summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeon/R600CodeEmitter.cpp
blob: 8faf0deb8c50e673971c5229e9efc0c7cf1c7816 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
//===-- R600CodeEmitter.cpp - TODO: Add brief description -------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// TODO: Add full description
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUUtil.h"
#include "AMDILCodeEmitter.h"
#include "AMDILInstrInfo.h"
#include "AMDILUtilityFunctions.h"
#include "R600RegisterInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetMachine.h"

#include <stdio.h>

#define SRC_BYTE_COUNT 11
#define DST_BYTE_COUNT 5

using namespace llvm;

namespace {

  class R600CodeEmitter : public MachineFunctionPass, public AMDILCodeEmitter {

  private:

  static char ID;
  formatted_raw_ostream &_OS;
  const TargetMachine * TM;
  const MachineRegisterInfo * MRI;
  const R600RegisterInfo * TRI;
  bool evergreenEncoding;

  bool isReduction;
  unsigned reductionElement;
  bool isLast;

  unsigned section_start;

  public:

  R600CodeEmitter(formatted_raw_ostream &OS) : MachineFunctionPass(ID),
      _OS(OS), TM(NULL), evergreenEncoding(false), isReduction(false),
      isLast(true) { }

  const char *getPassName() const { return "AMDGPU Machine Code Emitter"; }

  bool runOnMachineFunction(MachineFunction &MF);
  virtual uint64_t getMachineOpValue(const MachineInstr &MI,
                                     const MachineOperand &MO) const;

  private:

  void emitALUInstr(MachineInstr  &MI);
  void emitSrc(const MachineOperand & MO);
  void emitDst(const MachineOperand & MO);
  void emitALU(MachineInstr &MI, unsigned numSrc);
  void emitTexInstr(MachineInstr &MI);
  void emitFCInstr(MachineInstr &MI);

  unsigned int getHWInst(const MachineInstr &MI);

  void emitNullBytes(unsigned int byteCount);

  void emitByte(unsigned int byte);

  void emitTwoBytes(uint32_t bytes);

  void emit(uint32_t value);
  void emit(uint64_t value);

  unsigned getHWReg(unsigned regNo) const;

  unsigned getElement(unsigned regNo);

};

} /* End anonymous namespace */

#define WRITE_MASK_X 0x1
#define WRITE_MASK_Y 0x2
#define WRITE_MASK_Z 0x4
#define WRITE_MASK_W 0x8

enum RegElement {
  ELEMENT_X = 0,
  ELEMENT_Y,
  ELEMENT_Z,
  ELEMENT_W
};

enum InstrTypes {
  INSTR_ALU = 0,
  INSTR_TEX,
  INSTR_FC,
  INSTR_NATIVE,
  INSTR_VTX
};

enum FCInstr {
  FC_IF = 0,
  FC_ELSE,
  FC_ENDIF,
  FC_BGNLOOP,
  FC_ENDLOOP,
  FC_BREAK,
  FC_BREAK_NZ_INT,
  FC_CONTINUE,
  FC_BREAK_Z_INT
};

enum TextureTypes {
  TEXTURE_1D = 1,
  TEXTURE_2D, 
  TEXTURE_3D,
  TEXTURE_CUBE,
  TEXTURE_RECT,
  TEXTURE_SHADOW1D,
  TEXTURE_SHADOW2D,
  TEXTURE_SHADOWRECT,     
  TEXTURE_1D_ARRAY,       
  TEXTURE_2D_ARRAY,
  TEXTURE_SHADOW1D_ARRAY,
  TEXTURE_SHADOW2D_ARRAY
};

char R600CodeEmitter::ID = 0;

FunctionPass *llvm::createR600CodeEmitterPass(formatted_raw_ostream &OS) {
  return new R600CodeEmitter(OS);
}

bool R600CodeEmitter::runOnMachineFunction(MachineFunction &MF) {

  TM = &MF.getTarget();
  MRI = &MF.getRegInfo();
  TRI = static_cast<const R600RegisterInfo *>(TM->getRegisterInfo());
  const AMDILSubtarget &STM = TM->getSubtarget<AMDILSubtarget>();
  std::string gpu = STM.getDeviceName();
  if (!gpu.compare(0,3, "rv7")) {
    evergreenEncoding = false;
  } else {
    evergreenEncoding = true;
  }
  const AMDGPUTargetMachine *amdtm =
    static_cast<const AMDGPUTargetMachine *>(&MF.getTarget());

  if (amdtm->shouldDumpCode()) {
    MF.dump();
  }

  for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
                                                  BB != BB_E; ++BB) {
     MachineBasicBlock &MBB = *BB;
     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
                                                       I != E; ++I) {
          MachineInstr &MI = *I;
          if (MI.getNumOperands() > 1 && MI.getOperand(0).isReg() && MI.getOperand(0).isDead()) {
            continue;
          }
          if (isTexOp(MI.getOpcode())) {
            emitTexInstr(MI);
          } else if (isFCOp(MI.getOpcode())){
            emitFCInstr(MI);
          } else if (isReductionOp(MI.getOpcode())) {
            isReduction = true;
            isLast = false;
            for (reductionElement = 0; reductionElement < 4; reductionElement++) {
              isLast = (reductionElement == 3);
              emitALUInstr(MI);
            }
            isReduction = false;
          } else if (MI.getOpcode() == AMDIL::RETURN ||
                     MI.getOpcode() == AMDIL::BUNDLE ||
                     MI.getOpcode() == AMDIL::KILL) {
            continue;
          } else {
            switch(MI.getOpcode()) {
            case AMDIL::RAT_WRITE_CACHELESS_eg:
              {
                /* XXX: Support for autoencoding 64-bit instructions was added
                 * in LLVM 3.1.  Until we drop support for 3.0, we will use Magic
                 * numbers for the high bits. */
                  uint64_t high = 0x95c0100000000000;
                  uint64_t inst = getBinaryCodeForInstr(MI);
                  inst |= high;
                /* Set End Of Program bit */
                /* XXX: Need better check of end of program.  EOP should be
                 * encoded in one of the operands of the MI, and it should be
                 * set in a prior pass. */
                MachineBasicBlock::iterator NextI = llvm::next(I);
                MachineInstr &NextMI = *NextI;
                if (NextMI.getOpcode() == AMDIL::RETURN) {
                  inst |= (((uint64_t)1) << 53);
                }
                emitByte(INSTR_NATIVE);
                emit(inst);
                break;
              }
            case AMDIL::VTX_READ_eg:
              {
                emitByte(INSTR_VTX);
                /* inst */
                emitByte(0);

                /* fetch_type */
                emitByte(2);

                /* buffer_id */
                emitByte(MI.getOperand(2).getImm());

                /* src_gpr */
                emitByte(getHWReg(MI.getOperand(1).getReg()));

                /* src_sel_x */
                emitByte(TRI->getHWRegChan(MI.getOperand(1).getReg()));

                /* mega_fetch_count */
                emitByte(3);

                /* dst_gpr */
                emitByte(getHWReg(MI.getOperand(0).getReg()));

                /* dst_sel_x */
                emitByte(0);

                /* dst_sel_y */
                emitByte(7);

                /* dst_sel_z */
                emitByte(7);

                /* dst_sel_w */
                emitByte(7);

                /* use_const_fields */
                emitByte(1);

                /* data_format */
                emitByte(0);

                /* num_format_all */
                emitByte(0);

                /* format_comp_all */
                emitByte(0);

                /* srf_mode_all */
                emitByte(0);

                /* offset */
                emitByte(0);

                /* endian */
                emitByte(0);
                break;
              }

            default:
              emitALUInstr(MI);
              break;
          }
        }
    }
  }
  return false;
}

void R600CodeEmitter::emitALUInstr(MachineInstr &MI)
{

  unsigned numOperands = MI.getNumExplicitOperands();

   /* Some instructions are just place holder instructions that represent
    * operations that the GPU does automatically.  They should be ignored. */
  if (isPlaceHolderOpcode(MI.getOpcode())) {
    return;
  }

  /* We need to handle some opcodes differently */
  switch (MI.getOpcode()) {
    default: break;

    /* XXX: Temp Hack */
    case AMDIL::STORE_OUTPUT:
      numOperands = 2;
      break;
  }

  /* XXX Check if instruction writes a result */
  if (numOperands < 1) {
    return;
  }
  const MachineOperand dstOp = MI.getOperand(0);

  /* Emit instruction type */
  emitByte(0);

  unsigned int opIndex;
  for (opIndex = 1; opIndex < numOperands; opIndex++) {
    /* Literal constants are always stored as the last operand. */
    if (MI.getOperand(opIndex).isImm() || MI.getOperand(opIndex).isFPImm()) {
      break;
    }
    emitSrc(MI.getOperand(opIndex));
  }

    /* Emit zeros for unused sources */
  for ( ; opIndex < 4; opIndex++) {
    emitNullBytes(SRC_BYTE_COUNT);
  }

  emitDst(dstOp);

  emitALU(MI, numOperands - 1);
}

void R600CodeEmitter::emitSrc(const MachineOperand & MO)
{
  uint32_t value = 0;
  /* Emit the source select (2 bytes).  For GPRs, this is the register index.
   * For other potential instruction operands, (e.g. constant registers) the
   * value of the source select is defined in the r600isa docs. */
  if (MO.isReg()) {
    unsigned reg = MO.getReg();
    emitTwoBytes(getHWReg(reg));
    if (reg == AMDIL::ALU_LITERAL_X) {
      const MachineInstr * parent = MO.getParent();
      unsigned immOpIndex = parent->getNumExplicitOperands() - 1;
      MachineOperand immOp = parent->getOperand(immOpIndex);
      if (immOp.isFPImm()) {
        value = immOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue();
      } else {
        assert(immOp.isImm());
        value = immOp.getImm();
      }
    }
  } else {
    /* XXX: Handle other operand types. */
    emitTwoBytes(0);
  }

  /* Emit the source channel (1 byte) */
  if (isReduction) {
    emitByte(reductionElement);
  } else if (MO.isReg()) {
    emitByte(TRI->getHWRegChan(MO.getReg()));
  } else {
    emitByte(0);
  }

  /* XXX: Emit isNegated (1 byte) */
  if ((!(MO.getTargetFlags() & MO_FLAG_ABS))
      && (MO.getTargetFlags() & MO_FLAG_NEG ||
     (MO.isReg() &&
      (MO.getReg() == AMDIL::NEG_ONE || MO.getReg() == AMDIL::NEG_HALF)))){
    emitByte(1);
  } else {
    emitByte(0);
  }

  /* Emit isAbsolute (1 byte) */
  if (MO.getTargetFlags() & MO_FLAG_ABS) {
    emitByte(1);
  } else {
    emitByte(0);
  }

  /* XXX: Emit relative addressing mode (1 byte) */
  emitByte(0);

  /* Emit kc_bank, This will be adjusted later by r600_asm */
  emitByte(0);

  /* Emit the literal value, if applicable (4 bytes).  */
  emit(value);

}

void R600CodeEmitter::emitDst(const MachineOperand & MO)
{
  if (MO.isReg()) {
    /* Emit the destination register index (1 byte) */
    emitByte(getHWReg(MO.getReg()));

    /* Emit the element of the destination register (1 byte)*/
    if (isReduction) {
      emitByte(reductionElement);
    } else {
      emitByte(TRI->getHWRegChan(MO.getReg()));
    }

    /* Emit isClamped (1 byte) */
    if (MO.getTargetFlags() & MO_FLAG_CLAMP) {
      emitByte(1);
    } else {
      emitByte(0);
    }

    /* Emit writemask (1 byte).  */
    if ((isReduction && reductionElement != TRI->getHWRegChan(MO.getReg()))
         || MO.getTargetFlags() & MO_FLAG_MASK) {
      emitByte(0);
    } else {
      emitByte(1);
    }

    /* XXX: Emit relative addressing mode */
    emitByte(0);
  } else {
    /* XXX: Handle other operand types.  Are there any for destination regs? */
    emitNullBytes(DST_BYTE_COUNT);
  }
}

void R600CodeEmitter::emitALU(MachineInstr &MI, unsigned numSrc)
{
  /* Emit the instruction (2 bytes) */
  emitTwoBytes(getHWInst(MI));

  /* Emit isLast (for this instruction group) (1 byte) */
  if (isLast) {
    emitByte(1);
  } else {
    emitByte(0);
  }
  /* Emit isOp3 (1 byte) */
  if (numSrc == 3) {
    emitByte(1);
  } else {
    emitByte(0);
  }

  /* XXX: Emit predicate (1 byte) */
  emitByte(0);

  /* XXX: Emit bank swizzle. (1 byte)  Do we need this?  It looks like
   * r600_asm.c sets it. */
  emitByte(0);

  /* XXX: Emit bank_swizzle_force (1 byte) Not sure what this is for. */
  emitByte(0);

  /* XXX: Emit OMOD (1 byte) Not implemented. */
  emitByte(0);

  /* XXX: Emit index_mode.  I think this is for indirect addressing, so we
   * don't need to worry about it. */
  emitByte(0);
}

void R600CodeEmitter::emitTexInstr(MachineInstr &MI)
{

  int64_t sampler = MI.getOperand(2).getImm();
  int64_t textureType = MI.getOperand(3).getImm();
  unsigned opcode = MI.getOpcode();
  unsigned srcSelect[4] = {0, 1, 2, 3};

  /* Emit instruction type */
  emitByte(1);

  /* Emit instruction */
  emitByte(getHWInst(MI));

  /* XXX: Emit resource id r600_shader.c uses sampler + 1.  Why? */
  emitByte(sampler + 1 + 1);

  /* Emit source register */
  emitByte(getHWReg(MI.getOperand(1).getReg()));

  /* XXX: Emit src isRelativeAddress */
  emitByte(0);

  /* Emit destination register */
  emitByte(getHWReg(MI.getOperand(0).getReg()));

  /* XXX: Emit dst isRealtiveAddress */
  emitByte(0);

  /* XXX: Emit dst select */
  emitByte(0); /* X */
  emitByte(1); /* Y */
  emitByte(2); /* Z */
  emitByte(3); /* W */

  /* XXX: Emit lod bias */
  emitByte(0);

  /* XXX: Emit coord types */
  unsigned coordType[4] = {1, 1, 1, 1};

  if (textureType == TEXTURE_RECT
      || textureType == TEXTURE_SHADOWRECT) {
    coordType[ELEMENT_X] = 0;
    coordType[ELEMENT_Y] = 0;
  }

  if (textureType == TEXTURE_1D_ARRAY
      || textureType == TEXTURE_SHADOW1D_ARRAY) {
    if (opcode == AMDIL::TEX_SAMPLE_C_L || opcode == AMDIL::TEX_SAMPLE_C_LB) {
      coordType[ELEMENT_Y] = 0;
    } else {
      coordType[ELEMENT_Z] = 0;
      srcSelect[ELEMENT_Z] = ELEMENT_Y;
    }
  } else if (textureType == TEXTURE_2D_ARRAY
             || textureType == TEXTURE_SHADOW2D_ARRAY) {
    coordType[ELEMENT_Z] = 0;
  }

  for (unsigned i = 0; i < 4; i++) {
    emitByte(coordType[i]);
  }

  /* XXX: Emit offsets */
  emitByte(0); /* X */
  emitByte(0); /* Y */
  emitByte(0); /* Z */
  /* There is no OFFSET_W */

  /* Emit sampler id */
  emitByte(sampler);

  /* XXX:Emit source select */
  if ((textureType == TEXTURE_SHADOW1D
      || textureType == TEXTURE_SHADOW2D
      || textureType == TEXTURE_SHADOWRECT
      || textureType == TEXTURE_SHADOW1D_ARRAY)
      && opcode != AMDIL::TEX_SAMPLE_C_L
      && opcode != AMDIL::TEX_SAMPLE_C_LB) {
    srcSelect[ELEMENT_W] = ELEMENT_Z;
  }

  for (unsigned i = 0; i < 4; i++) {
    emitByte(srcSelect[i]);
  }
}

void R600CodeEmitter::emitFCInstr(MachineInstr &MI)
{
  /* Emit instruction type */
  emitByte(INSTR_FC);

  /* Emit SRC */
  unsigned numOperands = MI.getNumOperands();
  if (numOperands > 0) {
    assert(numOperands == 1);
    emitSrc(MI.getOperand(0));
  } else {
    emitNullBytes(SRC_BYTE_COUNT);
  }

  /* Emit FC Instruction */
  enum FCInstr instr;
  switch (MI.getOpcode()) {
  case AMDIL::BREAK_LOGICALZ_f32:
    instr = FC_BREAK;
    break;
  case AMDIL::BREAK_LOGICALNZ_i32:
    instr = FC_BREAK_NZ_INT;
    break;
  case AMDIL::BREAK_LOGICALZ_i32:
    instr = FC_BREAK_Z_INT;
    break;
  case AMDIL::CONTINUE_LOGICALNZ_f32:
    instr = FC_CONTINUE;
    break;
  /* XXX: This assumes that all IFs will be if (x != 0).  If we add
   * optimizations this might not be the case */
  case AMDIL::IF_LOGICALNZ_f32:
  case AMDIL::IF_LOGICALNZ_i32:
    instr = FC_IF;
    break;
  case AMDIL::IF_LOGICALZ_f32:
    abort();
    break;
  case AMDIL::ELSE:
    instr = FC_ELSE;
    break;
  case AMDIL::ENDIF:
    instr = FC_ENDIF;
    break;
  case AMDIL::ENDLOOP:
    instr = FC_ENDLOOP;
    break;
  case AMDIL::WHILELOOP:
    instr = FC_BGNLOOP;
    break;
  default:
    abort();
    break;
  }
  emitByte(instr);
}

#define INSTR_FLOAT2_V(inst, hw) \
  case AMDIL:: inst##_v4f32: \
  case AMDIL:: inst##_v2f32: return HW_INST2(hw);

#define INSTR_FLOAT2_S(inst, hw) \
  case AMDIL:: inst##_f32: return HW_INST2(hw);

#define INSTR_FLOAT2(inst, hw) \
  INSTR_FLOAT2_V(inst, hw) \
  INSTR_FLOAT2_S(inst, hw)

unsigned int R600CodeEmitter::getHWInst(const MachineInstr &MI)
{

  /* XXX: Lower these to MOV before the code emitter. */
  switch (MI.getOpcode()) {
    case AMDIL::STORE_OUTPUT:
    case AMDIL::VCREATE_v4i32:
    case AMDIL::LOADCONST_i32:
    case AMDIL::LOADCONST_f32:
    case AMDIL::MOVE_v4i32:
    /* Instructons to reinterpret bits as ... */
    case AMDIL::IL_ASINT_f32:
    case AMDIL::IL_ASINT_i32:
    case AMDIL::IL_ASFLOAT_f32:
    case AMDIL::IL_ASFLOAT_i32:
      return 0x19;

  default:
    return getBinaryCodeForInstr(MI);
  }
}

void R600CodeEmitter::emitNullBytes(unsigned int byteCount)
{
  for (unsigned int i = 0; i < byteCount; i++) {
    emitByte(0);
  }
}

void R600CodeEmitter::emitByte(unsigned int byte)
{
  _OS.write((uint8_t) byte & 0xff);
}
void R600CodeEmitter::emitTwoBytes(unsigned int bytes)
{
  _OS.write((uint8_t) (bytes & 0xff));
  _OS.write((uint8_t) ((bytes >> 8) & 0xff));
}

void R600CodeEmitter::emit(uint32_t value)
{
  for (unsigned i = 0; i < 4; i++) {
    _OS.write((uint8_t) ((value >> (8 * i)) & 0xff));
  }
}

void R600CodeEmitter::emit(uint64_t value)
{
  for (unsigned i = 0; i < 8; i++) {
    emitByte((value >> (8 * i)) & 0xff);
  }
}

unsigned R600CodeEmitter::getHWReg(unsigned regNo) const
{
  unsigned hwReg;

  hwReg = TRI->getHWRegIndex(regNo);
  if (AMDIL::R600_CReg32RegClass.contains(regNo)) {
    hwReg += 512;
  }
  return hwReg;
}

uint64_t R600CodeEmitter::getMachineOpValue(const MachineInstr &MI,
                                            const MachineOperand &MO) const
{
  if (MO.isReg()) {
    return getHWReg(MO.getReg());
  } else {
    return MO.getImm();
  }
}


RegElement maskBitToElement(unsigned int maskBit)
{
  switch (maskBit) {
    case WRITE_MASK_X: return ELEMENT_X;
    case WRITE_MASK_Y: return ELEMENT_Y;
    case WRITE_MASK_Z: return ELEMENT_Z;
    case WRITE_MASK_W: return ELEMENT_W;
    default:
      assert("Invalid maskBit");
      return ELEMENT_X;
  }
}

unsigned int dstSwizzleToWriteMask(unsigned swizzle)
{
  switch(swizzle) {
  default:
  case AMDIL_DST_SWIZZLE_DEFAULT:
    return WRITE_MASK_X | WRITE_MASK_Y | WRITE_MASK_Z | WRITE_MASK_W;
  case AMDIL_DST_SWIZZLE_X___:
    return WRITE_MASK_X;
  case AMDIL_DST_SWIZZLE_XY__:
    return WRITE_MASK_X | WRITE_MASK_Y;
  case AMDIL_DST_SWIZZLE_XYZ_:
    return WRITE_MASK_X | WRITE_MASK_Y | WRITE_MASK_Z;
  case AMDIL_DST_SWIZZLE_XYZW:
    return WRITE_MASK_X | WRITE_MASK_Y | WRITE_MASK_Z | WRITE_MASK_W;
  case AMDIL_DST_SWIZZLE__Y__:
    return WRITE_MASK_Y;
  case AMDIL_DST_SWIZZLE__YZ_:
    return WRITE_MASK_Y | WRITE_MASK_Z;
  case AMDIL_DST_SWIZZLE__YZW:
    return WRITE_MASK_Y | WRITE_MASK_Z | WRITE_MASK_W;
  case AMDIL_DST_SWIZZLE___Z_:
    return WRITE_MASK_Z;
  case AMDIL_DST_SWIZZLE___ZW:
    return WRITE_MASK_Z | WRITE_MASK_W;
  case AMDIL_DST_SWIZZLE____W:
    return WRITE_MASK_W;
  case AMDIL_DST_SWIZZLE_X_ZW:
    return WRITE_MASK_X | WRITE_MASK_Z | WRITE_MASK_W;
  case AMDIL_DST_SWIZZLE_XY_W:
    return WRITE_MASK_X | WRITE_MASK_Y | WRITE_MASK_W;
  case AMDIL_DST_SWIZZLE_X_Z_:
    return WRITE_MASK_X | WRITE_MASK_Z;
  case AMDIL_DST_SWIZZLE_X__W:
    return WRITE_MASK_X | WRITE_MASK_W;
  case AMDIL_DST_SWIZZLE__Y_W:
    return WRITE_MASK_Y | WRITE_MASK_W;
  }
}

#include "AMDILGenCodeEmitter.inc"