summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/radeon/AMDGPUInstrInfo.cpp
blob: 81b62ccd24d4efc552af66dca9c392c07cf61bca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//===-- AMDGPUInstrInfo.cpp - Base class for AMD GPU InstrInfo ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the TargetInstrInfo class that is
// common to all AMD GPUs.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUInstrInfo.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUTargetMachine.h"
#include "AMDIL.h"
#include "AMDILUtilityFunctions.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"

#define GET_INSTRINFO_CTOR
#include "AMDGPUGenInstrInfo.inc"

using namespace llvm;

AMDGPUInstrInfo::AMDGPUInstrInfo(TargetMachine &tm)
  : AMDGPUGenInstrInfo(), RI(tm, *this), TM(tm) { }

const AMDGPURegisterInfo &AMDGPUInstrInfo::getRegisterInfo() const {
  return RI;
}

bool AMDGPUInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
                                           unsigned &SrcReg, unsigned &DstReg,
                                           unsigned &SubIdx) const {
// TODO: Implement this function
  return false;
}

unsigned AMDGPUInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
                                             int &FrameIndex) const {
// TODO: Implement this function
  return 0;
}

unsigned AMDGPUInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
                                                   int &FrameIndex) const {
// TODO: Implement this function
  return 0;
}

bool AMDGPUInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
                                          const MachineMemOperand *&MMO,
                                          int &FrameIndex) const {
// TODO: Implement this function
  return false;
}
unsigned AMDGPUInstrInfo::isStoreFromStackSlot(const MachineInstr *MI,
                                              int &FrameIndex) const {
// TODO: Implement this function
  return 0;
}
unsigned AMDGPUInstrInfo::isStoreFromStackSlotPostFE(const MachineInstr *MI,
                                                    int &FrameIndex) const {
// TODO: Implement this function
  return 0;
}
bool AMDGPUInstrInfo::hasStoreFromStackSlot(const MachineInstr *MI,
                                           const MachineMemOperand *&MMO,
                                           int &FrameIndex) const {
// TODO: Implement this function
  return false;
}

MachineInstr *
AMDGPUInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
                                      MachineBasicBlock::iterator &MBBI,
                                      LiveVariables *LV) const {
// TODO: Implement this function
  return NULL;
}
bool AMDGPUInstrInfo::getNextBranchInstr(MachineBasicBlock::iterator &iter,
                                        MachineBasicBlock &MBB) const {
  while (iter != MBB.end()) {
    switch (iter->getOpcode()) {
    default:
      break;
      ExpandCaseToAllScalarTypes(AMDGPU::BRANCH_COND);
    case AMDGPU::BRANCH:
      return true;
    };
    ++iter;
  }
  return false;
}

bool AMDGPUInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
                                   MachineBasicBlock *&TBB,
                                   MachineBasicBlock *&FBB,
                                   SmallVectorImpl<MachineOperand> &Cond,
                                   bool AllowModify) const {
  bool retVal = true;
  return retVal;
  MachineBasicBlock::iterator iter = MBB.begin();
  if (!getNextBranchInstr(iter, MBB)) {
    retVal = false;
  } else {
    MachineInstr *firstBranch = iter;
    if (!getNextBranchInstr(++iter, MBB)) {
      if (firstBranch->getOpcode() == AMDGPU::BRANCH) {
        TBB = firstBranch->getOperand(0).getMBB();
        firstBranch->eraseFromParent();
        retVal = false;
      } else {
        TBB = firstBranch->getOperand(0).getMBB();
        FBB = *(++MBB.succ_begin());
        if (FBB == TBB) {
          FBB = *(MBB.succ_begin());
        }
        Cond.push_back(firstBranch->getOperand(1));
        retVal = false;
      }
    } else {
      MachineInstr *secondBranch = iter;
      if (!getNextBranchInstr(++iter, MBB)) {
        if (secondBranch->getOpcode() == AMDGPU::BRANCH) {
          TBB = firstBranch->getOperand(0).getMBB();
          Cond.push_back(firstBranch->getOperand(1));
          FBB = secondBranch->getOperand(0).getMBB();
          secondBranch->eraseFromParent();
          retVal = false;
        } else {
          assert(0 && "Should not have two consecutive conditional branches");
        }
      } else {
        MBB.getParent()->viewCFG();
        assert(0 && "Should not have three branch instructions in"
               " a single basic block");
        retVal = false;
      }
    }
  }
  return retVal;
}

unsigned int AMDGPUInstrInfo::getBranchInstr(const MachineOperand &op) const {
  const MachineInstr *MI = op.getParent();
  
  switch (MI->getDesc().OpInfo->RegClass) {
  default: // FIXME: fallthrough??
  case AMDGPU::GPRI32RegClassID: return AMDGPU::BRANCH_COND_i32;
  case AMDGPU::GPRF32RegClassID: return AMDGPU::BRANCH_COND_f32;
  };
}

unsigned int
AMDGPUInstrInfo::InsertBranch(MachineBasicBlock &MBB,
                             MachineBasicBlock *TBB,
                             MachineBasicBlock *FBB,
                             const SmallVectorImpl<MachineOperand> &Cond,
                             DebugLoc DL) const
{
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
  for (unsigned int x = 0; x < Cond.size(); ++x) {
    Cond[x].getParent()->dump();
  }
  if (FBB == 0) {
    if (Cond.empty()) {
      BuildMI(&MBB, DL, get(AMDGPU::BRANCH)).addMBB(TBB);
    } else {
      BuildMI(&MBB, DL, get(getBranchInstr(Cond[0])))
        .addMBB(TBB).addReg(Cond[0].getReg());
    }
    return 1;
  } else {
    BuildMI(&MBB, DL, get(getBranchInstr(Cond[0])))
      .addMBB(TBB).addReg(Cond[0].getReg());
    BuildMI(&MBB, DL, get(AMDGPU::BRANCH)).addMBB(FBB);
  }
  assert(0 && "Inserting two branches not supported");
  return 0;
}

unsigned int AMDGPUInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin()) {
    return 0;
  }
  --I;
  switch (I->getOpcode()) {
  default:
    return 0;
    ExpandCaseToAllScalarTypes(AMDGPU::BRANCH_COND);
  case AMDGPU::BRANCH:
    I->eraseFromParent();
    break;
  }
  I = MBB.end();
  
  if (I == MBB.begin()) {
    return 1;
  }
  --I;
  switch (I->getOpcode()) {
    // FIXME: only one case??
  default:
    return 1;
    ExpandCaseToAllScalarTypes(AMDGPU::BRANCH_COND);
    I->eraseFromParent();
    break;
  }
  return 2;
}

MachineBasicBlock::iterator skipFlowControl(MachineBasicBlock *MBB) {
  MachineBasicBlock::iterator tmp = MBB->end();
  if (!MBB->size()) {
    return MBB->end();
  }
  while (--tmp) {
    if (tmp->getOpcode() == AMDGPU::ENDLOOP
        || tmp->getOpcode() == AMDGPU::ENDIF
        || tmp->getOpcode() == AMDGPU::ELSE) {
      if (tmp == MBB->begin()) {
        return tmp;
      } else {
        continue;
      }
    }  else {
      return ++tmp;
    }
  }
  return MBB->end();
}

void
AMDGPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator MI,
                                    unsigned SrcReg, bool isKill,
                                    int FrameIndex,
                                    const TargetRegisterClass *RC,
                                    const TargetRegisterInfo *TRI) const {
  unsigned int Opc = 0;
  // MachineInstr *curMI = MI;
  MachineFunction &MF = *(MBB.getParent());
  MachineFrameInfo &MFI = *MF.getFrameInfo();
  
  DebugLoc DL;
  switch (RC->getID()) {
  case AMDGPU::GPRF32RegClassID:
    Opc = AMDGPU::PRIVATESTORE_f32;
    break;
  case AMDGPU::GPRI32RegClassID:
    Opc = AMDGPU::PRIVATESTORE_i32;
    break;
  }
  if (MI != MBB.end()) DL = MI->getDebugLoc();
  MachineMemOperand *MMO =
   new MachineMemOperand(
        MachinePointerInfo::getFixedStack(FrameIndex),
                          MachineMemOperand::MOLoad,
                          MFI.getObjectSize(FrameIndex),
                          MFI.getObjectAlignment(FrameIndex));
  if (MI != MBB.end()) {
    DL = MI->getDebugLoc();
  }
  BuildMI(MBB, MI, DL, get(Opc))
    .addReg(SrcReg, getKillRegState(isKill))
    .addFrameIndex(FrameIndex)
    .addMemOperand(MMO)
    .addImm(0);
}

void
AMDGPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator MI,
                                     unsigned DestReg, int FrameIndex,
                                     const TargetRegisterClass *RC,
                                     const TargetRegisterInfo *TRI) const {
  unsigned int Opc = 0;
  MachineFunction &MF = *(MBB.getParent());
  MachineFrameInfo &MFI = *MF.getFrameInfo();
  DebugLoc DL;
  switch (RC->getID()) {
  case AMDGPU::GPRF32RegClassID:
    Opc = AMDGPU::PRIVATELOAD_f32;
    break;
  case AMDGPU::GPRI32RegClassID:
    Opc = AMDGPU::PRIVATELOAD_i32;
    break;
  }

  MachineMemOperand *MMO =
    new MachineMemOperand(
        MachinePointerInfo::getFixedStack(FrameIndex),
                          MachineMemOperand::MOLoad,
                          MFI.getObjectSize(FrameIndex),
                          MFI.getObjectAlignment(FrameIndex));
  if (MI != MBB.end()) {
    DL = MI->getDebugLoc();
  }
  BuildMI(MBB, MI, DL, get(Opc))
    .addReg(DestReg, RegState::Define)
    .addFrameIndex(FrameIndex)
    .addMemOperand(MMO)
    .addImm(0);
}
MachineInstr *
AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
                                      MachineInstr *MI,
                                      const SmallVectorImpl<unsigned> &Ops,
                                      int FrameIndex) const {
// TODO: Implement this function
  return 0;
}
MachineInstr*
AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
                                      MachineInstr *MI,
                                      const SmallVectorImpl<unsigned> &Ops,
                                      MachineInstr *LoadMI) const {
  // TODO: Implement this function
  return 0;
}
bool
AMDGPUInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
                                     const SmallVectorImpl<unsigned> &Ops) const
{
  // TODO: Implement this function
  return false;
}
bool
AMDGPUInstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
                                 unsigned Reg, bool UnfoldLoad,
                                 bool UnfoldStore,
                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
  // TODO: Implement this function
  return false;
}

bool
AMDGPUInstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
                                    SmallVectorImpl<SDNode*> &NewNodes) const {
  // TODO: Implement this function
  return false;
}

unsigned
AMDGPUInstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
                                           bool UnfoldLoad, bool UnfoldStore,
                                           unsigned *LoadRegIndex) const {
  // TODO: Implement this function
  return 0;
}

bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
                                             int64_t Offset1, int64_t Offset2,
                                             unsigned NumLoads) const {
  assert(Offset2 > Offset1
         && "Second offset should be larger than first offset!");
  // If we have less than 16 loads in a row, and the offsets are within 16,
  // then schedule together.
  // TODO: Make the loads schedule near if it fits in a cacheline
  return (NumLoads < 16 && (Offset2 - Offset1) < 16);
}

bool
AMDGPUInstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
  const {
  // TODO: Implement this function
  return true;
}
void AMDGPUInstrInfo::insertNoop(MachineBasicBlock &MBB,
                                MachineBasicBlock::iterator MI) const {
  // TODO: Implement this function
}

bool AMDGPUInstrInfo::isPredicated(const MachineInstr *MI) const {
  // TODO: Implement this function
  return false;
}
bool
AMDGPUInstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
                                  const SmallVectorImpl<MachineOperand> &Pred2)
  const {
  // TODO: Implement this function
  return false;
}

bool AMDGPUInstrInfo::DefinesPredicate(MachineInstr *MI,
                                      std::vector<MachineOperand> &Pred) const {
  // TODO: Implement this function
  return false;
}

bool AMDGPUInstrInfo::isPredicable(MachineInstr *MI) const {
  // TODO: Implement this function
  return MI->getDesc().isPredicable();
}

bool
AMDGPUInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
  // TODO: Implement this function
  return true;
}

MachineInstr * AMDGPUInstrInfo::convertToISA(MachineInstr & MI, MachineFunction &MF,
    DebugLoc DL) const
{
  MachineInstrBuilder newInstr;
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const AMDGPURegisterInfo & RI = getRegisterInfo();

  // Create the new instruction
  newInstr = BuildMI(MF, DL, TM.getInstrInfo()->get(MI.getOpcode()));

  for (unsigned i = 0; i < MI.getNumOperands(); i++) {
    MachineOperand &MO = MI.getOperand(i);
    // Convert dst regclass to one that is supported by the ISA
    if (MO.isReg() && MO.isDef()) {
      if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
        const TargetRegisterClass * oldRegClass = MRI.getRegClass(MO.getReg());
        const TargetRegisterClass * newRegClass = RI.getISARegClass(oldRegClass);

        assert(newRegClass);

        MRI.setRegClass(MO.getReg(), newRegClass);
      }
    }
    // Add the operand to the new instruction
    newInstr.addOperand(MO);
  }

  return newInstr;
}