1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
|
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_pipe.h"
#include "si_shader_internal.h"
#include "sid.h"
#include "util/u_memory.h"
#include "util/u_prim.h"
static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4);
}
static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4);
}
static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
}
static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9);
}
static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9);
}
static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
{
return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12);
}
static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
{
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
LLVMConstInt(ctx->i32, GFX10_GS_QUERY_BUF, false));
}
static LLVMValueRef ngg_get_initial_edgeflag(struct si_shader_context *ctx, unsigned index)
{
if (ctx->type == PIPE_SHADER_VERTEX) {
LLVMValueRef tmp;
tmp = LLVMBuildLShr(ctx->ac.builder,
ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id),
LLVMConstInt(ctx->ac.i32, 8 + index, false), "");
return LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, "");
}
return ctx->i1false;
}
/**
* Return the number of vertices as a constant in \p num_vertices,
* and return a more precise value as LLVMValueRef from the function.
*/
static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx,
unsigned *num_vertices)
{
const struct si_shader_info *info = &ctx->shader->selector->info;
if (ctx->type == PIPE_SHADER_VERTEX) {
if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
/* Blits always use axis-aligned rectangles with 3 vertices. */
*num_vertices = 3;
return LLVMConstInt(ctx->i32, 3, 0);
} else {
/* We always build up all three indices for the prim export
* independent of the primitive type. The additional garbage
* data shouldn't hurt. This number doesn't matter with
* NGG passthrough.
*/
*num_vertices = 3;
/* Extract OUTPRIM field. */
LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
return LLVMBuildAdd(ctx->ac.builder, num, ctx->i32_1, "");
}
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
*num_vertices = 1;
else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
*num_vertices = 2;
else
*num_vertices = 3;
return LLVMConstInt(ctx->i32, *num_vertices, false);
}
}
bool gfx10_ngg_export_prim_early(struct si_shader *shader)
{
struct si_shader_selector *sel = shader->selector;
assert(shader->key.as_ngg && !shader->key.as_es);
return sel->type != PIPE_SHADER_GEOMETRY &&
!sel->info.writes_edgeflag;
}
void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
{
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
ngg_get_vtx_cnt(ctx),
ngg_get_prim_cnt(ctx));
}
void gfx10_ngg_build_export_prim(struct si_shader_context *ctx,
LLVMValueRef user_edgeflags[3])
{
if (gfx10_is_ngg_passthrough(ctx->shader)) {
ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
{
struct ac_ngg_prim prim = {};
prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 6001);
return;
}
ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
{
struct ac_ngg_prim prim = {};
ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
prim.isnull = ctx->ac.i1false;
prim.index[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
prim.index[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
prim.index[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
for (unsigned i = 0; i < prim.num_vertices; ++i) {
prim.edgeflag[i] = ngg_get_initial_edgeflag(ctx, i);
if (ctx->shader->selector->info.writes_edgeflag) {
LLVMValueRef edge;
edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
edge = LLVMBuildAnd(ctx->ac.builder, prim.edgeflag[i], edge, "");
prim.edgeflag[i] = edge;
}
}
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 6001);
}
static void build_streamout_vertex(struct si_shader_context *ctx,
LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
unsigned stream, LLVMValueRef offset_vtx,
LLVMValueRef vertexptr)
{
struct si_shader_info *info = &ctx->shader->selector->info;
struct pipe_stream_output_info *so = &ctx->shader->selector->so;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef offset[4] = {};
LLVMValueRef tmp;
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (!wg_offset_dw[buffer])
continue;
tmp = LLVMBuildMul(builder, offset_vtx,
LLVMConstInt(ctx->i32, so->stride[buffer], false), "");
tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->i32, 2, false), "");
}
for (unsigned i = 0; i < so->num_outputs; ++i) {
if (so->output[i].stream != stream)
continue;
unsigned reg = so->output[i].register_index;
struct si_shader_output_values out;
out.semantic_name = info->output_semantic_name[reg];
out.semantic_index = info->output_semantic_index[reg];
for (unsigned comp = 0; comp < 4; comp++) {
tmp = ac_build_gep0(&ctx->ac, vertexptr,
LLVMConstInt(ctx->i32, 4 * reg + comp, false));
out.values[comp] = LLVMBuildLoad(builder, tmp, "");
out.vertex_stream[comp] =
(info->output_streams[reg] >> (2 * comp)) & 3;
}
si_emit_streamout_output(ctx, so_buffer, offset, &so->output[i], &out);
}
}
struct ngg_streamout {
LLVMValueRef num_vertices;
/* per-thread data */
LLVMValueRef prim_enable[4]; /* i1 per stream */
LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
/* Output */
LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
};
/**
* Build streamout logic.
*
* Implies a barrier.
*
* Writes number of emitted primitives to gs_ngg_scratch[4:8].
*
* Clobbers gs_ngg_scratch[8:].
*/
static void build_streamout(struct si_shader_context *ctx,
struct ngg_streamout *nggso)
{
struct si_shader_info *info = &ctx->shader->selector->info;
struct pipe_stream_output_info *so = &ctx->shader->selector->so;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef tmp, tmp2;
LLVMValueRef i32_2 = LLVMConstInt(ctx->i32, 2, false);
LLVMValueRef i32_4 = LLVMConstInt(ctx->i32, 4, false);
LLVMValueRef i32_8 = LLVMConstInt(ctx->i32, 8, false);
LLVMValueRef so_buffer[4] = {};
unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
(nggso->vertices[2] ? 1 : 0);
LLVMValueRef prim_stride_dw[4] = {};
LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->i32);
int stream_for_buffer[4] = { -1, -1, -1, -1 };
unsigned bufmask_for_stream[4] = {};
bool isgs = ctx->type == PIPE_SHADER_GEOMETRY;
unsigned scratch_emit_base = isgs ? 4 : 0;
LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->i32_0;
unsigned scratch_offset_base = isgs ? 8 : 4;
LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
/* Determine the mapping of streamout buffers to vertex streams. */
for (unsigned i = 0; i < so->num_outputs; ++i) {
unsigned buf = so->output[i].output_buffer;
unsigned stream = so->output[i].stream;
assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
stream_for_buffer[buf] = stream;
bufmask_for_stream[stream] |= 1 << buf;
}
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == -1)
continue;
assert(so->stride[buffer]);
tmp = LLVMConstInt(ctx->i32, so->stride[buffer], false);
prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
prim_stride_dw_vgpr = ac_build_writelane(
&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
LLVMConstInt(ctx->i32, buffer, false));
so_buffer[buffer] = ac_build_load_to_sgpr(
&ctx->ac, buf_ptr,
LLVMConstInt(ctx->i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
}
tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5200);
{
LLVMTypeRef gdsptr = LLVMPointerType(ctx->i32, AC_ADDR_SPACE_GDS);
LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->i32_0, gdsptr, "");
/* Advance the streamout offsets in GDS. */
LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
ac_build_ifcc(&ctx->ac, tmp, 5210);
{
if (isgs) {
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
tmp = LLVMBuildLoad(builder, tmp, "");
} else {
tmp = ac_build_writelane(&ctx->ac, ctx->i32_0,
ngg_get_prim_cnt(ctx), ctx->i32_0);
}
LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
unsigned swizzle[4];
int unused_stream = -1;
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream]) {
unused_stream = stream;
break;
}
}
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] >= 0) {
swizzle[buffer] = stream_for_buffer[buffer];
} else {
assert(unused_stream >= 0);
swizzle[buffer] = unused_stream;
}
}
tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
LLVMValueRef args[] = {
LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
tmp,
ctx->i32_0, // ordering
ctx->i32_0, // scope
ctx->ac.i1false, // isVolatile
LLVMConstInt(ctx->i32, 4 << 24, false), // OA index
ctx->ac.i1true, // wave release
ctx->ac.i1true, // wave done
};
tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
ctx->i32, args, ARRAY_SIZE(args), 0);
/* Keep offsets in a VGPR for quick retrieval via readlane by
* the first wave for bounds checking, and also store in LDS
* for retrieval by all waves later. */
LLVMBuildStore(builder, tmp, offsets_vgpr);
tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
scratch_offset_basev, "");
tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
LLVMBuildStore(builder, tmp, tmp2);
}
ac_build_endif(&ctx->ac, 5210);
/* Determine the max emit per buffer. This is done via the SALU, in part
* because LLVM can't generate divide-by-multiply if we try to do this
* via VALU with one lane per buffer.
*/
LLVMValueRef max_emit[4] = {};
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == -1)
continue;
LLVMValueRef bufsize_dw =
LLVMBuildLShr(builder,
LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
i32_2, "");
tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
LLVMValueRef offset_dw =
ac_build_readlane(&ctx->ac, tmp,
LLVMConstInt(ctx->i32, buffer, false));
tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->i32_0, tmp, "");
}
/* Determine the number of emitted primitives per stream and fixup the
* GDS counter if necessary.
*
* This is complicated by the fact that a single stream can emit to
* multiple buffers (but luckily not vice versa).
*/
LLVMValueRef emit_vgpr = ctx->i32_0;
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
LLVMValueRef generated =
ac_build_readlane(&ctx->ac, tmp,
LLVMConstInt(ctx->i32, stream, false));
LLVMValueRef emit = generated;
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] == stream)
emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
}
emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
LLVMConstInt(ctx->i32, stream, false));
/* Fixup the offset using a plain GDS atomic if we overflowed. */
tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
tmp = LLVMBuildLShr(builder,
LLVMConstInt(ctx->i32, bufmask_for_stream[stream], false),
ac_get_thread_id(&ctx->ac), "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5222);
{
tmp = LLVMBuildSub(builder, generated, emit, "");
tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
LLVMAtomicOrderingMonotonic, false);
}
ac_build_endif(&ctx->ac, 5222);
ac_build_endif(&ctx->ac, 5221);
}
tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
ac_build_ifcc(&ctx->ac, tmp, 5225);
{
tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
scratch_emit_basev, "");
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
LLVMBuildStore(builder, emit_vgpr, tmp);
}
ac_build_endif(&ctx->ac, 5225);
}
ac_build_endif(&ctx->ac, 5200);
/* Determine the workgroup-relative per-thread / primitive offset into
* the streamout buffers */
struct ac_wg_scan primemit_scan[4] = {};
if (isgs) {
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
primemit_scan[stream].enable_exclusive = true;
primemit_scan[stream].op = nir_op_iadd;
primemit_scan[stream].src = nggso->prim_enable[stream];
primemit_scan[stream].scratch =
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
LLVMConstInt(ctx->i32, 12 + 8 * stream, false));
primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
primemit_scan[stream].numwaves = get_tgsize(ctx);
primemit_scan[stream].maxwaves = 8;
ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
}
}
ac_build_s_barrier(&ctx->ac);
/* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
LLVMValueRef wgoffset_dw[4] = {};
{
LLVMValueRef scratch_vgpr;
tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
for (unsigned buffer = 0; buffer < 4; ++buffer) {
if (stream_for_buffer[buffer] >= 0) {
wgoffset_dw[buffer] = ac_build_readlane(
&ctx->ac, scratch_vgpr,
LLVMConstInt(ctx->i32, scratch_offset_base + buffer, false));
}
}
for (unsigned stream = 0; stream < 4; ++stream) {
if (info->num_stream_output_components[stream]) {
nggso->emit[stream] = ac_build_readlane(
&ctx->ac, scratch_vgpr,
LLVMConstInt(ctx->i32, scratch_emit_base + stream, false));
}
}
}
/* Write out primitive data */
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
if (isgs) {
ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
} else {
primemit_scan[stream].result_exclusive = tid;
}
tmp = LLVMBuildICmp(builder, LLVMIntULT,
primemit_scan[stream].result_exclusive,
nggso->emit[stream], "");
tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
ac_build_ifcc(&ctx->ac, tmp, 5240);
{
LLVMValueRef offset_vtx =
LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
nggso->num_vertices, "");
for (unsigned i = 0; i < max_num_vertices; ++i) {
tmp = LLVMBuildICmp(builder, LLVMIntULT,
LLVMConstInt(ctx->i32, i, false),
nggso->num_vertices, "");
ac_build_ifcc(&ctx->ac, tmp, 5241);
build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
stream, offset_vtx, nggso->vertices[i]);
ac_build_endif(&ctx->ac, 5241);
offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->i32_1, "");
}
}
ac_build_endif(&ctx->ac, 5240);
}
}
static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
{
unsigned lds_vertex_size = 0;
/* The edgeflag is always stored in the last element that's also
* used for padding to reduce LDS bank conflicts. */
if (shader->selector->so.num_outputs)
lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
if (shader->selector->info.writes_edgeflag)
lds_vertex_size = MAX2(lds_vertex_size, 1);
/* LDS size for passing data from GS to ES.
* GS stores Primitive IDs into LDS at the address corresponding
* to the ES thread of the provoking vertex. All ES threads
* load and export PrimitiveID for their thread.
*/
if (shader->selector->type == PIPE_SHADER_VERTEX &&
shader->key.mono.u.vs_export_prim_id)
lds_vertex_size = MAX2(lds_vertex_size, 1);
return lds_vertex_size;
}
/**
* Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
* for the vertex outputs.
*/
static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx,
LLVMValueRef vtxid)
{
/* The extra dword is used to avoid LDS bank conflicts. */
unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
LLVMTypeRef ai32 = LLVMArrayType(ctx->i32, vertex_size);
LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
}
/**
* Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
*/
void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
unsigned max_outputs,
LLVMValueRef *addrs)
{
struct si_shader_context *ctx = si_shader_context_from_abi(abi);
struct si_shader_selector *sel = ctx->shader->selector;
struct si_shader_info *info = &sel->info;
struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp, tmp2;
assert(!ctx->shader->is_gs_copy_shader);
assert(info->num_outputs <= max_outputs);
LLVMValueRef vertex_ptr = NULL;
if (sel->so.num_outputs || sel->info.writes_edgeflag)
vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
for (unsigned i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
for (unsigned j = 0; j < 4; j++) {
outputs[i].vertex_stream[j] =
(info->output_streams[i] >> (2 * j)) & 3;
/* TODO: we may store more outputs than streamout needs,
* but streamout performance isn't that important.
*/
if (sel->so.num_outputs) {
tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
LLVMConstInt(ctx->i32, 4 * i + j, false));
tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
tmp2 = ac_to_integer(&ctx->ac, tmp2);
LLVMBuildStore(builder, tmp2, tmp);
}
}
/* Store the edgeflag at the end (if streamout is enabled) */
if (info->output_semantic_name[i] == TGSI_SEMANTIC_EDGEFLAG &&
sel->info.writes_edgeflag) {
LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
/* The output is a float, but the hw expects a 1-bit integer. */
edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->i32, "");
edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->i32_1);
tmp = LLVMConstInt(ctx->i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
LLVMBuildStore(builder, edgeflag, tmp);
}
}
bool unterminated_es_if_block =
gfx10_is_ngg_passthrough(ctx->shader) &&
!ctx->screen->use_ngg_streamout && /* no query buffer */
(ctx->type != PIPE_SHADER_VERTEX ||
!ctx->shader->key.mono.u.vs_export_prim_id);
if (!unterminated_es_if_block)
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
LLVMValueRef is_es_thread = si_is_es_thread(ctx);
LLVMValueRef vtxindex[] = {
si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16),
si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16),
si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16),
};
/* Determine the number of vertices per primitive. */
unsigned num_vertices;
LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
/* Streamout */
LLVMValueRef emitted_prims = NULL;
if (sel->so.num_outputs) {
assert(!unterminated_es_if_block);
struct ngg_streamout nggso = {};
nggso.num_vertices = num_vertices_val;
nggso.prim_enable[0] = is_gs_thread;
for (unsigned i = 0; i < num_vertices; ++i)
nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
build_streamout(ctx, &nggso);
emitted_prims = nggso.emit[0];
}
LLVMValueRef user_edgeflags[3] = {};
if (sel->info.writes_edgeflag) {
assert(!unterminated_es_if_block);
/* Streamout already inserted the barrier, so don't insert it again. */
if (!sel->so.num_outputs)
ac_build_s_barrier(&ctx->ac);
ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
/* Load edge flags from ES threads and store them into VGPRs in GS threads. */
for (unsigned i = 0; i < num_vertices; i++) {
tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
tmp2 = LLVMConstInt(ctx->i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
tmp = LLVMBuildLoad(builder, tmp, "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
LLVMBuildStore(builder, tmp, user_edgeflags[i]);
}
ac_build_endif(&ctx->ac, 5400);
}
/* Copy Primitive IDs from GS threads to the LDS address corresponding
* to the ES thread of the provoking vertex.
*/
if (ctx->type == PIPE_SHADER_VERTEX &&
ctx->shader->key.mono.u.vs_export_prim_id) {
assert(!unterminated_es_if_block);
/* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
if (sel->so.num_outputs || sel->info.writes_edgeflag)
ac_build_s_barrier(&ctx->ac);
ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
/* Extract the PROVOKING_VTX_INDEX field. */
LLVMValueRef provoking_vtx_in_prim =
si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
/* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
LLVMValueRef provoking_vtx_index =
LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
ac_build_gep0(&ctx->ac, vertex_ptr, ctx->i32_0));
ac_build_endif(&ctx->ac, 5400);
}
/* Update query buffer */
if (ctx->screen->use_ngg_streamout &&
!info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
assert(!unterminated_es_if_block);
tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5030);
tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5031);
{
LLVMValueRef args[] = {
ngg_get_prim_cnt(ctx),
ngg_get_query_buf(ctx),
LLVMConstInt(ctx->i32, 16, false), /* offset of stream[0].generated_primitives */
ctx->i32_0, /* soffset */
ctx->i32_0, /* cachepolicy */
};
if (sel->so.num_outputs) {
args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->i32_1);
args[2] = ac_build_writelane(&ctx->ac, args[2],
LLVMConstInt(ctx->i32, 24, false), ctx->i32_1);
}
/* TODO: should this be 64-bit atomics? */
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
ctx->i32, args, 5, 0);
}
ac_build_endif(&ctx->ac, 5031);
ac_build_endif(&ctx->ac, 5030);
ac_build_endif(&ctx->ac, 5029);
}
/* Build the primitive export. */
if (!gfx10_ngg_export_prim_early(ctx->shader)) {
assert(!unterminated_es_if_block);
gfx10_ngg_build_export_prim(ctx, user_edgeflags);
}
/* Export per-vertex data (positions and parameters). */
if (!unterminated_es_if_block)
ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
{
unsigned i;
/* Unconditionally (re-)load the values for proper SSA form. */
for (i = 0; i < info->num_outputs; i++) {
for (unsigned j = 0; j < 4; j++) {
outputs[i].values[j] =
LLVMBuildLoad(builder,
addrs[4 * i + j],
"");
}
}
if (ctx->shader->key.mono.u.vs_export_prim_id) {
outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
outputs[i].semantic_index = 0;
if (ctx->type == PIPE_SHADER_VERTEX) {
/* Wait for GS stores to finish. */
ac_build_s_barrier(&ctx->ac);
tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
tmp = ac_build_gep0(&ctx->ac, tmp, ctx->i32_0);
outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
} else {
assert(ctx->type == PIPE_SHADER_TESS_EVAL);
outputs[i].values[0] = si_get_primitive_id(ctx, 0);
}
outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
for (unsigned j = 1; j < 4; j++)
outputs[i].values[j] = LLVMGetUndef(ctx->f32);
memset(outputs[i].vertex_stream, 0,
sizeof(outputs[i].vertex_stream));
i++;
}
si_llvm_export_vs(ctx, outputs, i);
}
ac_build_endif(&ctx->ac, 6002);
}
static LLVMValueRef
ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
LLVMTypeRef elements[2] = {
LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
LLVMArrayType(ctx->ac.i8, 4),
};
LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
}
/**
* Return a pointer to the LDS storage reserved for the N'th vertex, where N
* is in emit order; that is:
* - during the epilogue, N is the threadidx (relative to the entire threadgroup)
* - during vertex emit, i.e. while the API GS shader invocation is running,
* N = threadidx * gs_max_out_vertices + emitidx
*
* Goals of the LDS memory layout:
* 1. Eliminate bank conflicts on write for geometry shaders that have all emits
* in uniform control flow
* 2. Eliminate bank conflicts on read for export if, additionally, there is no
* culling
* 3. Agnostic to the number of waves (since we don't know it before compiling)
* 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
* 5. Avoid wasting memory.
*
* We use an AoS layout due to point 4 (this also helps point 3). In an AoS
* layout, elimination of bank conflicts requires that each vertex occupy an
* odd number of dwords. We use the additional dword to store the output stream
* index as well as a flag to indicate whether this vertex ends a primitive
* for rasterization.
*
* Swizzling is required to satisfy points 1 and 2 simultaneously.
*
* Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
* Indices are swizzled in groups of 32, which ensures point 1 without
* disturbing point 2.
*
* \return an LDS pointer to type {[N x i32], [4 x i8]}
*/
static LLVMValueRef
ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
{
struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
/* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
if (write_stride_2exp) {
LLVMValueRef row =
LLVMBuildLShr(builder, vertexidx,
LLVMConstInt(ctx->ac.i32, 5, false), "");
LLVMValueRef swizzle =
LLVMBuildAnd(builder, row,
LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
false), "");
vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
}
return ac_build_gep0(&ctx->ac, storage, vertexidx);
}
static LLVMValueRef
ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
LLVMValueRef emitidx)
{
struct si_shader_selector *sel = ctx->shader->selector;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
tmp = LLVMBuildMul(builder, tmp, gsthread, "");
const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
return ngg_gs_vertex_ptr(ctx, vertexidx);
}
static LLVMValueRef
ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx, LLVMValueRef vertexptr,
unsigned out_idx)
{
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_0, /* first struct entry */
LLVMConstInt(ctx->ac.i32, out_idx, false),
};
return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
}
static LLVMValueRef
ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx, LLVMValueRef vertexptr,
unsigned stream)
{
LLVMValueRef gep_idx[3] = {
ctx->ac.i32_0, /* implied C-style array */
ctx->ac.i32_1, /* second struct entry */
LLVMConstInt(ctx->ac.i32, stream, false),
};
return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
}
void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx,
unsigned stream,
LLVMValueRef *addrs)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef tmp;
const LLVMValueRef vertexidx =
LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
/* If this thread has already emitted the declared maximum number of
* vertices, skip the write: excessive vertex emissions are not
* supposed to have any effect.
*/
const LLVMValueRef can_emit =
LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
LLVMConstInt(ctx->i32, sel->gs_max_out_vertices, false), "");
tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
ac_build_ifcc(&ctx->ac, can_emit, 9001);
const LLVMValueRef vertexptr =
ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
unsigned out_idx = 0;
for (unsigned i = 0; i < info->num_outputs; i++) {
for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
if (!(info->output_usagemask[i] & (1 << chan)) ||
((info->output_streams[i] >> (2 * chan)) & 3) != stream)
continue;
LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
out_val = ac_to_integer(&ctx->ac, out_val);
LLVMBuildStore(builder, out_val,
ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
}
}
assert(out_idx * 4 == sel->gsvs_vertex_size);
/* Determine and store whether this vertex completed a primitive. */
const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
const LLVMValueRef iscompleteprim =
LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
/* Since the geometry shader emits triangle strips, we need to
* track which primitive is odd and swap vertex indices to get
* the correct vertex order.
*/
LLVMValueRef is_odd = ctx->i1false;
if (stream == 0 && u_vertices_per_prim(sel->gs_output_prim) == 3) {
tmp = LLVMBuildAnd(builder, curverts, ctx->i32_1, "");
is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->i32_1, "");
}
tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
/* The per-vertex primitive flag encoding:
* bit 0: whether this vertex finishes a primitive
* bit 1: whether the primitive is odd (if we are emitting triangle strips)
*/
tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
tmp = LLVMBuildOr(builder, tmp,
LLVMBuildShl(builder,
LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""),
ctx->ac.i8_1, ""), "");
LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
ac_build_endif(&ctx->ac, 9001);
}
void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
{
/* Zero out the part of LDS scratch that is used to accumulate the
* per-stream generated primitive count.
*/
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef tmp;
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->i32, 4, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5090);
{
LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
LLVMBuildStore(builder, ctx->i32_0, ptr);
}
ac_build_endif(&ctx->ac, 5090);
ac_build_s_barrier(&ctx->ac);
}
void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
{
const struct si_shader_selector *sel = ctx->shader->selector;
const struct si_shader_info *info = &sel->info;
const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
LLVMValueRef tmp, tmp2;
/* Zero out remaining (non-emitted) primitive flags.
*
* Note: Alternatively, we could pass the relevant gs_next_vertex to
* the emit threads via LDS. This is likely worse in the expected
* typical case where each GS thread emits the full set of
* vertices.
*/
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
ac_build_bgnloop(&ctx->ac, 5100);
const LLVMValueRef vertexidx =
LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5101);
ac_build_break(&ctx->ac);
ac_build_endif(&ctx->ac, 5101);
tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
ac_build_endloop(&ctx->ac, 5100);
}
/* Accumulate generated primitives counts across the entire threadgroup. */
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
LLVMValueRef numprims =
LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->i32_0, "");
ac_build_ifcc(&ctx->ac, tmp, 5105);
{
LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
LLVMConstInt(ctx->i32, stream, false)),
numprims, LLVMAtomicOrderingMonotonic, false);
}
ac_build_endif(&ctx->ac, 5105);
}
ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
ac_build_s_barrier(&ctx->ac);
const LLVMValueRef tid = get_thread_id_in_tg(ctx);
LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
/* Streamout */
if (sel->so.num_outputs) {
struct ngg_streamout nggso = {};
nggso.num_vertices = LLVMConstInt(ctx->i32, verts_per_prim, false);
LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
for (unsigned stream = 0; stream < 4; ++stream) {
if (!info->num_stream_output_components[stream])
continue;
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
}
for (unsigned i = 0; i < verts_per_prim; ++i) {
tmp = LLVMBuildSub(builder, tid,
LLVMConstInt(ctx->i32, verts_per_prim - i - 1, false), "");
tmp = ngg_gs_vertex_ptr(ctx, tmp);
nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->i32_0);
}
build_streamout(ctx, &nggso);
}
/* Write shader query data. */
if (ctx->screen->use_ngg_streamout) {
tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
tmp = LLVMBuildTrunc(builder, tmp, ctx->i1, "");
ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
LLVMConstInt(ctx->i32, num_query_comps, false), "");
ac_build_ifcc(&ctx->ac, tmp, 5110);
{
LLVMValueRef offset;
tmp = tid;
if (sel->so.num_outputs)
tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->i32, 3, false), "");
offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 32, false), "");
if (sel->so.num_outputs) {
tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->i32, 2, false), "");
tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->i32, 8, false), "");
offset = LLVMBuildAdd(builder, offset, tmp, "");
}
tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
LLVMValueRef args[] = {
tmp,
ngg_get_query_buf(ctx),
offset,
LLVMConstInt(ctx->i32, 16, false), /* soffset */
ctx->i32_0, /* cachepolicy */
};
ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
ctx->i32, args, 5, 0);
}
ac_build_endif(&ctx->ac, 5110);
ac_build_endif(&ctx->ac, 5109);
}
/* Determine vertex liveness. */
LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5120);
{
for (unsigned i = 0; i < verts_per_prim; ++i) {
const LLVMValueRef primidx =
LLVMBuildAdd(builder, tid,
LLVMConstInt(ctx->ac.i32, i, false), "");
if (i > 0) {
tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
}
/* Load primitive liveness */
tmp = ngg_gs_vertex_ptr(ctx, primidx);
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
const LLVMValueRef primlive =
LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
tmp = LLVMBuildLoad(builder, vertliveptr, "");
tmp = LLVMBuildOr(builder, tmp, primlive, ""),
LLVMBuildStore(builder, tmp, vertliveptr);
if (i > 0)
ac_build_endif(&ctx->ac, 5121 + i);
}
}
ac_build_endif(&ctx->ac, 5120);
/* Inclusive scan addition across the current wave. */
LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
struct ac_wg_scan vertlive_scan = {};
vertlive_scan.op = nir_op_iadd;
vertlive_scan.enable_reduce = true;
vertlive_scan.enable_exclusive = true;
vertlive_scan.src = vertlive;
vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->i32_0);
vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
vertlive_scan.numwaves = get_tgsize(ctx);
vertlive_scan.maxwaves = 8;
ac_build_wg_scan(&ctx->ac, &vertlive_scan);
/* Skip all exports (including index exports) when possible. At least on
* early gfx10 revisions this is also to avoid hangs.
*/
LLVMValueRef have_exports =
LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
num_emit_threads =
LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
/* Allocate export space. Send this message as early as possible, to
* hide the latency of the SQ <-> SPI roundtrip.
*
* Note: We could consider compacting primitives for export as well.
* PA processes 1 non-null prim / clock, but it fetches 4 DW of
* prim data per clock and skips null primitives at no additional
* cost. So compacting primitives can only be beneficial when
* there are 4 or more contiguous null primitives in the export
* (in the common case of single-dword prim exports).
*/
ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
vertlive_scan.result_reduce, num_emit_threads);
/* Setup the reverse vertex compaction permutation. We re-use stream 1
* of the primitive liveness flags, relying on the fact that each
* threadgroup can have at most 256 threads. */
ac_build_ifcc(&ctx->ac, vertlive, 5130);
{
tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
}
ac_build_endif(&ctx->ac, 5130);
ac_build_s_barrier(&ctx->ac);
/* Export primitive data */
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
ac_build_ifcc(&ctx->ac, tmp, 5140);
{
LLVMValueRef flags;
struct ac_ngg_prim prim = {};
prim.num_vertices = verts_per_prim;
tmp = ngg_gs_vertex_ptr(ctx, tid);
flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->i1, ""), "");
for (unsigned i = 0; i < verts_per_prim; ++i) {
prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
prim.edgeflag[i] = ctx->ac.i1false;
}
/* Geometry shaders output triangle strips, but NGG expects triangles.
* We need to change the vertex order for odd triangles to get correct
* front/back facing by swapping 2 vertex indices, but we also have to
* keep the provoking vertex in the same place.
*
* If the first vertex is provoking, swap index 1 and 2.
* If the last vertex is provoking, swap index 0 and 1.
*/
if (verts_per_prim == 3) {
LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
is_odd = LLVMBuildTrunc(builder, is_odd, ctx->i1, "");
LLVMValueRef flatshade_first =
LLVMBuildICmp(builder, LLVMIntEQ,
si_unpack_param(ctx, ctx->vs_state_bits, 4, 2),
ctx->i32_0, "");
struct ac_ngg_prim in = prim;
prim.index[0] = LLVMBuildSelect(builder, flatshade_first,
in.index[0],
LLVMBuildSelect(builder, is_odd,
in.index[1], in.index[0], ""), "");
prim.index[1] = LLVMBuildSelect(builder, flatshade_first,
LLVMBuildSelect(builder, is_odd,
in.index[2], in.index[1], ""),
LLVMBuildSelect(builder, is_odd,
in.index[0], in.index[1], ""), "");
prim.index[2] = LLVMBuildSelect(builder, flatshade_first,
LLVMBuildSelect(builder, is_odd,
in.index[1], in.index[2], ""),
in.index[2], "");
}
ac_build_export_prim(&ctx->ac, &prim);
}
ac_build_endif(&ctx->ac, 5140);
/* Export position and parameter data */
tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
ac_build_ifcc(&ctx->ac, tmp, 5145);
{
struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
tmp = ngg_gs_vertex_ptr(ctx, tid);
tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
unsigned out_idx = 0;
for (unsigned i = 0; i < info->num_outputs; i++) {
outputs[i].semantic_name = info->output_semantic_name[i];
outputs[i].semantic_index = info->output_semantic_index[i];
for (unsigned j = 0; j < 4; j++, out_idx++) {
tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
tmp = LLVMBuildLoad(builder, tmp, "");
outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
outputs[i].vertex_stream[j] =
(info->output_streams[i] >> (2 * j)) & 3;
}
}
si_llvm_export_vs(ctx, outputs, info->num_outputs);
}
ac_build_endif(&ctx->ac, 5145);
}
static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
unsigned min_verts_per_prim, bool use_adjacency)
{
unsigned max_reuse = max_esverts - min_verts_per_prim;
if (use_adjacency)
max_reuse /= 2;
*max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
}
/**
* Determine subgroup information like maximum number of vertices and prims.
*
* This happens before the shader is uploaded, since LDS relocations during
* upload depend on the subgroup size.
*/
void gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
{
const struct si_shader_selector *gs_sel = shader->selector;
const struct si_shader_selector *es_sel =
shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
const enum pipe_shader_type gs_type = gs_sel->type;
const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
const unsigned input_prim = si_get_input_prim(gs_sel);
const bool use_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
const unsigned min_verts_per_prim =
gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1;
/* All these are in dwords: */
/* We can't allow using the whole LDS, because GS waves compete with
* other shader stages for LDS space.
*
* TODO: We should really take the shader's internal LDS use into
* account. The linker will fail if the size is greater than
* 8K dwords.
*/
const unsigned max_lds_size = 8 * 1024 - 768;
const unsigned target_lds_size = max_lds_size;
unsigned esvert_lds_size = 0;
unsigned gsprim_lds_size = 0;
/* All these are per subgroup: */
bool max_vert_out_per_gs_instance = false;
unsigned max_esverts_base = 128;
unsigned max_gsprims_base = 128; /* default prim group size clamp */
/* Hardware has the following non-natural restrictions on the value
* of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
* the draw:
* - at most 252 for any line input primitive type
* - at most 251 for any quad input primitive type
* - at most 251 for triangle strips with adjacency (this happens to
* be the natural limit for triangle *lists* with adjacency)
*/
max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
if (gs_type == PIPE_SHADER_GEOMETRY) {
unsigned max_out_verts_per_gsprim =
gs_sel->gs_max_out_vertices * gs_num_invocations;
if (max_out_verts_per_gsprim <= 256) {
if (max_out_verts_per_gsprim) {
max_gsprims_base = MIN2(max_gsprims_base,
256 / max_out_verts_per_gsprim);
}
} else {
/* Use special multi-cycling mode in which each GS
* instance gets its own subgroup. Does not work with
* tessellation. */
max_vert_out_per_gs_instance = true;
max_gsprims_base = 1;
max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
}
esvert_lds_size = es_sel->esgs_itemsize / 4;
gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
} else {
/* VS and TES. */
/* LDS size for passing data from ES to GS. */
esvert_lds_size = ngg_nogs_vertex_size(shader);
}
unsigned max_gsprims = max_gsprims_base;
unsigned max_esverts = max_esverts_base;
if (esvert_lds_size)
max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
if (esvert_lds_size || gsprim_lds_size) {
/* Now that we have a rough proportionality between esverts
* and gsprims based on the primitive type, scale both of them
* down simultaneously based on required LDS space.
*
* We could be smarter about this if we knew how much vertex
* reuse to expect.
*/
unsigned lds_total = max_esverts * esvert_lds_size +
max_gsprims * gsprim_lds_size;
if (lds_total > target_lds_size) {
max_esverts = max_esverts * target_lds_size / lds_total;
max_gsprims = max_gsprims * target_lds_size / lds_total;
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
}
}
/* Round up towards full wave sizes for better ALU utilization. */
if (!max_vert_out_per_gs_instance) {
const unsigned wavesize = gs_sel->screen->ge_wave_size;
unsigned orig_max_esverts;
unsigned orig_max_gsprims;
do {
orig_max_esverts = max_esverts;
orig_max_gsprims = max_gsprims;
max_esverts = align(max_esverts, wavesize);
max_esverts = MIN2(max_esverts, max_esverts_base);
if (esvert_lds_size)
max_esverts = MIN2(max_esverts,
(max_lds_size - max_gsprims * gsprim_lds_size) /
esvert_lds_size);
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
max_gsprims = align(max_gsprims, wavesize);
max_gsprims = MIN2(max_gsprims, max_gsprims_base);
if (gsprim_lds_size)
max_gsprims = MIN2(max_gsprims,
(max_lds_size - max_esverts * esvert_lds_size) /
gsprim_lds_size);
clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
min_verts_per_prim, use_adjacency);
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
} while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
}
/* Hardware restriction: minimum value of max_esverts */
max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
unsigned max_out_vertices =
max_vert_out_per_gs_instance ? gs_sel->gs_max_out_vertices :
gs_type == PIPE_SHADER_GEOMETRY ?
max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices :
max_esverts;
assert(max_out_vertices <= 256);
unsigned prim_amp_factor = 1;
if (gs_type == PIPE_SHADER_GEOMETRY) {
/* Number of output primitives per GS input primitive after
* GS instancing. */
prim_amp_factor = gs_sel->gs_max_out_vertices;
}
/* The GE only checks against the maximum number of ES verts after
* allocating a full GS primitive. So we need to ensure that whenever
* this check passes, there is enough space for a full primitive without
* vertex reuse.
*/
shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
shader->ngg.max_gsprims = max_gsprims;
shader->ngg.max_out_verts = max_out_vertices;
shader->ngg.prim_amp_factor = prim_amp_factor;
shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
shader->gs_info.esgs_ring_size = 4 * max_esverts * esvert_lds_size;
shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */
}
|