summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/nvfx/nvfx_vbo.c
blob: b02e7b76344c6179156200f53963e77863368fab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#include "pipe/p_context.h"
#include "pipe/p_state.h"
#include "util/u_inlines.h"
#include "util/u_format.h"
#include "translate/translate.h"

#include "nvfx_context.h"
#include "nvfx_state.h"
#include "nvfx_resource.h"

#include "nouveau/nouveau_channel.h"
#include "nouveau/nv04_pushbuf.h"

static inline unsigned
util_guess_unique_indices_count(unsigned mode, unsigned indices)
{
	/* Euler's formula gives V =
	 * = E - F + 2 =
	 * = F * (polygon_edges / 2 - 1) + 2 =
	 * =  F * (polygon_edges - 2) / 2 + 2 =
	 * =  indices * (polygon_edges - 2) / (2 * indices_per_face) + 2
	 * =  indices * (1 / 2 - 1 / polygon_edges) + 2
	 */
	switch(mode)
	{
	case PIPE_PRIM_LINES:
		return indices >> 1;
	case PIPE_PRIM_TRIANGLES:
	{
		// avoid an expensive division by 3 using the multiplicative inverse mod 2^32
		unsigned q;
		unsigned inv3 = 2863311531;
		indices >>= 1;
		q = indices * inv3;
		if(unlikely(q >= indices))
		{
			q += inv3;
			if(q >= indices)
				q += inv3;
		}
		return indices + 2;
		//return indices / 6 + 2;
	}
	// guess that indexed quads are created by successive connections, since a closed mesh seems unlikely
	case PIPE_PRIM_QUADS:
		return (indices >> 1) + 2;
	//	return (indices >> 2) + 2; // if it is a closed mesh
	default:
		return indices;
	}
}

static unsigned nvfx_decide_upload_mode(struct pipe_context *pipe, const struct pipe_draw_info *info)
{
	struct nvfx_context* nvfx = nvfx_context(pipe);
	unsigned hardware_cost = 0;
	unsigned inline_cost = 0;
	unsigned unique_vertices;
	unsigned upload_mode;
	float best_index_cost_for_hardware_vertices_as_inline_cost;
	boolean prefer_hardware_indices;
	unsigned index_inline_cost;
	unsigned index_hardware_cost;
	if (info->indexed)
		unique_vertices = util_guess_unique_indices_count(info->mode, info->count);
	else
		unique_vertices = info->count;

	/* Here we try to figure out if we are better off writing vertex data directly on the FIFO,
	 * or create hardware buffer objects and pointing the hardware to them.
	 *
	 * This is done by computing the total memcpy cost of each option, ignoring uploads
	 * if we think that the buffer is static and thus the upload cost will be amortized over
	 * future draw calls.
	 *
	 * For instance, if everything looks static, we will always create buffer objects, while if
	 * everything is a user buffer and we are not doing indexed drawing, we never do.
	 *
	 * Other interesting cases are where a small user vertex buffer, but a huge user index buffer,
	 * where we will upload the vertex buffer, so that we can use hardware index lookup, and
	 * the opposite case, where we instead do index lookup in software to avoid uploading
	 * a huge amount of vertex data that is not going to be used.
	 *
	 * Otherwise, we generally move to the GPU the after it has been pushed
	 * NVFX_STATIC_BUFFER_MIN_REUSE_TIMES times to the GPU without having
	 * been updated with a transfer (or just the buffer having been destroyed).
	 *
	 * There is no special handling for user buffers, since applications can use
	 * OpenGL VBOs in a one-shot fashion. OpenGL 3/4 core profile forces this
	 * by the way.
	 *
	 * Note that currently we don't support only putting some data on the FIFO, and
	 * some on vertex buffers (constant and instanced data is independent from this).
	 *
	 * nVidia doesn't seem to do this either, even though it should be at least
	 * doable with VTX_ATTR and possibly with VERTEX_DATA too if not indexed.
	 */

	for (unsigned i = 0; i < nvfx->vtxelt->num_per_vertex_buffer_infos; i++)
	{
		struct nvfx_per_vertex_buffer_info* vbi = &nvfx->vtxelt->per_vertex_buffer_info[i];
		struct pipe_vertex_buffer *vb = &nvfx->vtxbuf[vbi->vertex_buffer_index];
		struct nvfx_buffer* buffer = nvfx_buffer(vb->buffer);
		buffer->bytes_to_draw_until_static -= vbi->per_vertex_size * unique_vertices;
		if (!nvfx_buffer_seems_static(buffer))
		{
			hardware_cost += buffer->dirty_end - buffer->dirty_begin;
			if (!buffer->base.bo)
				hardware_cost += nvfx->screen->buffer_allocation_cost;
		}
		inline_cost += vbi->per_vertex_size * info->count;
	}

	best_index_cost_for_hardware_vertices_as_inline_cost = 0.0f;
	prefer_hardware_indices = FALSE;
	index_inline_cost = 0;
	index_hardware_cost = 0;

	if (info->indexed)
	{
		index_inline_cost = nvfx->idxbuf.index_size * info->count;
		if (nvfx->screen->index_buffer_reloc_flags
			&& (nvfx->idxbuf.index_size == 2 || nvfx->idxbuf.index_size == 4)
			&& !(nvfx->idxbuf.offset & (nvfx->idxbuf.index_size - 1)))
		{
			struct nvfx_buffer* buffer = nvfx_buffer(nvfx->idxbuf.buffer);
			buffer->bytes_to_draw_until_static -= index_inline_cost;

			prefer_hardware_indices = TRUE;

			if (!nvfx_buffer_seems_static(buffer))
			{
				index_hardware_cost = buffer->dirty_end - buffer->dirty_begin;
				if (!buffer->base.bo)
					index_hardware_cost += nvfx->screen->buffer_allocation_cost;
			}

			if ((float) index_inline_cost < (float) index_hardware_cost * nvfx->screen->inline_cost_per_hardware_cost)
			{
				best_index_cost_for_hardware_vertices_as_inline_cost = (float) index_inline_cost;
			}
			else
			{
				best_index_cost_for_hardware_vertices_as_inline_cost = (float) index_hardware_cost * nvfx->screen->inline_cost_per_hardware_cost;
				prefer_hardware_indices = TRUE;
			}
		}
	}

	/* let's finally figure out which of the 3 paths we want to take */
	if ((float) (inline_cost + index_inline_cost) > ((float) hardware_cost * nvfx->screen->inline_cost_per_hardware_cost + best_index_cost_for_hardware_vertices_as_inline_cost))
		upload_mode = 1 + prefer_hardware_indices;
	else
		upload_mode = 0;

#ifdef DEBUG
        if (unlikely(nvfx->screen->trace_draw))
          {
                  fprintf(stderr, "DRAW");
                  if (info->indexed)
                  {
                          fprintf(stderr, "_IDX%u", nvfx->idxbuf.index_size);
                          if (info->index_bias)
                                  fprintf(stderr, " biased %u", info->index_bias);
                          fprintf(stderr, " idxrange %u -> %u", info->min_index, info->max_index);
                  }
                  if (info->instance_count > 1)
                          fprintf(stderr, " %u instances from %u", info->instance_count, info->indexed);
                  fprintf(stderr, " start %u count %u prim %u", info->start, info->count, info->mode);
                  if (!upload_mode)
                          fprintf(stderr, " -> inline vertex data");
                  else if (upload_mode == 2 || !info->indexed)
                          fprintf(stderr, " -> buffer range");
                  else
                          fprintf(stderr, " -> inline indices");
                  fprintf(stderr, " [ivtx %u hvtx %u iidx %u hidx %u bidx %f] <", inline_cost, hardware_cost, index_inline_cost, index_hardware_cost, best_index_cost_for_hardware_vertices_as_inline_cost);
                  for (unsigned i = 0; i < nvfx->vtxelt->num_per_vertex_buffer_infos; ++i)
                  {
                          struct nvfx_per_vertex_buffer_info* vbi = &nvfx->vtxelt->per_vertex_buffer_info[i];
                          struct pipe_vertex_buffer *vb = &nvfx->vtxbuf[vbi->vertex_buffer_index];
                          struct nvfx_buffer* buffer = nvfx_buffer(vb->buffer);
                          if (i)
                                  fprintf(stderr, ", ");
                          fprintf(stderr, "%p%s left %Li", buffer, buffer->last_update_static ? " static" : "", buffer->bytes_to_draw_until_static);
                  }
                  fprintf(stderr, ">\n");
          }
#endif

	return upload_mode;
}

void nvfx_draw_vbo(struct pipe_context *pipe, const struct pipe_draw_info *info)
{
	struct nvfx_context *nvfx = nvfx_context(pipe);
	unsigned upload_mode = 0;

	if (!nvfx->vtxelt->needs_translate)
		upload_mode = nvfx_decide_upload_mode(pipe, info);

	nvfx->use_index_buffer = upload_mode > 1;

	if ((upload_mode > 0) != nvfx->use_vertex_buffers)
	{
		nvfx->use_vertex_buffers = (upload_mode > 0);
		nvfx->dirty |= NVFX_NEW_ARRAYS;
		nvfx->draw_dirty |= NVFX_NEW_ARRAYS;
	}

	if (upload_mode > 0)
	{
		for (unsigned i = 0; i < nvfx->vtxelt->num_per_vertex_buffer_infos; i++)
		{
			struct nvfx_per_vertex_buffer_info* vbi = &nvfx->vtxelt->per_vertex_buffer_info[i];
			struct pipe_vertex_buffer *vb = &nvfx->vtxbuf[vbi->vertex_buffer_index];
			nvfx_buffer_upload(nvfx_buffer(vb->buffer));
		}

		if (upload_mode > 1)
		{
			nvfx_buffer_upload(nvfx_buffer(nvfx->idxbuf.buffer));

			if (unlikely(info->index_bias != nvfx->base_vertex))
			{
				nvfx->base_vertex = info->index_bias;
				nvfx->dirty |= NVFX_NEW_ARRAYS;
			}
		}
		else
		{
			if (unlikely(info->start < nvfx->base_vertex && nvfx->base_vertex))
			{
				nvfx->base_vertex = 0;
				nvfx->dirty |= NVFX_NEW_ARRAYS;
			}
		}
	}

	if (nvfx->screen->force_swtnl || !nvfx_state_validate(nvfx))
		nvfx_draw_vbo_swtnl(pipe, info);
	else
		nvfx_push_vbo(pipe, info);
}

boolean
nvfx_vbo_validate(struct nvfx_context *nvfx)
{
	struct nouveau_channel* chan = nvfx->screen->base.channel;
	struct nouveau_grobj *eng3d = nvfx->screen->eng3d;
	int i;
	int elements = MAX2(nvfx->vtxelt->num_elements, nvfx->hw_vtxelt_nr);
	unsigned vb_flags = nvfx->screen->vertex_buffer_reloc_flags | NOUVEAU_BO_RD;

	if (!elements)
		return TRUE;

	MARK_RING(chan, (5 + 2) * 16 + 2 + 11, 16 + 2);
	for(unsigned i = 0; i < nvfx->vtxelt->num_constant; ++i)
	{
		struct nvfx_low_frequency_element *ve = &nvfx->vtxelt->constant[i];
		struct pipe_vertex_buffer *vb = &nvfx->vtxbuf[ve->vertex_buffer_index];
		struct nvfx_buffer* buffer = nvfx_buffer(vb->buffer);
		float v[4];
		ve->fetch_rgba_float(v, buffer->data + vb->buffer_offset + ve->src_offset, 0, 0);
		nvfx_emit_vtx_attr(chan, eng3d, ve->idx, v, ve->ncomp);
	}


	BEGIN_RING(chan, eng3d, NV30_3D_VTXFMT(0), elements);
	if(nvfx->use_vertex_buffers)
	{
		unsigned idx = 0;
		for (i = 0; i < nvfx->vtxelt->num_per_vertex; i++) {
			struct nvfx_per_vertex_element *ve = &nvfx->vtxelt->per_vertex[i];
			struct pipe_vertex_buffer *vb = &nvfx->vtxbuf[ve->vertex_buffer_index];

			if(idx != ve->idx)
			{
				assert(idx < ve->idx);
				OUT_RINGp(chan, &nvfx->vtxelt->vtxfmt[idx], ve->idx - idx);
				idx = ve->idx;
			}

			OUT_RING(chan, nvfx->vtxelt->vtxfmt[idx] | (vb->stride << NV30_3D_VTXFMT_STRIDE__SHIFT));
			++idx;
		}
		if(idx != nvfx->vtxelt->num_elements)
			OUT_RINGp(chan, &nvfx->vtxelt->vtxfmt[idx], nvfx->vtxelt->num_elements - idx);
	}
	else
		OUT_RINGp(chan, nvfx->vtxelt->vtxfmt, nvfx->vtxelt->num_elements);

	for(i = nvfx->vtxelt->num_elements; i < elements; ++i)
		OUT_RING(chan, NV30_3D_VTXFMT_TYPE_V32_FLOAT);

	if(nvfx->is_nv4x) {
		unsigned i;
		/* seems to be some kind of cache flushing */
		for(i = 0; i < 3; ++i) {
			BEGIN_RING(chan, eng3d, 0x1718, 1);
			OUT_RING(chan, 0);
		}
	}

	BEGIN_RING(chan, eng3d, NV30_3D_VTXBUF(0), elements);
	if(nvfx->use_vertex_buffers)
	{
		unsigned idx = 0;
		for (i = 0; i < nvfx->vtxelt->num_per_vertex; i++) {
			struct nvfx_per_vertex_element *ve = &nvfx->vtxelt->per_vertex[i];
			struct pipe_vertex_buffer *vb = &nvfx->vtxbuf[ve->vertex_buffer_index];
			struct nouveau_bo* bo = nvfx_resource(vb->buffer)->bo;

			for(; idx < ve->idx; ++idx)
				OUT_RING(chan, 0);

			OUT_RELOC(chan, bo,
					vb->buffer_offset + ve->src_offset + nvfx->base_vertex * vb->stride,
					vb_flags | NOUVEAU_BO_LOW | NOUVEAU_BO_OR,
					0, NV30_3D_VTXBUF_DMA1);
			++idx;
		}

		for(; idx < elements; ++idx)
			OUT_RING(chan, 0);
	}
	else
	{
		for (i = 0; i < elements; i++)
			OUT_RING(chan, 0);
	}

	BEGIN_RING(chan, eng3d, 0x1710, 1);
	OUT_RING(chan, 0);

	nvfx->hw_vtxelt_nr = nvfx->vtxelt->num_elements;
	nvfx->relocs_needed &=~ NVFX_RELOCATE_VTXBUF;
	return TRUE;
}

void
nvfx_vbo_swtnl_validate(struct nvfx_context *nvfx)
{
	struct nouveau_channel* chan = nvfx->screen->base.channel;
	struct nouveau_grobj *eng3d = nvfx->screen->eng3d;
	unsigned num_outputs = nvfx->vertprog->draw_elements;
	int elements = MAX2(num_outputs, nvfx->hw_vtxelt_nr);

	if (!elements)
		return;

	BEGIN_RING(chan, eng3d, NV30_3D_VTXFMT(0), elements);
	for(unsigned i = 0; i < num_outputs; ++i)
		OUT_RING(chan, (4 << NV30_3D_VTXFMT_SIZE__SHIFT) | NV30_3D_VTXFMT_TYPE_V32_FLOAT);
	for(unsigned i = num_outputs; i < elements; ++i)
		OUT_RING(chan, NV30_3D_VTXFMT_TYPE_V32_FLOAT);

	if(nvfx->is_nv4x) {
		unsigned i;
		/* seems to be some kind of cache flushing */
		for(i = 0; i < 3; ++i) {
			BEGIN_RING(chan, eng3d, 0x1718, 1);
			OUT_RING(chan, 0);
		}
	}

	BEGIN_RING(chan, eng3d, NV30_3D_VTXBUF(0), elements);
	for (unsigned i = 0; i < elements; i++)
		OUT_RING(chan, 0);

	BEGIN_RING(chan, eng3d, 0x1710, 1);
	OUT_RING(chan, 0);

	nvfx->hw_vtxelt_nr = num_outputs;
	nvfx->relocs_needed &=~ NVFX_RELOCATE_VTXBUF;
}

void
nvfx_vbo_relocate(struct nvfx_context *nvfx)
{
	struct nouveau_channel* chan;
	unsigned vb_flags;
	int i;

        if(!nvfx->use_vertex_buffers)
                return;

	chan = nvfx->screen->base.channel;
	vb_flags = nvfx->screen->vertex_buffer_reloc_flags | NOUVEAU_BO_RD | NOUVEAU_BO_DUMMY;

	MARK_RING(chan, 2 * 16 + 3, 2 * 16 + 3);
        for (i = 0; i < nvfx->vtxelt->num_per_vertex; i++) {
                struct nvfx_per_vertex_element *ve = &nvfx->vtxelt->per_vertex[i];
                struct pipe_vertex_buffer *vb = &nvfx->vtxbuf[ve->vertex_buffer_index];
                struct nouveau_bo* bo = nvfx_resource(vb->buffer)->bo;

                OUT_RELOC(chan, bo, RING_3D(NV30_3D_VTXBUF(ve->idx), 1),
				vb_flags, 0, 0);
                OUT_RELOC(chan, bo, vb->buffer_offset + ve->src_offset + nvfx->base_vertex * vb->stride,
				vb_flags | NOUVEAU_BO_LOW | NOUVEAU_BO_OR,
				0, NV30_3D_VTXBUF_DMA1);
	}
        nvfx->relocs_needed &=~ NVFX_RELOCATE_VTXBUF;
}

static void
nvfx_idxbuf_emit(struct nvfx_context* nvfx, unsigned ib_flags)
{
	struct nouveau_channel* chan = nvfx->screen->base.channel;
	struct nouveau_grobj *eng3d = nvfx->screen->eng3d;
	unsigned ib_format = (nvfx->idxbuf.index_size == 2) ? NV30_3D_IDXBUF_FORMAT_TYPE_U16 : NV30_3D_IDXBUF_FORMAT_TYPE_U32;
	struct nouveau_bo* bo = nvfx_resource(nvfx->idxbuf.buffer)->bo;
	ib_flags |= nvfx->screen->index_buffer_reloc_flags | NOUVEAU_BO_RD;

	assert(nvfx->screen->index_buffer_reloc_flags);

	MARK_RING(chan, 3, 3);
	if(ib_flags & NOUVEAU_BO_DUMMY)
		OUT_RELOC(chan, bo, RING_3D(NV30_3D_IDXBUF_OFFSET, 2), ib_flags, 0, 0);
	else
		OUT_RING(chan, RING_3D(NV30_3D_IDXBUF_OFFSET, 2));
	OUT_RELOC(chan, bo, nvfx->idxbuf.offset + 1, ib_flags | NOUVEAU_BO_LOW, 0, 0);
	OUT_RELOC(chan, bo, ib_format, ib_flags | NOUVEAU_BO_OR,
			0, NV30_3D_IDXBUF_FORMAT_DMA1);
	nvfx->relocs_needed &=~ NVFX_RELOCATE_IDXBUF;
}

void
nvfx_idxbuf_validate(struct nvfx_context* nvfx)
{
	nvfx_idxbuf_emit(nvfx, 0);
}

void
nvfx_idxbuf_relocate(struct nvfx_context* nvfx)
{
	nvfx_idxbuf_emit(nvfx, NOUVEAU_BO_DUMMY);
}

unsigned nvfx_vertex_formats[PIPE_FORMAT_COUNT] =
{
	[PIPE_FORMAT_R32_FLOAT] = NV30_3D_VTXFMT_TYPE_V32_FLOAT,
	[PIPE_FORMAT_R32G32_FLOAT] = NV30_3D_VTXFMT_TYPE_V32_FLOAT,
	[PIPE_FORMAT_R32G32B32_FLOAT] = NV30_3D_VTXFMT_TYPE_V32_FLOAT,
	[PIPE_FORMAT_R32G32B32A32_FLOAT] = NV30_3D_VTXFMT_TYPE_V32_FLOAT,
	[PIPE_FORMAT_R16_FLOAT] = NV30_3D_VTXFMT_TYPE_V16_FLOAT,
	[PIPE_FORMAT_R16G16_FLOAT] = NV30_3D_VTXFMT_TYPE_V16_FLOAT,
	[PIPE_FORMAT_R16G16B16_FLOAT] = NV30_3D_VTXFMT_TYPE_V16_FLOAT,
	[PIPE_FORMAT_R16G16B16A16_FLOAT] = NV30_3D_VTXFMT_TYPE_V16_FLOAT,
	[PIPE_FORMAT_R8_UNORM] = NV30_3D_VTXFMT_TYPE_U8_UNORM,
	[PIPE_FORMAT_R8G8_UNORM] = NV30_3D_VTXFMT_TYPE_U8_UNORM,
	[PIPE_FORMAT_R8G8B8_UNORM] = NV30_3D_VTXFMT_TYPE_U8_UNORM,
	[PIPE_FORMAT_R8G8B8A8_UNORM] = NV30_3D_VTXFMT_TYPE_U8_UNORM,
	[PIPE_FORMAT_R8G8B8A8_USCALED] = NV30_3D_VTXFMT_TYPE_U8_USCALED,
	[PIPE_FORMAT_R16_SNORM] = NV30_3D_VTXFMT_TYPE_V16_SNORM,
	[PIPE_FORMAT_R16G16_SNORM] = NV30_3D_VTXFMT_TYPE_V16_SNORM,
	[PIPE_FORMAT_R16G16B16_SNORM] = NV30_3D_VTXFMT_TYPE_V16_SNORM,
	[PIPE_FORMAT_R16G16B16A16_SNORM] = NV30_3D_VTXFMT_TYPE_V16_SNORM,
	[PIPE_FORMAT_R16_SSCALED] = NV30_3D_VTXFMT_TYPE_V16_SSCALED,
	[PIPE_FORMAT_R16G16_SSCALED] = NV30_3D_VTXFMT_TYPE_V16_SSCALED,
	[PIPE_FORMAT_R16G16B16_SSCALED] = NV30_3D_VTXFMT_TYPE_V16_SSCALED,
	[PIPE_FORMAT_R16G16B16A16_SSCALED] = NV30_3D_VTXFMT_TYPE_V16_SSCALED,
};

static void *
nvfx_vtxelts_state_create(struct pipe_context *pipe,
			  unsigned num_elements,
			  const struct pipe_vertex_element *elements)
{
	struct nvfx_vtxelt_state *cso = CALLOC_STRUCT(nvfx_vtxelt_state);
	struct translate_key transkey;
	unsigned per_vertex_size[16];
	unsigned vb_compacted_index[16];

	if(num_elements > 16)
	{
		_debug_printf("Error: application attempted to use %u vertex elements, but only 16 are supported: ignoring the rest\n", num_elements);
		num_elements = 16;
	}

	memset(per_vertex_size, 0, sizeof(per_vertex_size));
	memcpy(cso->pipe, elements, num_elements * sizeof(elements[0]));
	cso->num_elements = num_elements;
	cso->needs_translate = FALSE;

	transkey.nr_elements = 0;
	transkey.output_stride = 0;

	for(unsigned i = 0; i < num_elements; ++i)
        {
		const struct pipe_vertex_element* ve = &elements[i];
		if(!ve->instance_divisor)
                        per_vertex_size[ve->vertex_buffer_index] += util_format_get_stride(ve->src_format, 1);
        }

        for(unsigned i = 0; i < 16; ++i)
        {
                if(per_vertex_size[i])
                {
                        unsigned idx = cso->num_per_vertex_buffer_infos++;
                        cso->per_vertex_buffer_info[idx].vertex_buffer_index = i;
                        cso->per_vertex_buffer_info[idx].per_vertex_size = per_vertex_size[i];
                        vb_compacted_index[i] = idx;
                }
        }

	for(unsigned i = 0; i < num_elements; ++i)
	{
		const struct pipe_vertex_element* ve = &elements[i];
		unsigned type = nvfx_vertex_formats[ve->src_format];
		unsigned ncomp = util_format_get_nr_components(ve->src_format);

		//if(ve->frequency != PIPE_ELEMENT_FREQUENCY_PER_VERTEX)
		if(ve->instance_divisor)
		{
			struct nvfx_low_frequency_element* lfve;
			cso->vtxfmt[i] = NV30_3D_VTXFMT_TYPE_V32_FLOAT;

			//if(ve->frequency == PIPE_ELEMENT_FREQUENCY_CONSTANT)
			if(0)
				lfve = &cso->constant[cso->num_constant++];
			else
			{
				lfve = &cso->per_instance[cso->num_per_instance++].base;
				((struct nvfx_per_instance_element*)lfve)->instance_divisor = ve->instance_divisor;
			}

                        lfve->idx = i;
                        lfve->vertex_buffer_index = ve->vertex_buffer_index;
                        lfve->src_offset = ve->src_offset;
                        lfve->fetch_rgba_float = util_format_description(ve->src_format)->fetch_rgba_float;
                        lfve->ncomp = ncomp;
		}
		else
		{
			unsigned idx;

			idx = cso->num_per_vertex++;
			cso->per_vertex[idx].idx = i;
			cso->per_vertex[idx].vertex_buffer_index = ve->vertex_buffer_index;
			cso->per_vertex[idx].src_offset = ve->src_offset;

			idx = transkey.nr_elements++;
			transkey.element[idx].input_format = ve->src_format;
			transkey.element[idx].input_buffer = vb_compacted_index[ve->vertex_buffer_index];
			transkey.element[idx].input_offset = ve->src_offset;
			transkey.element[idx].instance_divisor = 0;
			transkey.element[idx].type = TRANSLATE_ELEMENT_NORMAL;
			if(type)
			{
				transkey.element[idx].output_format = ve->src_format;
				cso->vtxfmt[i] = (ncomp << NV30_3D_VTXFMT_SIZE__SHIFT) | type;
			}
			else
			{
				unsigned float32[4] = {PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT};
				transkey.element[idx].output_format = float32[ncomp - 1];
				cso->needs_translate = TRUE;
				cso->vtxfmt[i] = (ncomp << NV30_3D_VTXFMT_SIZE__SHIFT) | NV30_3D_VTXFMT_TYPE_V32_FLOAT;
			}
			transkey.element[idx].output_offset = transkey.output_stride;
			transkey.output_stride += (util_format_get_stride(transkey.element[idx].output_format, 1) + 3) & ~3;
		}
	}

	cso->translate = translate_create(&transkey);
	cso->vertex_length = transkey.output_stride >> 2;
	cso->max_vertices_per_packet = 2047 / MAX2(cso->vertex_length, 1);

	return (void *)cso;
}

static void
nvfx_vtxelts_state_delete(struct pipe_context *pipe, void *hwcso)
{
	FREE(hwcso);
}

static void
nvfx_vtxelts_state_bind(struct pipe_context *pipe, void *hwcso)
{
	struct nvfx_context *nvfx = nvfx_context(pipe);

	nvfx->vtxelt = hwcso;
	nvfx->use_vertex_buffers = -1;
	nvfx->draw_dirty |= NVFX_NEW_ARRAYS;
}

static void
nvfx_set_vertex_buffers(struct pipe_context *pipe, unsigned count,
			const struct pipe_vertex_buffer *vb)
{
	struct nvfx_context *nvfx = nvfx_context(pipe);

	for(unsigned i = 0; i < count; ++i)
	{
		pipe_resource_reference(&nvfx->vtxbuf[i].buffer, vb[i].buffer);
		nvfx->vtxbuf[i].buffer_offset = vb[i].buffer_offset;
		nvfx->vtxbuf[i].max_index = vb[i].max_index;
		nvfx->vtxbuf[i].stride = vb[i].stride;
	}

	for(unsigned i = count; i < nvfx->vtxbuf_nr; ++i)
		pipe_resource_reference(&nvfx->vtxbuf[i].buffer, 0);

	nvfx->vtxbuf_nr = count;
	nvfx->use_vertex_buffers = -1;
	nvfx->draw_dirty |= NVFX_NEW_ARRAYS;
}

static void
nvfx_set_index_buffer(struct pipe_context *pipe,
		      const struct pipe_index_buffer *ib)
{
	struct nvfx_context *nvfx = nvfx_context(pipe);

	if(ib)
	{
		pipe_resource_reference(&nvfx->idxbuf.buffer, ib->buffer);
		nvfx->idxbuf.index_size = ib->index_size;
		nvfx->idxbuf.offset = ib->offset;
	}
	else
	{
		pipe_resource_reference(&nvfx->idxbuf.buffer, 0);
		nvfx->idxbuf.index_size = 0;
		nvfx->idxbuf.offset = 0;
	}

	nvfx->dirty |= NVFX_NEW_INDEX;
	nvfx->draw_dirty |= NVFX_NEW_INDEX;
}

void
nvfx_init_vbo_functions(struct nvfx_context *nvfx)
{
	nvfx->pipe.set_vertex_buffers = nvfx_set_vertex_buffers;
	nvfx->pipe.set_index_buffer = nvfx_set_index_buffer;

	nvfx->pipe.create_vertex_elements_state = nvfx_vtxelts_state_create;
	nvfx->pipe.delete_vertex_elements_state = nvfx_vtxelts_state_delete;
	nvfx->pipe.bind_vertex_elements_state = nvfx_vtxelts_state_bind;
}