMValueRef *total_bitcount)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef ptr64 = LLVMBuildPointerCast(builder, lds_ptr,
LLVMPointerType(LLVMArrayType(ctx->ac.i64, 2),
AC_ADDR_SPACE_LDS), "");
for (unsigned i = 0; i < 2; i++) {
LLVMValueRef index = LLVMConstInt(ctx->ac.i32, dw_offset / 2 + i, 0);
mask[i] = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ptr64, index), "");
}
/* We get better code if we don't use the 128-bit bitcount. */
*total_bitcount = LLVMBuildAdd(builder, ac_build_bit_count(&ctx->ac, mask[0]),
ac_build_bit_count(&ctx->ac, mask[1]), "");
}
/**
* Given a total thread count, update total and per-wave thread counts in input SGPRs
* and return the per-wave thread count.
*
* \param new_num_threads Total thread count on the input, per-wave thread count on the output.
* \param tg_info tg_info SGPR value
* \param tg_info_num_bits the bit size of thread count field in tg_info
* \param tg_info_shift the bit offset of the thread count field in tg_info
* \param wave_info merged_wave_info SGPR value
* \param wave_info_num_bits the bit size of thread count field in merged_wave_info
* \param wave_info_shift the bit offset of the thread count field in merged_wave_info
*/
static void update_thread_counts(struct si_shader_context *ctx,
LLVMValueRef *new_num_threads,
LLVMValueRef *tg_info,
unsigned tg_info_num_bits,
unsigned tg_info_shift,
LLVMValueRef *wave_info,
unsigned wave_info_num_bits,
unsigned wave_info_shift)
{
LLVMBuilderRef builder = ctx->ac.builder;
/* Update the total thread count. */
unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift);
*tg_info = LLVMBuildAnd(builder, *tg_info,
LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), "");
*tg_info = LLVMBuildOr(builder, *tg_info,
LLVMBuildShl(builder, *new_num_threads,
LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), "");
/* Update the per-wave thread count. */
LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), "");
*new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, "");
*new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0);
*new_num_threads = ac_build_imin(&ctx->ac, *new_num_threads,
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0));
unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift);
*wave_info = LLVMBuildAnd(builder, *wave_info,
LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), "");
*wave_info = LLVMBuildOr(builder, *wave_info,
LLVMBuildShl(builder, *new_num_threads,
LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""), "");
}
/**
* Cull primitives for NGG VS or TES, then compact vertices, which happens
* before the VS or TES main function. Return values for the main function.
* Also return the position, which is passed to the shader as an input,
* so that we don't compute it twice.
*/
void gfx10_emit_ngg_culling_epilogue_4x_wave32(struct ac_shader_abi *abi,
unsigned max_outputs,
LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
struct si_shader *shader = ctx->shader;
struct si_shader_selector *sel = shader->selector;
struct si_shader_info *info = &sel->info;
LLVMBuilderRef builder = ctx->ac.builder;
assert(shader->key.opt.ngg_culling);
assert(shader->key.as_ngg);
assert(sel->type == PIPE_SHADER_VERTEX ||
(sel->type == PIPE_SHADER_TESS_EVAL && !shader->key.as_es));
LLVMValueRef position[4] = {};
for (unsigned i = 0; i < info->num_outputs; i++) {
switch (info->output_semantic_name[i]) {
case TGSI_SEMANTIC_POSITION:
for (unsigned j = 0; j < 4; j++) {
position[j] = LLVMBuildLoad(ctx->ac.builder,
addrs[4 * i + j], "");
}
break;
}
}
assert(position[0]);
/* Store Position.XYZW into LDS. */
LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
for (unsigned chan = 0; chan < 4; chan++) {
LLVMBuildStore(builder, ac_to_integer(&ctx->ac, position[chan]),
ac_build_gep0(&ctx->ac, es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0)));
}
/* Store Position.XY / W into LDS. */
for (unsigned chan = 0; chan < 2; chan++) {
LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]);
LLVMBuildStore(builder, ac_to_integer(&ctx->ac, val),
ac_build_gep0(&ctx->ac, es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_pos_x_div_w + chan, 0)));
}
/* Store VertexID and InstanceID. ES threads will have to load them
* from LDS after vertex compaction and use them instead of their own
* system values.
*/
bool uses_instance_id = false;
bool uses_tes_prim_id = false;
LLVMValueRef packed_data = ctx->ac.i32_0;
if (ctx->type == PIPE_SHADER_VERTEX) {
uses_instance_id = sel->info.uses_instanceid ||
shader->key.part.vs.prolog.instance_divisor_is_one ||
shader->key.part.vs.prolog.instance_divisor_is_fetched;
LLVMBuildStore(builder, ctx->abi.vertex_id,
ac_build_gep0(&ctx->ac, es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)));
if (uses_instance_id) {
LLVMBuildStore(builder, ctx->abi.instance_id,
ac_build_gep0(&ctx->ac, es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)));
}
} else {
uses_tes_prim_id = sel->info.uses_primid ||
shader->key.mono.u.vs_export_prim_id;
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_u)),
ac_build_gep0(&ctx->ac, es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_tes_u, 0)));
LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_v)),
ac_build_gep0(&ctx->ac, es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_tes_v, 0)));
packed_data = LLVMBuildShl(builder, ac_get_arg(&ctx->ac, ctx->tes_rel_patch_id),
LLVMConstInt(ctx->ac.i32, lds_byte2_tes_rel_patch_id * 8, 0), "");
if (uses_tes_prim_id) {
LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id),
ac_build_gep0(&ctx->ac, es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)));
}
}
/* Initialize the packed data. */
LLVMBuildStore(builder, packed_data,
ac_build_gep0(&ctx->ac, es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_packed_data, 0)));
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
/* Initialize the last 3 gs_ngg_scratch dwords to 0, because we may have less
* than 4 waves, but we always read all 4 values. This is where the thread
* bitmasks of unculled threads will be stored.
*
* gs_ngg_scratch layout: esmask[0..3]
*/
ac_build_ifcc(&ctx->ac,
LLVMBuildICmp(builder, LLVMIntULT, get_thread_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, 3, 0), ""), 16101);
{
LLVMValueRef index = LLVMBuildAdd(builder, tid, ctx->ac.i32_1, "");
LLVMBuildStore(builder, ctx->ac.i32_0,
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, index));
}
ac_build_endif(&ctx->ac, 16101);
ac_build_s_barrier(&ctx->ac);
/* The hardware requires that there are no holes between unculled vertices,
* which means we have to pack ES threads, i.e. reduce the ES thread count
* and move ES input VGPRs to lower threads. The upside is that varyings
* are only fetched and computed for unculled vertices.
*
* Vertex compaction in GS threads:
*
* Part 1: Compute the surviving vertex mask in GS threads:
* - Compute 4 32-bit surviving vertex masks in LDS. (max 4 waves)
* - In GS, notify ES threads whether the vertex survived.
* - Barrier
* - ES threads will create the mask and store it in LDS.
* - Barrier
* - Each GS thread loads the vertex masks from LDS.
*
* Part 2: Compact ES threads in GS threads:
* - Compute the prefix sum for all 3 vertices from the masks. These are the new
* thread IDs for each vertex within the primitive.
* - Write the value of the old thread ID into the LDS address of the new thread ID.
* The ES thread will load the old thread ID and use it to load the position, VertexID,
* and InstanceID.
* - Update vertex indices and null flag in the GS input VGPRs.
* - Barrier
*
* Part 3: Update inputs GPRs
* - For all waves, update per-wave thread counts in input SGPRs.
* - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs).
*/
LLVMValueRef vtxindex[3];
if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL) {
/* For the GS fast launch, the VS prologs simply puts the Vertex IDs
* into these VGPRs.
*/
vtxindex[0] = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
vtxindex[1] = ac_get_arg(&ctx->ac, ctx->gs_vtx23_offset);
vtxindex[2] = ac_get_arg(&ctx->ac, ctx->gs_vtx45_offset);
} else {
vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
};
LLVMValueRef gs_vtxptr[] = {
ngg_nogs_vertex_ptr(ctx, vtxindex[0]),
ngg_nogs_vertex_ptr(ctx, vtxindex[1]),
ngg_nogs_vertex_ptr(ctx, vtxindex[2]),
};
es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
/* Do culling in GS threads. */
ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002);
{
/* Load positions. */
LLVMValueRef pos[3][4] = {};
for (unsigned vtx = 0; vtx < 3; vtx++) {
for (unsigned chan = 0; chan < 4; chan++) {
unsigned index;
if (chan == 0 || chan == 1)
index = lds_pos_x_div_w + chan;
else if (chan == 3)
index = lds_pos_w;
else
continue;
LLVMValueRef addr = ac_build_gep0(&ctx->ac, gs_vtxptr[vtx],
LLVMConstInt(ctx->ac.i32, index, 0));
pos[vtx][chan] = LLVMBuildLoad(builder, addr, "");
pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]);
}
}
/* Load the viewport state for small prim culling. */
LLVMValueRef vp = ac_build_load_invariant(&ctx->ac,
ac_get_arg(&ctx->ac, ctx->small_prim_cull_info),
ctx->ac.i32_0);
vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
LLVMValueRef vp_scale[2], vp_translate[2];
vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
/* Get the small prim filter precision. */
LLVMValueRef small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4);
small_prim_precision = LLVMBuildOr(builder, small_prim_precision,
LLVMConstInt(ctx->ac.i32, 0x70, 0), "");
small_prim_precision = LLVMBuildShl(builder, small_prim_precision,
LLVMConstInt(ctx->ac.i32, 23, 0), "");
small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, "");
/* Execute culling code. */
struct ac_cull_options options = {};
options.cull_front = shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE;
options.cull_back = shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE;
options.cull_view_xy = shader->key.opt.ngg_culling & SI_NGG_CULL_VIEW_SMALLPRIMS;
options.cull_small_prims = options.cull_view_xy;
options.cull_zero_area = options.cull_front || options.cull_back;
options.cull_w = true;
/* Tell ES threads whether their vertex survived. */
ac_build_ifcc(&ctx->ac, ac_cull_triangle(&ctx->ac, pos, ctx->ac.i1true,
vp_scale, vp_translate,
small_prim_precision, &options), 16003);
{
LLVMBuildStore(builder, ctx->ac.i32_1, gs_accepted);
for (unsigned vtx = 0; vtx < 3; vtx++) {
LLVMBuildStore(builder, ctx->ac.i8_1,
si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag));
}
}
ac_build_endif(&ctx->ac, 16003);
}
ac_build_endif(&ctx->ac, 16002);
ac_build_s_barrier(&ctx->ac);
gs_accepted = LLVMBuildLoad(builder, gs_accepted, "");
LLVMValueRef es_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, "");
/* Convert the per-vertex flag to a thread bitmask in ES threads and store it in LDS. */
ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007);
{
LLVMValueRef es_accepted_flag =
LLVMBuildLoad(builder,
si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), "");
LLVMValueRef es_accepted_bool = LLVMBuildICmp(builder, LLVMIntNE,
es_accepted_flag, ctx->ac.i8_0, "");
LLVMValueRef es_mask = ac_get_i1_sgpr_mask(&ctx->ac, es_accepted_bool);
LLVMBuildStore(builder, es_accepted_bool, es_accepted);
ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ,
tid, ctx->ac.i32_0, ""), 16008);
{
LLVMBuildStore(builder, es_mask,
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
get_wave_id_in_tg(ctx)));
}
ac_build_endif(&ctx->ac, 16008);
}
ac_build_endif(&ctx->ac, 16007);
ac_build_s_barrier(&ctx->ac);
/* Load the vertex masks and compute the new ES thread count. */
LLVMValueRef es_mask[2], new_num_es_threads, kill_wave;
load_bitmasks_2x64(ctx, ctx->gs_ngg_scratch, 0, es_mask, &new_num_es_threads);
new_num_es_threads = ac_build_readlane_no_opt_barrier(&ctx->ac, new_num_es_threads, NULL);
/* ES threads compute their prefix sum, which is the new ES thread ID.
* Then they write the value of the old thread ID into the LDS address
* of the new thread ID. It will be used it to load input VGPRs from
* the old thread's LDS location.
*/
ac_build_ifcc(&ctx->ac, LLVMBuildLoad(builder, es_accepted, ""), 16009);
{
LLVMValueRef old_id = get_thread_id_in_tg(ctx);
LLVMValueRef new_id = ac_prefix_bitcount_2x64(&ctx->ac, es_mask, old_id);
LLVMBuildStore(builder, LLVMBuildTrunc(builder, old_id, ctx->ac.i8, ""),
si_build_gep_i8(ctx, ngg_nogs_vertex_ptr(ctx, new_id),
lds_byte0_old_thread_id));
LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""),
si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id));
}
ac_build_endif(&ctx->ac, 16009);
/* Kill waves that have inactive threads. */
kill_wave = LLVMBuildICmp(builder, LLVMIntULE,
ac_build_imax(&ctx->ac, new_num_es_threads, ngg_get_prim_cnt(ctx)),
LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""), "");
ac_build_ifcc(&ctx->ac, kill_wave, 19202);
{
/* If we are killing wave 0, send that there are no primitives
* in this threadgroup.
*/
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
ctx->ac.i32_0, ctx->ac.i32_0);
ac_build_s_endpgm(&ctx->ac);
}
ac_build_endif(&ctx->ac, 19202);
ac_build_s_barrier(&ctx->ac);
/* Send the final vertex and primitive counts. */
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
new_num_es_threads, ngg_get_prim_cnt(ctx));
/* Update thread counts in SGPRs. */
LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->gs_tg_info);
LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->merged_wave_info);
/* This also converts the thread count from the total count to the per-wave count. */
update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12,
&new_merged_wave_info, 8, 0);
/* Update vertex indices in VGPR0 (same format as NGG passthrough). */
LLVMValueRef new_vgpr0 = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
/* Set the null flag at the beginning (culled), and then
* overwrite it for accepted primitives.
*/
LLVMBuildStore(builder, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), new_vgpr0);
/* Get vertex indices after vertex compaction. */
ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011);
{
struct ac_ngg_prim prim = {};
prim.num_vertices = 3;
prim.isnull = ctx->ac.i1false;
for (unsigned vtx = 0; vtx < 3; vtx++) {
prim.index[vtx] =
LLVMBuildLoad(builder,
si_build_gep_i8(ctx, gs_vtxptr[vtx],
lds_byte1_new_thread_id), "");
prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, "");
prim.edgeflag[vtx] = ngg_get_initial_edgeflag(ctx, vtx);
}
/* Set the new GS input VGPR. */
LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0);
}
ac_build_endif(&ctx->ac, 16011);
if (gfx10_ngg_export_prim_early(shader))
gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, ""));
/* Set the new ES input VGPRs. */
LLVMValueRef es_data[4];
LLVMValueRef old_thread_id = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
for (unsigned i = 0; i < 4; i++)
es_data[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, tid,
new_num_es_threads, ""), 16012);
{
LLVMValueRef old_id, old_es_vtxptr, tmp;
/* Load ES input VGPRs from the ES thread before compaction. */
old_id = LLVMBuildLoad(builder,
si_build_gep_i8(ctx, es_vtxptr, lds_byte0_old_thread_id), "");
old_id = LLVMBuildZExt(builder, old_id, ctx->ac.i32, "");
LLVMBuildStore(builder, old_id, old_thread_id);
old_es_vtxptr = ngg_nogs_vertex_ptr(ctx, old_id);
for (unsigned i = 0; i < 2; i++) {
tmp = LLVMBuildLoad(builder,
ac_build_gep0(&ctx->ac, old_es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_vertex_id + i, 0)), "");
LLVMBuildStore(builder, tmp, es_data[i]);
}
if (ctx->type == PIPE_SHADER_TESS_EVAL) {
tmp = LLVMBuildLoad(builder,
si_build_gep_i8(ctx, old_es_vtxptr,
lds_byte2_tes_rel_patch_id), "");
tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
LLVMBuildStore(builder, tmp, es_data[2]);
if (uses_tes_prim_id) {
tmp = LLVMBuildLoad(builder,
ac_build_gep0(&ctx->ac, old_es_vtxptr,
LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)), "");
LLVMBuildStore(builder, tmp, es_data[3]);
}
}
}
ac_build_endif(&ctx->ac, 16012);
/* Return values for the main function. */
LLVMValueRef ret = ctx->return_value;
LLVMValueRef val;
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, "");
ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, "");
if (ctx->type == PIPE_SHADER_TESS_EVAL)
ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 4);
ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers,
8 + SI_SGPR_RW_BUFFERS);
ret = si_insert_input_ptr(ctx, ret,
ctx->bindless_samplers_and_images,
8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
ret = si_insert_input_ptr(ctx, ret,
ctx->const_and_shader_buffers,
8 + SI_SGPR_CONST_AND_SHADER_BUFFERS);
ret = si_insert_input_ptr(ctx, ret,
ctx->samplers_and_images,
8 + SI_SGPR_SAMPLERS_AND_IMAGES);
ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits,
8 + SI_SGPR_VS_STATE_BITS);
if (ctx->type == PIPE_SHADER_VERTEX) {
ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex,
8 + SI_SGPR_BASE_VERTEX);
ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance,
8 + SI_SGPR_START_INSTANCE);
ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id,
8 + SI_SGPR_DRAWID);
ret = si_insert_input_ptr(ctx, ret, ctx->vertex_buffers,
8 + SI_VS_NUM_USER_SGPR);
for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) {
ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i],
8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4);
}
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout,
8 + SI_SGPR_TES_OFFCHIP_LAYOUT);
ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr,
8 + SI_SGPR_TES_OFFCHIP_ADDR);
}
unsigned vgpr;
if (ctx->type == PIPE_SHADER_VERTEX) {
if (shader->selector->num_vbos_in_user_sgprs) {
vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST +
shader->selector->num_vbos_in_user_sgprs * 4;
} else {
vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR + 1;
}
} else {
vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
}
val = LLVMBuildLoad(builder, new_vgpr0, "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val),
vgpr++, "");
vgpr++; /* gs_vtx23_offset */
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
vgpr++; /* gs_vtx45_offset */
if (ctx->type == PIPE_SHADER_VERTEX) {
val = LLVMBuildLoad(builder, es_data[0], "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val),
vgpr++, ""); /* VGPR5 - VertexID */
vgpr += 2;
if (uses_instance_id) {
val = LLVMBuildLoad(builder, es_data[1], "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val),
vgpr++, ""); /* VGPR8 - InstanceID */
} else {
vgpr++;
}
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
unsigned num_vgprs = uses_tes_prim_id ? 4 : 3;
for (unsigned i = 0; i < num_vgprs; i++) {
val = LLVMBuildLoad(builder, es_data[i], "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val),
vgpr++, "");
}
if (num_vgprs == 3)
vgpr++;
}
/* Return the old thread ID. */
val = LLVMBuildLoad(builder, old_thread_id, "");
ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
/* These two also use LDS. */
if (sel->info.writes_edgeflag ||
(ctx->type == PIPE_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
ac_build_s_barrier(&ctx->ac);
ctx->return_value = ret;
}
/**
* Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
*/
void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
unsigned max_outputs,
LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
struct si_shader_selector *sel = ctx->shader->selector;
struct si_shader_info *info = &sel->info;
struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp, tmp2;
assert(!ctx->shader->is_gs_copy_shader);
assert(info->num_outputs <= max_outputs);
LLVMValueRef vertex_ptr = NULL;
if (sel->so.num_outputs || sel->info.writes_edgeflag)
vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
for (unsigned i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
for (unsigned j = 0; j < 4; j++) {
outputs[i].vertex_stream[j] =
(info->output_streams[i] >> (2 * j)) & 3;
/* TODO: we may store more outputs than streamout needs,
* but streamout performance isn't that important.
*/
if (sel->so.num_outputs) {
tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
tmp2 = ac_to_integer(&ctx->ac, tmp2);
LLVMBuildStore(builder, tmp2, tmp);
}
}
/* Store the edgeflag at the end (if streamout is enabled) */
if (info->output_semantic_name[i] == TGSI_SEMANTIC_EDGEFLAG &&
sel->info.writes_edgeflag) {
LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
/* The output is a float, but the hw expects a 1-bit integer. */
edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, "");
edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1);
tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
LLVMBuildStore(builder, edgeflag, tmp);
}
}
bool unterminated_es_if_block =
!sel->so.num_outputs &&
!sel->info.writes_edgeflag &&
!ctx->screen->use_ngg_streamout && /* no query buffer */
(ctx->type != PIPE_SHADER_VERTEX ||
!ctx->shader->key.mono.u.vs_export_prim_id);
if (!unterminated_es_if_block)
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
LLVMValueRef is_es_thread = si_is_es_thread(ctx);
LLVMValueRef vtxindex[3];
if (ctx->shader->key.opt.ngg_culling) {
vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 9);
vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 10, 9);
vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 20, 9);
} else {
vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
}
/* Determine the number of vertices per primitive. */
unsigned num_vertices;
LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
/* Streamout */
LLVMValueRef emitted_prims = NULL;
if (sel->so.num_outputs) {
assert(!unterminated_es_if_block);
struct ngg_streamout nggso = {};
nggso.num_vertices = num_vertices_val;
nggso.prim_enable[0] = is_gs_thread;
for (unsigned i = 0; i < num_vertices; ++i)
nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
build_streamout(ctx, &nggso);
emitted_prims = nggso.emit[0];
}
LLVMValueRef user_edgeflags[3] = {};
if (sel->info.writes_edgeflag) {
assert(!unterminated_es_if_block);
/* Streamout already inserted the barrier, so don't insert it again. */
if (!sel->so.num_outputs)
ac_build_s_barrier(&ctx->ac);
ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
/* Load edge flags from ES threads and store them into VGPRs in GS threads. */
for (unsigned i = 0; i < num_vertices; i++) {
tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
tmp = LLVMBuildLoad(builder, tmp, "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i1, "");
LLVMBuildStore(builder, tmp, user_edgeflags[i]);
}
ac_build_endif(&ctx->ac, 5400);
}
/* Copy Primitive IDs from GS threads to the LDS address corresponding
* to the ES thread of the provoking vertex.
*/
if (ctx->type == PIPE_SHADER_VERTEX &&
ctx->shader->key.mono.u.vs_export_prim_id) {
assert(!unterminated_es_if_block);
/* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
if (sel->so.num_outputs || sel->info.writes_edgeflag)
ac_build_s_barrier(&ctx->ac);
ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
/* Extract the PROVOKING_VTX_INDEX field. */
LLVMValueRef provoking_vtx_in_prim =
si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
/* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
LLVMValueRef provoking_vtx_index =
LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0));
ac_build_endif(&ctx->ac, 5400);
}
/* Update query buffer */
if (ctx->screen->use_ngg_streamout &&
!info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
assert(!unterminated_es_if_block);
tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5030);
tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5031);
{
LLVMValueRef args[] = {
ngg_get_prim_cnt(ctx),
ngg_get_query_buf(ctx),
LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */
ctx->ac.i32_0, /* soffset */
ctx->ac.i32_0, /* cachepolicy */
};
if (sel->so.num_outputs) {
args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1);
args[2] = ac_build_writelane(&ctx->ac, args[2],
LLVMConstInt(ctx->ac.i32, 24, false), ctx->ac.i32_1);
}
/* TODO: should this be 64-bit atomics? */
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
ctx->ac.i32, args, 5, 0);
}
ac_build_endif(&ctx->ac, 5031);
ac_build_endif(&ctx->ac, 5030);
ac_build_endif(&ctx->ac, 5029);
}
/* Build the primitive export. */
if (!gfx10_ngg_export_prim_early(ctx->shader)) {
assert(!unterminated_es_if_block);
gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL);
}
/* Export per-vertex data (positions and parameters). */
if (!unterminated_es_if_block)
ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
{
unsigned i;
/* Unconditionally (re-)load the values for proper SSA form. */
for (i = 0; i < info->num_outputs; i++) {
/* If the NGG cull shader part computed the position, don't
* use the position from the current shader part. Instead,
* load it from LDS.
*/
if (info->output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
ctx->shader->key.opt.ngg_culling) {
vertex_ptr = ngg_nogs_vertex_ptr(ctx,
ac_get_arg(&ctx->ac, ctx->ngg_old_thread_id));
for (unsigned j = 0; j < 4; j++) {
tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0);
tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
tmp = LLVMBuildLoad(builder, tmp, "");
outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
}
} else {
for (unsigned j = 0; j < 4; j++) {
outputs[i].values[j] =
LLVMBuildLoad(builder,
addrs[4 * i + j], "");
}
}
}
if (ctx->shader->key.mono.u.vs_export_prim_id) {
outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
outputs[i].semantic_index = 0;
if (ctx->type == PIPE_SHADER_VERTEX) {
/* Wait for GS stores to finish. */
ac_build_s_barrier(&ctx->ac);
tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
outputs[i].values[0] = si_get_primitive_id(ctx, 0);
}
outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
for (unsigned j = 1; j < 4; j++)
outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32);
memset(outputs[i].vertex_stream, 0,
sizeof(outputs[i].vertex_stream));
i++;
}
si_llvm_build_vs_exports(ctx, outputs, i);
}
ac_build_endif(&ctx->ac, 6002);
}
static LLVMValueRef
ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
LLVMTypeRef elements[2] = {
LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
LLVMArrayType(ctx->ac.i8, 4),
};
LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
}
/**
* Return a pointer to the LDS storage reserved for the N'th vertex, where N
* is in emit order; that is:
* - during the epilogue, N is the threadidx (relative to the entire threadgroup)
* - during vertex emit, i.e. while the API GS shader invocation is running,
* N = threadidx * gs_max_out_vertices + emitidx
*
* Goals of the LDS memory layout:
* 1. Eliminate bank conflicts on write for geometry shaders that have all emits
* in uniform control flow
* 2. Eliminate bank conflicts on read for export if, additionally, there is no
* culling
* 3. Agnostic to the number of waves (since we don't know it before compiling)
* 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
* 5. Avoid wasting memory.
*
* We use an AoS layout due to point 4 (this also helps point 3). In an AoS
* layout, elimination of bank conflicts requires that each vertex occupy an
* odd number of dwords. We use the additional dword to store the output stream
* index as well as a flag to indicate whether this vertex ends a primitive
* for rasterization.
*
* Swizzling is required to satisfy points 1 and 2 simultaneously.
*
* Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
* Indices are swizzled in groups of 32, which ensures point 1 without
* disturbing point 2.
*
* \return an LDS pointer to type {[N x i32], [4 x i8]}
*/
static LLVMValueRef
ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
{
struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
/* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
if (write_stride_2exp) {
LLVMValueRef row =
LLVMBuildLShr(builder, vertexidx,
LLVMConstInt(ctx->ac.i32, 5, false), "");
LLVMValueRef swizzle =
LLVMBuildAnd(builder, row,
LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
false), "");
vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
}
return ac_build_gep0(&ctx->ac, storage, vertexidx);
}
static LLVMValueRef
ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
LLVMValueRef emitidx)
{
struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
tmp = LLVMBuildMul(builder, tmp, gsthread, "");
const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
return ngg_gs_vertex_ptr(ctx, vertexidx);
}
static LLVMValueRef
ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx, LLVMValueRef vertexptr,
unsigned out_idx)
{
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_0, /* first struct entry */
LLVMConstInt(ctx->ac.i32, out_idx, false),
};
return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
}
static LLVMValueRef
ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx, LLVMValueRef vertexptr,
unsigned stream)
{
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_1, /* second struct entry */
LLVMConstInt(ctx->ac.i32, stream, false),
};
return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
}
void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx,
unsigned stream,
LLVMValueRef *addrs)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
const LLVMValueRef vertexidx =
LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
/* If this thread has already emitted the declared maximum number of
* vertices, skip the write: excessive vertex emissions are not
* supposed to have any effect.
*/
const LLVMValueRef can_emit =
LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
ac_build_ifcc(&ctx->ac, can_emit, 9001);
const LLVMValueRef vertexptr =
ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
unsigned out_idx = 0;
for (unsigned i = 0; i < info->num_outputs; i++) {
for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
if (!(info->output_usagemask[i] & (1 << chan)) ||
((info->output_streams[i] >> (2 * chan)) & 3) != stream)
continue;
LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
out_val = ac_to_integer(&ctx->ac, out_val);
LLVMBuildStore(builder, out_val,
ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
}
}
assert(out_idx * 4 == sel->gsvs_vertex_size);
/* Determine and store whether this vertex completed a primitive. */
const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
const LLVMValueRef iscompleteprim =
LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
/* Since the geometry shader emits triangle strips, we need to
* track which primitive is odd and swap vertex indices to get
* the correct vertex order.
*/
LLVMValueRef is_odd = ctx->ac.i1false;
if (stream == 0 && u_vertices_per_prim(sel->gs_output_prim) == 3) {
tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
}
tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
/* The per-vertex primitive flag encoding:
* bit 0: whether this vertex finishes a primitive
* bit 1: whether the primitive is odd (if we are emitting triangle strips)
*/
tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
tmp = LLVMBuildOr(builder, tmp,
LLVMBuildShl(builder,
LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""),
ctx->ac.i8_1, ""), "");
LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
ac_build_endif(&ctx->ac, 9001);
}
void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
{
/* Zero out the part of LDS scratch that is used to accumulate the
* per-stream generated primitive count.
*/
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef tmp;
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5090);
{
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
}
ac_build_endif(&ctx->ac, 5090);
ac_build_s_barrier(&ctx->ac);
}
void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
LLVMValueRef tmp, tmp2;
/* Zero out remaining (non-emitted) primitive flags.
*
* Note: Alternatively, we could pass the relevant gs_next_vertex to
* the emit threads via LDS. This is likely worse in the expected
* typical case where each GS thread emits the full set of
* vertices.
*/
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
ac_build_bgnloop(&ctx->ac, 5100);
const LLVMValueRef vertexidx =
LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5101);
ac_build_break(&ctx->ac);
ac_build_endif(&ctx->ac, 5101);
tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
ac_build_endloop(&ctx->ac, 5100);
}
/* Accumulate generated primitives counts across the entire threadgroup. */
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
LLVMValueRef numprims =
LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5105);
{
LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
LLVMConstInt(ctx->ac.i32, stream, false)),
numprims, LLVMAtomicOrderingMonotonic, false);
}
ac_build_endif(&ctx->ac, 5105);
}
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
ac_build_s_barrier(&ctx->ac);
const LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
/* Streamout */
if (sel->so.num_outputs) {
struct ngg_streamout nggso = {};
nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
}
for (unsigned i = 0; i < verts_per_prim; ++i) {
tmp = LLVMBuildSub(builder, tid,
LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
tmp = ngg_gs_vertex_ptr(ctx, tmp);
nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
}
build_streamout(ctx, &nggso);
}
/* Write shader query data. */
if (ctx->screen->use_ngg_streamout) {
tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
LLVMConstInt(ctx->ac.i32, num_query_comps, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5110);
{
LLVMValueRef offset;
tmp = tid;
if (sel->so.num_outputs)
tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), "");
offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), "");
if (sel->so.num_outputs) {
tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), "");
tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), "");
offset = LLVMBuildAdd(builder, offset, tmp, "");
}
tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
LLVMValueRef args[] = {
tmp,
ngg_get_query_buf(ctx),
offset,
LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */
ctx->ac.i32_0, /* cachepolicy */
};
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
ctx->ac.i32, args, 5, 0);
}
ac_build_endif(&ctx->ac, 5110);
ac_build_endif(&ctx->ac, 5109);
}
/* Determine vertex liveness. */
LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5120);
{
for (unsigned i = 0; i < verts_per_prim; ++i) {
const LLVMValueRef primidx =
LLVMBuildAdd(builder, tid,
LLVMConstInt(ctx->ac.i32, i, false), "");
if (i > 0) {
tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
}
/* Load primitive liveness */
tmp = ngg_gs_vertex_ptr(ctx, primidx);
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
const LLVMValueRef primlive =
LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
tmp = LLVMBuildLoad(builder, vertliveptr, "");
tmp = LLVMBuildOr(builder, tmp, primlive, ""),
LLVMBuildStore(builder, tmp, vertliveptr);
if (i > 0)
ac_build_endif(&ctx->ac, 5121 + i);
}
}
ac_build_endif(&ctx->ac, 5120);
/* Inclusive scan addition across the current wave. */
LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
struct ac_wg_scan vertlive_scan = {};
vertlive_scan.op = nir_op_iadd;
vertlive_scan.enable_reduce = true;
vertlive_scan.enable_exclusive = true;
vertlive_scan.src = vertlive;
vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
vertlive_scan.numwaves = get_tgsize(ctx);
vertlive_scan.maxwaves = 8;
ac_build_wg_scan(&ctx->ac, &vertlive_scan);
/* Skip all exports (including index exports) when possible. At least on
* early gfx10 revisions this is also to avoid hangs.
*/
LLVMValueRef have_exports =
LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
num_emit_threads =
LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
/* Allocate export space. Send this message as early as possible, to
* hide the latency of the SQ <-> SPI roundtrip.
*
* Note: We could consider compacting primitives for export as well.
* PA processes 1 non-null prim / clock, but it fetches 4 DW of
* prim data per clock and skips null primitives at no additional
* cost. So compacting primitives can only be beneficial when
* there are 4 or more contiguous null primitives in the export
* (in the common case of single-dword prim exports).
*/
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
vertlive_scan.result_reduce, num_emit_threads);
/* Setup the reverse vertex compaction permutation. We re-use stream 1
* of the primitive liveness flags, relying on the fact that each
* threadgroup can have at most 256 threads. */
ac_build_ifcc(&ctx->ac, vertlive, 5130);
{
tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
}
ac_build_endif(&ctx->ac, 5130);
ac_build_s_barrier(&ctx->ac);
/* Export primitive data */
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5140);
{
LLVMValueRef flags;
struct ac_ngg_prim prim = {};
prim.num_vertices = verts_per_prim;
tmp = ngg_gs_vertex_ptr(ctx, tid);
flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
for (unsigned i = 0; i < verts_per_prim; ++i) {
prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
prim.edgeflag[i] = ctx->ac.i1false;
}
/* Geometry shaders output triangle strips, but NGG expects triangles. */
if (verts_per_prim == 3) {
LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
LLVMValueRef flatshade_first =
LLVMBuildICmp(builder, LLVMIntEQ,
si_unpack_param(ctx, ctx->vs_state_bits, 4, 2),
ctx->ac.i32_0, "");
ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd,
flatshade_first,
prim.index);
}
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 5140);
/* Export position and parameter data */
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
ac_build_ifcc(&ctx->ac, tmp, 5145);
{
struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
tmp = ngg_gs_vertex_ptr(ctx, tid);
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
unsigned out_idx = 0;
for (unsigned i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
for (unsigned j = 0; j < 4; j++, out_idx++) {
tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
tmp = LLVMBuildLoad(builder, tmp, "");
outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
outputs[i].vertex_stream[j] =
(info->output_streams[i] >> (2 * j)) & 3;
}
}
si_llvm_build_vs_exports(ctx, outputs, info->num_outputs);
}
ac_build_endif(&ctx->ac, 5145);
}
static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
unsigned min_verts_per_prim, bool use_adjacency)
{
unsigned max_reuse = max_esverts - min_verts_per_prim;
if (use_adjacency)
max_reuse /= 2;
*max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
}
/**
* Determine subgroup information like maximum number of vertices and prims.
*
* This happens before the shader is uploaded, since LDS relocations during
* upload depend on the subgroup size.
*/
void gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
{
const struct si_shader_selector *gs_sel = shader->selector;
const struct si_shader_selector *es_sel =
shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
const enum pipe_shader_type gs_type = gs_sel->type;
const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
const unsigned input_prim = si_get_input_prim(gs_sel);
const bool use_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
const unsigned min_verts_per_prim =
gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1;
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space.
*
* TODO: We should really take the shader's internal LDS use into
* account. The linker will fail if the size is greater than
* 8K dwords.
*/
const unsigned max_lds_size = 8 * 1024 - 768;
const unsigned target_lds_size = max_lds_size;
unsigned esvert_lds_size = 0;
unsigned gsprim_lds_size = 0;
/* All these are per subgroup: */
bool max_vert_out_per_gs_instance = false;
unsigned max_gsprims_base = 128; /* default prim group size clamp */
unsigned max_esverts_base = 128;
if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
max_gsprims_base = 128 / 3;
max_esverts_base = max_gsprims_base * 3;
} else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
max_gsprims_base = 126;
max_esverts_base = 128;
}
/* Hardware has the following non-natural restrictions on the value
* of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
* the draw:
* - at most 252 for any line input primitive type
* - at most 251 for any quad input primitive type
* - at most 251 for triangle strips with adjacency (this happens to
* be the natural limit for triangle *lists* with adjacency)
*/
max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
if (gs_type == PIPE_SHADER_GEOMETRY) {
unsigned max_out_verts_per_gsprim =
gs_sel->gs_max_out_vertices * gs_num_invocations;
if (max_out_verts_per_gsprim <= 256) {
if (max_out_verts_per_gsprim) {
max_gsprims_base = MIN2(max_gsprims_base,
256 / max_out_verts_per_gsprim);
}
} else {
/* Use special multi-cycling mode in which each GS
* instance gets its own subgroup. Does not work with
* tessellation. */
max_vert_out_per_gs_instance = true;
max_gsprims_base = 1;
max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
}
esvert_lds_size = es_sel->esgs_itemsize / 4;
gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
} else {
/* VS and TES. */
/* LDS size for passing data from ES to GS. */
esvert_lds_size = ngg_nogs_vertex_size(shader);
}
unsigned max_gsprims = max_gsprims_base;
unsigned max_esverts = max_esverts_base;
if (esvert_lds_size)
max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
if (esvert_lds_size || gsprim_lds_size) {
/* Now that we have a rough proportionality between esverts
* and gsprims based on the primitive type, scale both of them
* down simultaneously based on required LDS space.
*
* We could be smarter about this if we knew how much vertex
* reuse to expect.
*/
unsigned lds_total = max_esverts * esvert_lds_size +
max_gsprims * gsprim_lds_size;
if (lds_total > target_lds_size) {
max_esverts = max_esverts * target_lds_size / lds_total;
max_gsprims = max_gsprims * target_lds_size / lds_total;
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
}
}
/* Round up towards full wave sizes for better ALU utilization. */
if (!max_vert_out_per_gs_instance) {
const unsigned wavesize = gs_sel->screen->ge_wave_size;
unsigned orig_max_esverts;
unsigned orig_max_gsprims;
do {
orig_max_esverts = max_esverts;
orig_max_gsprims = max_gsprims;
max_esverts = align(max_esverts, wavesize);
max_esverts = MIN2(max_esverts, max_esverts_base);
if (esvert_lds_size)
max_esverts = MIN2(max_esverts,
(max_lds_size - max_gsprims * gsprim_lds_size) /
esvert_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
max_gsprims = align(max_gsprims, wavesize);
max_gsprims = MIN2(max_gsprims, max_gsprims_base);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims,
(max_lds_size - max_esverts * esvert_lds_size) /
gsprim_lds_size);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
} while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
}
/* Hardware restriction: minimum value of max_esverts */
max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
unsigned max_out_vertices =
max_vert_out_per_gs_instance ? gs_sel->gs_max_out_vertices :
gs_type == PIPE_SHADER_GEOMETRY ?
max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices :
max_esverts;
assert(max_out_vertices <= 256);
unsigned prim_amp_factor = 1;
if (gs_type == PIPE_SHADER_GEOMETRY) {
/* Number of output primitives per GS input primitive after
* GS instancing. */
prim_amp_factor = gs_sel->gs_max_out_vertices;
}
/* The GE only checks against the maximum number of ES verts after
* allocating a full GS primitive. So we need to ensure that whenever
* this check passes, there is enough space for a full primitive without
* vertex reuse.
*/
shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
shader->ngg.max_gsprims = max_gsprims;
shader->ngg.max_out_verts = max_out_vertices;
shader->ngg.prim_amp_factor = prim_amp_factor;
shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
shader->gs_info.esgs_ring_size = 4 * max_esverts * esvert_lds_size;
shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */
}
|