1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/* Author(s):
* Alyssa Rosenzweig
*
* Copyright (c) 2018 Alyssa Rosenzweig (alyssa@rosenzweig.io)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#define OP_IS_STORE_VARY(op) (\
op == midgard_op_store_vary_16 || \
op == midgard_op_store_vary_32 \
)
#define OP_IS_STORE(op) (\
OP_IS_STORE_VARY(op) || \
op == midgard_op_store_cubemap_coords \
)
#define OP_IS_MOVE(op) ( \
op == midgard_alu_op_fmov || \
op == midgard_alu_op_imov \
)
/* ALU control words are single bit fields with a lot of space */
#define ALU_ENAB_VEC_MUL (1 << 17)
#define ALU_ENAB_SCAL_ADD (1 << 19)
#define ALU_ENAB_VEC_ADD (1 << 21)
#define ALU_ENAB_SCAL_MUL (1 << 23)
#define ALU_ENAB_VEC_LUT (1 << 25)
#define ALU_ENAB_BR_COMPACT (1 << 26)
#define ALU_ENAB_BRANCH (1 << 27)
/* Other opcode properties that don't conflict with the ALU_ENABs, non-ISA */
/* Denotes an opcode that takes a vector input with a fixed-number of
* channels, but outputs to only a single output channel, like dot products.
* For these, to determine the effective mask, this quirk can be set. We have
* an intentional off-by-one (a la MALI_POSITIVE), since 0-channel makes no
* sense but we need to fit 4 channels in 2-bits. Similarly, 1-channel doesn't
* make sense (since then why are we quirked?), so that corresponds to "no
* count set" */
#define OP_CHANNEL_COUNT(c) ((c - 1) << 0)
#define GET_CHANNEL_COUNT(c) ((c & (0x3 << 0)) ? ((c & (0x3 << 0)) + 1) : 0)
/* For instructions that take a single argument, normally the first argument
* slot is used for the argument and the second slot is a dummy #0 constant.
* However, there are exceptions: instructions like fmov store their argument
* in the _second_ slot and store a dummy r24 in the first slot, designated by
* QUIRK_FLIPPED_R24 */
#define QUIRK_FLIPPED_R24 (1 << 2)
/* Is the op commutative? */
#define OP_COMMUTES (1 << 3)
/* Vector-independant shorthands for the above; these numbers are arbitrary and
* not from the ISA. Convert to the above with unit_enum_to_midgard */
#define UNIT_MUL 0
#define UNIT_ADD 1
#define UNIT_LUT 2
/* 4-bit type tags */
#define TAG_TEXTURE_4 0x3
#define TAG_LOAD_STORE_4 0x5
#define TAG_ALU_4 0x8
#define TAG_ALU_8 0x9
#define TAG_ALU_12 0xA
#define TAG_ALU_16 0xB
/* Special register aliases */
#define MAX_WORK_REGISTERS 16
/* Uniforms are begin at (REGISTER_UNIFORMS - uniform_count) */
#define REGISTER_UNIFORMS 24
#define REGISTER_UNUSED 24
#define REGISTER_CONSTANT 26
#define REGISTER_VARYING_BASE 26
#define REGISTER_OFFSET 27
#define REGISTER_TEXTURE_BASE 28
#define REGISTER_SELECT 31
/* SSA helper aliases to mimic the registers. UNUSED_0 encoded as an inline
* constant. UNUSED_1 encoded as REGISTER_UNUSED */
#define SSA_UNUSED_0 0
#define SSA_UNUSED_1 -2
#define SSA_FIXED_SHIFT 24
#define SSA_FIXED_REGISTER(reg) ((1 + reg) << SSA_FIXED_SHIFT)
#define SSA_REG_FROM_FIXED(reg) ((reg >> SSA_FIXED_SHIFT) - 1)
#define SSA_FIXED_MINIMUM SSA_FIXED_REGISTER(0)
/* Swizzle support */
#define SWIZZLE(A, B, C, D) ((D << 6) | (C << 4) | (B << 2) | (A << 0))
#define SWIZZLE_FROM_ARRAY(r) SWIZZLE(r[0], r[1], r[2], r[3])
#define COMPONENT_X 0x0
#define COMPONENT_Y 0x1
#define COMPONENT_Z 0x2
#define COMPONENT_W 0x3
/* See ISA notes */
#define LDST_NOP (3)
/* There are five ALU units: VMUL, VADD, SMUL, SADD, LUT. A given opcode is
* implemented on some subset of these units (or occassionally all of them).
* This table encodes a bit mask of valid units for each opcode, so the
* scheduler can figure where to plonk the instruction. */
/* Shorthands for each unit */
#define UNIT_VMUL ALU_ENAB_VEC_MUL
#define UNIT_SADD ALU_ENAB_SCAL_ADD
#define UNIT_VADD ALU_ENAB_VEC_ADD
#define UNIT_SMUL ALU_ENAB_SCAL_MUL
#define UNIT_VLUT ALU_ENAB_VEC_LUT
/* Shorthands for usual combinations of units */
#define UNITS_MUL (UNIT_VMUL | UNIT_SMUL)
#define UNITS_ADD (UNIT_VADD | UNIT_SADD)
#define UNITS_MOST (UNITS_MUL | UNITS_ADD)
#define UNITS_ALL (UNITS_MOST | UNIT_VLUT)
#define UNITS_SCALAR (UNIT_SADD | UNIT_SMUL)
#define UNITS_VECTOR (UNIT_VMUL | UNIT_VADD)
#define UNITS_ANY_VECTOR (UNITS_VECTOR | UNIT_VLUT)
/* Table of mapping opcodes to accompanying properties relevant to
* scheduling/emission/etc */
static struct {
const char *name;
unsigned props;
} alu_opcode_props[256] = {
[midgard_alu_op_fadd] = {"fadd", UNITS_ADD | OP_COMMUTES},
[midgard_alu_op_fmul] = {"fmul", UNITS_MUL | UNIT_VLUT | OP_COMMUTES},
[midgard_alu_op_fmin] = {"fmin", UNITS_MUL | UNITS_ADD | OP_COMMUTES},
[midgard_alu_op_fmax] = {"fmax", UNITS_MUL | UNITS_ADD | OP_COMMUTES},
[midgard_alu_op_imin] = {"imin", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_imax] = {"imax", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_umin] = {"umin", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_umax] = {"umax", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_fmov] = {"fmov", UNITS_ALL | QUIRK_FLIPPED_R24},
[midgard_alu_op_fround] = {"fround", UNITS_ADD},
[midgard_alu_op_froundeven] = {"froundeven", UNITS_ADD},
[midgard_alu_op_ftrunc] = {"ftrunc", UNITS_ADD},
[midgard_alu_op_ffloor] = {"ffloor", UNITS_ADD},
[midgard_alu_op_fceil] = {"fceil", UNITS_ADD},
[midgard_alu_op_ffma] = {"ffma", UNIT_VLUT},
/* Though they output a scalar, they need to run on a vector unit
* since they process vectors */
[midgard_alu_op_fdot3] = {"fdot3", UNIT_VMUL | OP_CHANNEL_COUNT(3) | OP_COMMUTES},
[midgard_alu_op_fdot3r] = {"fdot3r", UNIT_VMUL | OP_CHANNEL_COUNT(3) | OP_COMMUTES},
[midgard_alu_op_fdot4] = {"fdot4", UNIT_VMUL | OP_CHANNEL_COUNT(4) | OP_COMMUTES},
/* Incredibly, iadd can run on vmul, etc */
[midgard_alu_op_iadd] = {"iadd", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_iabs] = {"iabs", UNITS_ADD},
[midgard_alu_op_isub] = {"isub", UNITS_MOST},
[midgard_alu_op_imul] = {"imul", UNITS_MUL | OP_COMMUTES},
[midgard_alu_op_imov] = {"imov", UNITS_MOST | QUIRK_FLIPPED_R24},
/* For vector comparisons, use ball etc */
[midgard_alu_op_feq] = {"feq", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_fne] = {"fne", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_fle] = {"fle", UNITS_MOST},
[midgard_alu_op_flt] = {"flt", UNITS_MOST},
[midgard_alu_op_ieq] = {"ieq", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_ine] = {"ine", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_ilt] = {"ilt", UNITS_MOST},
[midgard_alu_op_ile] = {"ile", UNITS_MOST},
[midgard_alu_op_ult] = {"ult", UNITS_MOST},
[midgard_alu_op_ule] = {"ule", UNITS_MOST},
[midgard_alu_op_icsel] = {"icsel", UNITS_ADD},
[midgard_alu_op_fcsel_i] = {"fcsel_i", UNITS_ADD},
[midgard_alu_op_fcsel] = {"fcsel", UNITS_ADD | UNIT_SMUL},
[midgard_alu_op_frcp] = {"frcp", UNIT_VLUT},
[midgard_alu_op_frsqrt] = {"frsqrt", UNIT_VLUT},
[midgard_alu_op_fsqrt] = {"fsqrt", UNIT_VLUT},
[midgard_alu_op_fpow_pt1] = {"fpow_pt1", UNIT_VLUT},
[midgard_alu_op_fexp2] = {"fexp2", UNIT_VLUT},
[midgard_alu_op_flog2] = {"flog2", UNIT_VLUT},
[midgard_alu_op_f2i] = {"f2i", UNITS_ADD},
[midgard_alu_op_f2u] = {"f2u", UNITS_ADD},
[midgard_alu_op_f2u8] = {"f2u8", UNITS_ADD},
[midgard_alu_op_i2f] = {"i2f", UNITS_ADD},
[midgard_alu_op_u2f] = {"u2f", UNITS_ADD},
[midgard_alu_op_fsin] = {"fsin", UNIT_VLUT},
[midgard_alu_op_fcos] = {"fcos", UNIT_VLUT},
/* XXX: Test case where it's right on smul but not sadd */
[midgard_alu_op_iand] = {"iand", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_iandnot] = {"iandnot", UNITS_MOST},
[midgard_alu_op_ior] = {"ior", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_iornot] = {"iornot", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_inor] = {"inor", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_ixor] = {"ixor", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_inxor] = {"inxor", UNITS_MOST | OP_COMMUTES},
[midgard_alu_op_iclz] = {"iclz", UNITS_ADD},
[midgard_alu_op_ibitcount8] = {"ibitcount8", UNITS_ADD},
[midgard_alu_op_inand] = {"inand", UNITS_MOST},
[midgard_alu_op_ishl] = {"ishl", UNITS_ADD},
[midgard_alu_op_iasr] = {"iasr", UNITS_ADD},
[midgard_alu_op_ilsr] = {"ilsr", UNITS_ADD},
[midgard_alu_op_fball_eq] = {"fball_eq", UNITS_VECTOR | OP_COMMUTES},
[midgard_alu_op_fbany_neq] = {"fbany_neq", UNITS_VECTOR | OP_COMMUTES},
[midgard_alu_op_iball_eq] = {"iball_eq", UNITS_VECTOR | OP_COMMUTES},
[midgard_alu_op_iball_neq] = {"iball_neq", UNITS_VECTOR | OP_COMMUTES},
[midgard_alu_op_ibany_eq] = {"ibany_eq", UNITS_VECTOR | OP_COMMUTES},
[midgard_alu_op_ibany_neq] = {"ibany_neq", UNITS_VECTOR | OP_COMMUTES},
/* These instructions are not yet emitted by the compiler, so
* don't speculate about units yet */
[midgard_alu_op_ishladd] = {"ishladd", 0},
[midgard_alu_op_uball_lt] = {"uball_lt", 0},
[midgard_alu_op_uball_lte] = {"uball_lte", 0},
[midgard_alu_op_iball_lt] = {"iball_lt", 0},
[midgard_alu_op_iball_lte] = {"iball_lte", 0},
[midgard_alu_op_ubany_lt] = {"ubany_lt", 0},
[midgard_alu_op_ubany_lte] = {"ubany_lte", 0},
[midgard_alu_op_ibany_lt] = {"ibany_lt", 0},
[midgard_alu_op_ibany_lte] = {"ibany_lte", 0},
[midgard_alu_op_freduce] = {"freduce", 0},
[midgard_alu_op_bball_eq] = {"bball_eq", 0 | OP_COMMUTES},
[midgard_alu_op_bbany_neq] = {"bball_eq", 0 | OP_COMMUTES},
[midgard_alu_op_fatan2_pt1] = {"fatan2_pt1", 0},
[midgard_alu_op_fatan_pt2] = {"fatan_pt2", 0},
};
/* Is this opcode that of an integer (regardless of signedness)? Instruction
* names authoritatively determine types */
static bool
midgard_is_integer_op(int op)
{
const char *name = alu_opcode_props[op].name;
if (!name)
return false;
return (name[0] == 'i') || (name[0] == 'u');
}
|