summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeon/R600ExpandSpecialInstrs.cpp
blob: 69ab0ffee8c64ca1ab4d6806651ba682912cdf08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//===-- R600ExpandSpecialInstrs.cpp - Expand special instructions ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Vector, Reduction, and Cube instructions need to fill the entire instruction
// group to work correctly.  This pass expands these individual instructions
// into several instructions that will completely fill the instruction group. 
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "R600Defines.h"
#include "R600InstrInfo.h"
#include "R600RegisterInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"

using namespace llvm;

namespace {

class R600ExpandSpecialInstrsPass : public MachineFunctionPass {

private:
  static char ID;
  const R600InstrInfo *TII;

public:
  R600ExpandSpecialInstrsPass(TargetMachine &tm) : MachineFunctionPass(ID),
    TII (static_cast<const R600InstrInfo *>(tm.getInstrInfo())) { }

  virtual bool runOnMachineFunction(MachineFunction &MF);

  const char *getPassName() const {
    return "R600 Expand special instructions pass";
  }
};

} // End anonymous namespace

char R600ExpandSpecialInstrsPass::ID = 0;

FunctionPass *llvm::createR600ExpandSpecialInstrsPass(TargetMachine &TM) {
  return new R600ExpandSpecialInstrsPass(TM);
}

bool R600ExpandSpecialInstrsPass::runOnMachineFunction(MachineFunction &MF) {

  const R600RegisterInfo &TRI = TII->getRegisterInfo();

  for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
                                                  BB != BB_E; ++BB) {
    MachineBasicBlock &MBB = *BB;
    MachineBasicBlock::iterator I = MBB.begin();
    while (I != MBB.end()) {
      MachineInstr &MI = *I;
      I = llvm::next(I);

      bool IsReduction = TII->isReductionOp(MI.getOpcode());
      bool IsVector = TII->isVector(MI);
	    bool IsCube = TII->isCubeOp(MI.getOpcode());
      if (!IsReduction && !IsVector && !IsCube) {
        continue;
      }

      // Expand the instruction
      //
      // Reduction instructions:
      // T0_X = DP4 T1_XYZW, T2_XYZW
      // becomes:
      // TO_X = DP4 T1_X, T2_X
      // TO_Y (write masked) = DP4 T1_Y, T2_Y
      // TO_Z (write masked) = DP4 T1_Z, T2_Z
      // TO_W (write masked) = DP4 T1_W, T2_W
      //
      // Vector instructions:
      // T0_X = MULLO_INT T1_X, T2_X
      // becomes:
      // T0_X = MULLO_INT T1_X, T2_X
      // T0_Y (write masked) = MULLO_INT T1_X, T2_X
      // T0_Z (write masked) = MULLO_INT T1_X, T2_X
      // T0_W (write masked) = MULLO_INT T1_X, T2_X
      //
      // Cube instructions:
      // T0_XYZW = CUBE T1_XYZW
      // becomes:
      // TO_X = CUBE T1_Z, T1_Y
      // T0_Y = CUBE T1_Z, T1_X
      // T0_Z = CUBE T1_X, T1_Z
      // T0_W = CUBE T1_Y, T1_Z
      for (unsigned Chan = 0; Chan < 4; Chan++) {
        unsigned DstReg = MI.getOperand(0).getReg();
        unsigned Src0 = MI.getOperand(1).getReg();
        unsigned Src1 = 0;

        // Determine the correct source registers
        if (!IsCube) {
          Src1 = MI.getOperand(2).getReg();
        }
        if (IsReduction) {
          unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan);
          Src0 = TRI.getSubReg(Src0, SubRegIndex);
          Src1 = TRI.getSubReg(Src1, SubRegIndex);
        } else if (IsCube) {
          static const int CubeSrcSwz[] = {2, 2, 0, 1};
          unsigned SubRegIndex0 = TRI.getSubRegFromChannel(CubeSrcSwz[Chan]);
          unsigned SubRegIndex1 = TRI.getSubRegFromChannel(CubeSrcSwz[3 - Chan]);
          Src1 = TRI.getSubReg(Src0, SubRegIndex1);
          Src0 = TRI.getSubReg(Src0, SubRegIndex0);
        }

        // Determine the correct destination registers;
        unsigned Flags = 0;
        if (IsCube) {
          unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan);
          DstReg = TRI.getSubReg(DstReg, SubRegIndex);
        } else {
          // Mask the write if the original instruction does not write to
          // the current Channel.
          Flags |= (Chan != TRI.getHWRegChan(DstReg) ? MO_FLAG_MASK : 0);
          unsigned DstBase = TRI.getHWRegIndex(DstReg);
          DstReg = AMDGPU::R600_TReg32RegClass.getRegister((DstBase * 4) + Chan);
        }

        // Set the IsLast bit
        Flags |= (Chan != 3 ? MO_FLAG_NOT_LAST : 0);

        // Add the new instruction
        unsigned Opcode;
        if (IsCube) {
          switch (MI.getOpcode()) {
          case AMDGPU::CUBE_r600_pseudo:
            Opcode = AMDGPU::CUBE_r600_real;
            break;
          case AMDGPU::CUBE_eg_pseudo:
            Opcode = AMDGPU::CUBE_eg_real;
            break;
          default:
            assert(!"Unknown CUBE instruction");
            Opcode = 0;
            break;
          }
        } else {
          Opcode = MI.getOpcode();
        }
        MachineInstr *NewMI =
          BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(Opcode), DstReg)
                  .addReg(Src0)
                  .addReg(Src1)
                  .addImm(0); // Flag

        NewMI->setIsInsideBundle(Chan != 0);
        TII->addFlag(NewMI, 0, Flags);
      }
      MI.eraseFromParent();
    }
  }
  return false;
}