summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/nouveau/nouveau_buffer.c
blob: 32fa65c8a51c577a8fbb6a48bb21ebe271eda459 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

#include "util/u_inlines.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "util/u_surface.h"

#include "nouveau_screen.h"
#include "nouveau_context.h"
#include "nouveau_winsys.h"
#include "nouveau_fence.h"
#include "nouveau_buffer.h"
#include "nouveau_mm.h"

#define NOUVEAU_TRANSFER_PUSHBUF_THRESHOLD 192

struct nouveau_transfer {
   struct pipe_transfer base;

   uint8_t *map;
   struct nouveau_bo *bo;
   struct nouveau_mm_allocation *mm;
   uint32_t offset;
};

static INLINE struct nouveau_transfer *
nouveau_transfer(struct pipe_transfer *transfer)
{
   return (struct nouveau_transfer *)transfer;
}

static INLINE boolean
nouveau_buffer_malloc(struct nv04_resource *buf)
{
   if (!buf->data)
      buf->data = align_malloc(buf->base.width0, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
   return !!buf->data;
}

static INLINE boolean
nouveau_buffer_allocate(struct nouveau_screen *screen,
                        struct nv04_resource *buf, unsigned domain)
{
   uint32_t size = buf->base.width0;

   if (buf->base.bind & (PIPE_BIND_CONSTANT_BUFFER |
                         PIPE_BIND_COMPUTE_RESOURCE |
                         PIPE_BIND_SHADER_RESOURCE))
      size = align(size, 0x100);

   if (domain == NOUVEAU_BO_VRAM) {
      buf->mm = nouveau_mm_allocate(screen->mm_VRAM, size,
                                    &buf->bo, &buf->offset);
      if (!buf->bo)
         return nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_GART);
      NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_vid, buf->base.width0);
   } else
   if (domain == NOUVEAU_BO_GART) {
      buf->mm = nouveau_mm_allocate(screen->mm_GART, size,
                                    &buf->bo, &buf->offset);
      if (!buf->bo)
         return FALSE;
      NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_sys, buf->base.width0);
   } else {
      assert(domain == 0);
      if (!nouveau_buffer_malloc(buf))
         return FALSE;
   }
   buf->domain = domain;
   if (buf->bo)
      buf->address = buf->bo->offset + buf->offset;

   util_range_set_empty(&buf->valid_buffer_range);

   return TRUE;
}

static INLINE void
release_allocation(struct nouveau_mm_allocation **mm,
                   struct nouveau_fence *fence)
{
   nouveau_fence_work(fence, nouveau_mm_free_work, *mm);
   (*mm) = NULL;
}

INLINE void
nouveau_buffer_release_gpu_storage(struct nv04_resource *buf)
{
   nouveau_bo_ref(NULL, &buf->bo);

   if (buf->mm)
      release_allocation(&buf->mm, buf->fence);

   if (buf->domain == NOUVEAU_BO_VRAM)
      NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_vid, -(uint64_t)buf->base.width0);
   if (buf->domain == NOUVEAU_BO_GART)
      NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_sys, -(uint64_t)buf->base.width0);

   buf->domain = 0;
}

static INLINE boolean
nouveau_buffer_reallocate(struct nouveau_screen *screen,
                          struct nv04_resource *buf, unsigned domain)
{
   nouveau_buffer_release_gpu_storage(buf);

   nouveau_fence_ref(NULL, &buf->fence);
   nouveau_fence_ref(NULL, &buf->fence_wr);

   buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;

   return nouveau_buffer_allocate(screen, buf, domain);
}

static void
nouveau_buffer_destroy(struct pipe_screen *pscreen,
                       struct pipe_resource *presource)
{
   struct nv04_resource *res = nv04_resource(presource);

   nouveau_buffer_release_gpu_storage(res);

   if (res->data && !(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
      align_free(res->data);

   nouveau_fence_ref(NULL, &res->fence);
   nouveau_fence_ref(NULL, &res->fence_wr);

   util_range_destroy(&res->valid_buffer_range);

   FREE(res);

   NOUVEAU_DRV_STAT(nouveau_screen(pscreen), buf_obj_current_count, -1);
}

/* Set up a staging area for the transfer. This is either done in "regular"
 * system memory if the driver supports push_data (nv50+) and the data is
 * small enough (and permit_pb == true), or in GART memory.
 */
static uint8_t *
nouveau_transfer_staging(struct nouveau_context *nv,
                         struct nouveau_transfer *tx, boolean permit_pb)
{
   const unsigned adj = tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK;
   const unsigned size = align(tx->base.box.width, 4) + adj;

   if (!nv->push_data)
      permit_pb = FALSE;

   if ((size <= NOUVEAU_TRANSFER_PUSHBUF_THRESHOLD) && permit_pb) {
      tx->map = align_malloc(size, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
      if (tx->map)
         tx->map += adj;
   } else {
      tx->mm =
         nouveau_mm_allocate(nv->screen->mm_GART, size, &tx->bo, &tx->offset);
      if (tx->bo) {
         tx->offset += adj;
         if (!nouveau_bo_map(tx->bo, 0, NULL))
            tx->map = (uint8_t *)tx->bo->map + tx->offset;
      }
   }
   return tx->map;
}

/* Copies data from the resource into the the transfer's temporary GART
 * buffer. Also updates buf->data if present.
 *
 * Maybe just migrate to GART right away if we actually need to do this. */
static boolean
nouveau_transfer_read(struct nouveau_context *nv, struct nouveau_transfer *tx)
{
   struct nv04_resource *buf = nv04_resource(tx->base.resource);
   const unsigned base = tx->base.box.x;
   const unsigned size = tx->base.box.width;

   NOUVEAU_DRV_STAT(nv->screen, buf_read_bytes_staging_vid, size);

   nv->copy_data(nv, tx->bo, tx->offset, NOUVEAU_BO_GART,
                 buf->bo, buf->offset + base, buf->domain, size);

   if (nouveau_bo_wait(tx->bo, NOUVEAU_BO_RD, nv->client))
      return FALSE;

   if (buf->data)
      memcpy(buf->data + base, tx->map, size);

   return TRUE;
}

static void
nouveau_transfer_write(struct nouveau_context *nv, struct nouveau_transfer *tx,
                       unsigned offset, unsigned size)
{
   struct nv04_resource *buf = nv04_resource(tx->base.resource);
   uint8_t *data = tx->map + offset;
   const unsigned base = tx->base.box.x + offset;
   const boolean can_cb = !((base | size) & 3);

   if (buf->data)
      memcpy(data, buf->data + base, size);
   else
      buf->status |= NOUVEAU_BUFFER_STATUS_DIRTY;

   if (buf->domain == NOUVEAU_BO_VRAM)
      NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_vid, size);
   if (buf->domain == NOUVEAU_BO_GART)
      NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_sys, size);

   if (tx->bo)
      nv->copy_data(nv, buf->bo, buf->offset + base, buf->domain,
                    tx->bo, tx->offset + offset, NOUVEAU_BO_GART, size);
   else
   if ((buf->base.bind & PIPE_BIND_CONSTANT_BUFFER) && nv->push_cb && can_cb)
      nv->push_cb(nv, buf->bo, buf->domain, buf->offset, buf->base.width0,
                  base, size / 4, (const uint32_t *)data);
   else
      nv->push_data(nv, buf->bo, buf->offset + base, buf->domain, size, data);

   nouveau_fence_ref(nv->screen->fence.current, &buf->fence);
   nouveau_fence_ref(nv->screen->fence.current, &buf->fence_wr);
}

/* Does a CPU wait for the buffer's backing data to become reliably accessible
 * for write/read by waiting on the buffer's relevant fences.
 */
static INLINE boolean
nouveau_buffer_sync(struct nv04_resource *buf, unsigned rw)
{
   if (rw == PIPE_TRANSFER_READ) {
      if (!buf->fence_wr)
         return TRUE;
      NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
                           !nouveau_fence_signalled(buf->fence_wr));
      if (!nouveau_fence_wait(buf->fence_wr))
         return FALSE;
   } else {
      if (!buf->fence)
         return TRUE;
      NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
                           !nouveau_fence_signalled(buf->fence));
      if (!nouveau_fence_wait(buf->fence))
         return FALSE;

      nouveau_fence_ref(NULL, &buf->fence);
   }
   nouveau_fence_ref(NULL, &buf->fence_wr);

   return TRUE;
}

static INLINE boolean
nouveau_buffer_busy(struct nv04_resource *buf, unsigned rw)
{
   if (rw == PIPE_TRANSFER_READ)
      return (buf->fence_wr && !nouveau_fence_signalled(buf->fence_wr));
   else
      return (buf->fence && !nouveau_fence_signalled(buf->fence));
}

static INLINE void
nouveau_buffer_transfer_init(struct nouveau_transfer *tx,
                             struct pipe_resource *resource,
                             const struct pipe_box *box,
                             unsigned usage)
{
   tx->base.resource = resource;
   tx->base.level = 0;
   tx->base.usage = usage;
   tx->base.box.x = box->x;
   tx->base.box.y = 0;
   tx->base.box.z = 0;
   tx->base.box.width = box->width;
   tx->base.box.height = 1;
   tx->base.box.depth = 1;
   tx->base.stride = 0;
   tx->base.layer_stride = 0;

   tx->bo = NULL;
   tx->map = NULL;
}

static INLINE void
nouveau_buffer_transfer_del(struct nouveau_context *nv,
                            struct nouveau_transfer *tx)
{
   if (tx->map) {
      if (likely(tx->bo)) {
         nouveau_bo_ref(NULL, &tx->bo);
         if (tx->mm)
            release_allocation(&tx->mm, nv->screen->fence.current);
      } else {
         align_free(tx->map -
                    (tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK));
      }
   }
}

/* Creates a cache in system memory of the buffer data. */
static boolean
nouveau_buffer_cache(struct nouveau_context *nv, struct nv04_resource *buf)
{
   struct nouveau_transfer tx;
   boolean ret;
   tx.base.resource = &buf->base;
   tx.base.box.x = 0;
   tx.base.box.width = buf->base.width0;
   tx.bo = NULL;
   tx.map = NULL;

   if (!buf->data)
      if (!nouveau_buffer_malloc(buf))
         return FALSE;
   if (!(buf->status & NOUVEAU_BUFFER_STATUS_DIRTY))
      return TRUE;
   nv->stats.buf_cache_count++;

   if (!nouveau_transfer_staging(nv, &tx, FALSE))
      return FALSE;

   ret = nouveau_transfer_read(nv, &tx);
   if (ret) {
      buf->status &= ~NOUVEAU_BUFFER_STATUS_DIRTY;
      memcpy(buf->data, tx.map, buf->base.width0);
   }
   nouveau_buffer_transfer_del(nv, &tx);
   return ret;
}


#define NOUVEAU_TRANSFER_DISCARD \
   (PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)

/* Checks whether it is possible to completely discard the memory backing this
 * resource. This can be useful if we would otherwise have to wait for a read
 * operation to complete on this data.
 */
static INLINE boolean
nouveau_buffer_should_discard(struct nv04_resource *buf, unsigned usage)
{
   if (!(usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE))
      return FALSE;
   if (unlikely(buf->base.bind & PIPE_BIND_SHARED))
      return FALSE;
   if (unlikely(usage & PIPE_TRANSFER_PERSISTENT))
      return FALSE;
   return buf->mm && nouveau_buffer_busy(buf, PIPE_TRANSFER_WRITE);
}

/* Returns a pointer to a memory area representing a window into the
 * resource's data.
 *
 * This may or may not be the _actual_ memory area of the resource. However
 * when calling nouveau_buffer_transfer_unmap, if it wasn't the actual memory
 * area, the contents of the returned map are copied over to the resource.
 *
 * The usage indicates what the caller plans to do with the map:
 *
 *   WRITE means that the user plans to write to it
 *
 *   READ means that the user plans on reading from it
 *
 *   DISCARD_WHOLE_RESOURCE means that the whole resource is going to be
 *   potentially overwritten, and even if it isn't, the bits that aren't don't
 *   need to be maintained.
 *
 *   DISCARD_RANGE means that all the data in the specified range is going to
 *   be overwritten.
 *
 * The strategy for determining what kind of memory area to return is complex,
 * see comments inside of the function.
 */
static void *
nouveau_buffer_transfer_map(struct pipe_context *pipe,
                            struct pipe_resource *resource,
                            unsigned level, unsigned usage,
                            const struct pipe_box *box,
                            struct pipe_transfer **ptransfer)
{
   struct nouveau_context *nv = nouveau_context(pipe);
   struct nv04_resource *buf = nv04_resource(resource);
   struct nouveau_transfer *tx = MALLOC_STRUCT(nouveau_transfer);
   uint8_t *map;
   int ret;

   if (!tx)
      return NULL;
   nouveau_buffer_transfer_init(tx, resource, box, usage);
   *ptransfer = &tx->base;

   if (usage & PIPE_TRANSFER_READ)
      NOUVEAU_DRV_STAT(nv->screen, buf_transfers_rd, 1);
   if (usage & PIPE_TRANSFER_WRITE)
      NOUVEAU_DRV_STAT(nv->screen, buf_transfers_wr, 1);

   /* If we are trying to write to an uninitialized range, the user shouldn't
    * care what was there before. So we can treat the write as if the target
    * range were being discarded. Furthermore, since we know that even if this
    * buffer is busy due to GPU activity, because the contents were
    * uninitialized, the GPU can't care what was there, and so we can treat
    * the write as being unsynchronized.
    */
   if ((usage & PIPE_TRANSFER_WRITE) &&
       !util_ranges_intersect(&buf->valid_buffer_range, box->x, box->x + box->width))
      usage |= PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_UNSYNCHRONIZED;

   if (usage & PIPE_TRANSFER_PERSISTENT)
      usage |= PIPE_TRANSFER_UNSYNCHRONIZED;

   if (buf->domain == NOUVEAU_BO_VRAM) {
      if (usage & NOUVEAU_TRANSFER_DISCARD) {
         /* Set up a staging area for the user to write to. It will be copied
          * back into VRAM on unmap. */
         if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
            buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
         nouveau_transfer_staging(nv, tx, TRUE);
      } else {
         if (buf->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING) {
            /* The GPU is currently writing to this buffer. Copy its current
             * contents to a staging area in the GART. This is necessary since
             * not the whole area being mapped is being discarded.
             */
            if (buf->data) {
               align_free(buf->data);
               buf->data = NULL;
            }
            nouveau_transfer_staging(nv, tx, FALSE);
            nouveau_transfer_read(nv, tx);
         } else {
            /* The buffer is currently idle. Create a staging area for writes,
             * and make sure that the cached data is up-to-date. */
            if (usage & PIPE_TRANSFER_WRITE)
               nouveau_transfer_staging(nv, tx, TRUE);
            if (!buf->data)
               nouveau_buffer_cache(nv, buf);
         }
      }
      return buf->data ? (buf->data + box->x) : tx->map;
   } else
   if (unlikely(buf->domain == 0)) {
      return buf->data + box->x;
   }

   /* At this point, buf->domain == GART */

   if (nouveau_buffer_should_discard(buf, usage)) {
      int ref = buf->base.reference.count - 1;
      nouveau_buffer_reallocate(nv->screen, buf, buf->domain);
      if (ref > 0) /* any references inside context possible ? */
         nv->invalidate_resource_storage(nv, &buf->base, ref);
   }

   /* Note that nouveau_bo_map ends up doing a nouveau_bo_wait with the
    * relevant flags. If buf->mm is set, that means this resource is part of a
    * larger slab bo that holds multiple resources. So in that case, don't
    * wait on the whole slab and instead use the logic below to return a
    * reasonable buffer for that case.
    */
   ret = nouveau_bo_map(buf->bo,
                        buf->mm ? 0 : nouveau_screen_transfer_flags(usage),
                        nv->client);
   if (ret) {
      FREE(tx);
      return NULL;
   }
   map = (uint8_t *)buf->bo->map + buf->offset + box->x;

   /* using kernel fences only if !buf->mm */
   if ((usage & PIPE_TRANSFER_UNSYNCHRONIZED) || !buf->mm)
      return map;

   /* If the GPU is currently reading/writing this buffer, we shouldn't
    * interfere with its progress. So instead we either wait for the GPU to
    * complete its operation, or set up a staging area to perform our work in.
    */
   if (nouveau_buffer_busy(buf, usage & PIPE_TRANSFER_READ_WRITE)) {
      if (unlikely(usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)) {
         /* Discarding was not possible, must sync because
          * subsequent transfers might use UNSYNCHRONIZED. */
         nouveau_buffer_sync(buf, usage & PIPE_TRANSFER_READ_WRITE);
      } else
      if (usage & PIPE_TRANSFER_DISCARD_RANGE) {
         /* The whole range is being discarded, so it doesn't matter what was
          * there before. No need to copy anything over. */
         nouveau_transfer_staging(nv, tx, TRUE);
         map = tx->map;
      } else
      if (nouveau_buffer_busy(buf, PIPE_TRANSFER_READ)) {
         if (usage & PIPE_TRANSFER_DONTBLOCK)
            map = NULL;
         else
            nouveau_buffer_sync(buf, usage & PIPE_TRANSFER_READ_WRITE);
      } else {
         /* It is expected that the returned buffer be a representation of the
          * data in question, so we must copy it over from the buffer. */
         nouveau_transfer_staging(nv, tx, TRUE);
         if (tx->map)
            memcpy(tx->map, map, box->width);
         map = tx->map;
      }
   }
   if (!map)
      FREE(tx);
   return map;
}



static void
nouveau_buffer_transfer_flush_region(struct pipe_context *pipe,
                                     struct pipe_transfer *transfer,
                                     const struct pipe_box *box)
{
   struct nouveau_transfer *tx = nouveau_transfer(transfer);
   struct nv04_resource *buf = nv04_resource(transfer->resource);

   if (tx->map)
      nouveau_transfer_write(nouveau_context(pipe), tx, box->x, box->width);

   util_range_add(&buf->valid_buffer_range,
                  tx->base.box.x + box->x,
                  tx->base.box.x + box->x + box->width);
}

/* Unmap stage of the transfer. If it was a WRITE transfer and the map that
 * was returned was not the real resource's data, this needs to transfer the
 * data back to the resource.
 *
 * Also marks vbo dirty based on the buffer's binding
 */
static void
nouveau_buffer_transfer_unmap(struct pipe_context *pipe,
                              struct pipe_transfer *transfer)
{
   struct nouveau_context *nv = nouveau_context(pipe);
   struct nouveau_transfer *tx = nouveau_transfer(transfer);
   struct nv04_resource *buf = nv04_resource(transfer->resource);

   if (tx->base.usage & PIPE_TRANSFER_WRITE) {
      if (!(tx->base.usage & PIPE_TRANSFER_FLUSH_EXPLICIT) && tx->map)
         nouveau_transfer_write(nv, tx, 0, tx->base.box.width);

      if (likely(buf->domain)) {
         const uint8_t bind = buf->base.bind;
         /* make sure we invalidate dedicated caches */
         if (bind & (PIPE_BIND_VERTEX_BUFFER | PIPE_BIND_INDEX_BUFFER))
            nv->vbo_dirty = TRUE;
      }

      util_range_add(&buf->valid_buffer_range,
                     tx->base.box.x, tx->base.box.x + tx->base.box.width);
   }

   if (!tx->bo && (tx->base.usage & PIPE_TRANSFER_WRITE))
      NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_direct, tx->base.box.width);

   nouveau_buffer_transfer_del(nv, tx);
   FREE(tx);
}


void
nouveau_copy_buffer(struct nouveau_context *nv,
                    struct nv04_resource *dst, unsigned dstx,
                    struct nv04_resource *src, unsigned srcx, unsigned size)
{
   assert(dst->base.target == PIPE_BUFFER && src->base.target == PIPE_BUFFER);

   if (likely(dst->domain) && likely(src->domain)) {
      nv->copy_data(nv,
                    dst->bo, dst->offset + dstx, dst->domain,
                    src->bo, src->offset + srcx, src->domain, size);

      dst->status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
      nouveau_fence_ref(nv->screen->fence.current, &dst->fence);
      nouveau_fence_ref(nv->screen->fence.current, &dst->fence_wr);

      src->status |= NOUVEAU_BUFFER_STATUS_GPU_READING;
      nouveau_fence_ref(nv->screen->fence.current, &src->fence);
   } else {
      struct pipe_box src_box;
      src_box.x = srcx;
      src_box.y = 0;
      src_box.z = 0;
      src_box.width = size;
      src_box.height = 1;
      src_box.depth = 1;
      util_resource_copy_region(&nv->pipe,
                                &dst->base, 0, dstx, 0, 0,
                                &src->base, 0, &src_box);
   }

   util_range_add(&dst->valid_buffer_range, dstx, dstx + size);
}


void *
nouveau_resource_map_offset(struct nouveau_context *nv,
                            struct nv04_resource *res, uint32_t offset,
                            uint32_t flags)
{
   if (unlikely(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
      return res->data + offset;

   if (res->domain == NOUVEAU_BO_VRAM) {
      if (!res->data || (res->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING))
         nouveau_buffer_cache(nv, res);
   }
   if (res->domain != NOUVEAU_BO_GART)
      return res->data + offset;

   if (res->mm) {
      unsigned rw;
      rw = (flags & NOUVEAU_BO_WR) ? PIPE_TRANSFER_WRITE : PIPE_TRANSFER_READ;
      nouveau_buffer_sync(res, rw);
      if (nouveau_bo_map(res->bo, 0, NULL))
         return NULL;
   } else {
      if (nouveau_bo_map(res->bo, flags, nv->client))
         return NULL;
   }
   return (uint8_t *)res->bo->map + res->offset + offset;
}


const struct u_resource_vtbl nouveau_buffer_vtbl =
{
   u_default_resource_get_handle,     /* get_handle */
   nouveau_buffer_destroy,               /* resource_destroy */
   nouveau_buffer_transfer_map,          /* transfer_map */
   nouveau_buffer_transfer_flush_region, /* transfer_flush_region */
   nouveau_buffer_transfer_unmap,        /* transfer_unmap */
   u_default_transfer_inline_write    /* transfer_inline_write */
};

struct pipe_resource *
nouveau_buffer_create(struct pipe_screen *pscreen,
                      const struct pipe_resource *templ)
{
   struct nouveau_screen *screen = nouveau_screen(pscreen);
   struct nv04_resource *buffer;
   boolean ret;

   buffer = CALLOC_STRUCT(nv04_resource);
   if (!buffer)
      return NULL;

   buffer->base = *templ;
   buffer->vtbl = &nouveau_buffer_vtbl;
   pipe_reference_init(&buffer->base.reference, 1);
   buffer->base.screen = pscreen;

   if (buffer->base.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
                             PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
      buffer->domain = NOUVEAU_BO_GART;
   } else if (buffer->base.bind &
              (screen->vidmem_bindings & screen->sysmem_bindings)) {
      switch (buffer->base.usage) {
      case PIPE_USAGE_DEFAULT:
      case PIPE_USAGE_IMMUTABLE:
         buffer->domain = NOUVEAU_BO_VRAM;
         break;
      case PIPE_USAGE_DYNAMIC:
         /* For most apps, we'd have to do staging transfers to avoid sync
          * with this usage, and GART -> GART copies would be suboptimal.
          */
         buffer->domain = NOUVEAU_BO_VRAM;
         break;
      case PIPE_USAGE_STAGING:
      case PIPE_USAGE_STREAM:
         buffer->domain = NOUVEAU_BO_GART;
         break;
      default:
         assert(0);
         break;
      }
   } else {
      if (buffer->base.bind & screen->vidmem_bindings)
         buffer->domain = NOUVEAU_BO_VRAM;
      else
      if (buffer->base.bind & screen->sysmem_bindings)
         buffer->domain = NOUVEAU_BO_GART;
   }
   ret = nouveau_buffer_allocate(screen, buffer, buffer->domain);

   if (ret == FALSE)
      goto fail;

   if (buffer->domain == NOUVEAU_BO_VRAM && screen->hint_buf_keep_sysmem_copy)
      nouveau_buffer_cache(NULL, buffer);

   NOUVEAU_DRV_STAT(screen, buf_obj_current_count, 1);

   util_range_init(&buffer->valid_buffer_range);

   return &buffer->base;

fail:
   FREE(buffer);
   return NULL;
}


struct pipe_resource *
nouveau_user_buffer_create(struct pipe_screen *pscreen, void *ptr,
                           unsigned bytes, unsigned bind)
{
   struct nv04_resource *buffer;

   buffer = CALLOC_STRUCT(nv04_resource);
   if (!buffer)
      return NULL;

   pipe_reference_init(&buffer->base.reference, 1);
   buffer->vtbl = &nouveau_buffer_vtbl;
   buffer->base.screen = pscreen;
   buffer->base.format = PIPE_FORMAT_R8_UNORM;
   buffer->base.usage = PIPE_USAGE_IMMUTABLE;
   buffer->base.bind = bind;
   buffer->base.width0 = bytes;
   buffer->base.height0 = 1;
   buffer->base.depth0 = 1;

   buffer->data = ptr;
   buffer->status = NOUVEAU_BUFFER_STATUS_USER_MEMORY;

   util_range_init(&buffer->valid_buffer_range);
   util_range_add(&buffer->valid_buffer_range, 0, bytes);

   return &buffer->base;
}

static INLINE boolean
nouveau_buffer_data_fetch(struct nouveau_context *nv, struct nv04_resource *buf,
                          struct nouveau_bo *bo, unsigned offset, unsigned size)
{
   if (!nouveau_buffer_malloc(buf))
      return FALSE;
   if (nouveau_bo_map(bo, NOUVEAU_BO_RD, nv->client))
      return FALSE;
   memcpy(buf->data, (uint8_t *)bo->map + offset, size);
   return TRUE;
}

/* Migrate a linear buffer (vertex, index, constants) USER -> GART -> VRAM. */
boolean
nouveau_buffer_migrate(struct nouveau_context *nv,
                       struct nv04_resource *buf, const unsigned new_domain)
{
   struct nouveau_screen *screen = nv->screen;
   struct nouveau_bo *bo;
   const unsigned old_domain = buf->domain;
   unsigned size = buf->base.width0;
   unsigned offset;
   int ret;

   assert(new_domain != old_domain);

   if (new_domain == NOUVEAU_BO_GART && old_domain == 0) {
      if (!nouveau_buffer_allocate(screen, buf, new_domain))
         return FALSE;
      ret = nouveau_bo_map(buf->bo, 0, nv->client);
      if (ret)
         return ret;
      memcpy((uint8_t *)buf->bo->map + buf->offset, buf->data, size);
      align_free(buf->data);
   } else
   if (old_domain != 0 && new_domain != 0) {
      struct nouveau_mm_allocation *mm = buf->mm;

      if (new_domain == NOUVEAU_BO_VRAM) {
         /* keep a system memory copy of our data in case we hit a fallback */
         if (!nouveau_buffer_data_fetch(nv, buf, buf->bo, buf->offset, size))
            return FALSE;
         if (nouveau_mesa_debug)
            debug_printf("migrating %u KiB to VRAM\n", size / 1024);
      }

      offset = buf->offset;
      bo = buf->bo;
      buf->bo = NULL;
      buf->mm = NULL;
      nouveau_buffer_allocate(screen, buf, new_domain);

      nv->copy_data(nv, buf->bo, buf->offset, new_domain,
                    bo, offset, old_domain, buf->base.width0);

      nouveau_bo_ref(NULL, &bo);
      if (mm)
         release_allocation(&mm, screen->fence.current);
   } else
   if (new_domain == NOUVEAU_BO_VRAM && old_domain == 0) {
      struct nouveau_transfer tx;
      if (!nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_VRAM))
         return FALSE;
      tx.base.resource = &buf->base;
      tx.base.box.x = 0;
      tx.base.box.width = buf->base.width0;
      tx.bo = NULL;
      tx.map = NULL;
      if (!nouveau_transfer_staging(nv, &tx, FALSE))
         return FALSE;
      nouveau_transfer_write(nv, &tx, 0, tx.base.box.width);
      nouveau_buffer_transfer_del(nv, &tx);
   } else
      return FALSE;

   assert(buf->domain == new_domain);
   return TRUE;
}

/* Migrate data from glVertexAttribPointer(non-VBO) user buffers to GART.
 * We'd like to only allocate @size bytes here, but then we'd have to rebase
 * the vertex indices ...
 */
boolean
nouveau_user_buffer_upload(struct nouveau_context *nv,
                           struct nv04_resource *buf,
                           unsigned base, unsigned size)
{
   struct nouveau_screen *screen = nouveau_screen(buf->base.screen);
   int ret;

   assert(buf->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY);

   buf->base.width0 = base + size;
   if (!nouveau_buffer_reallocate(screen, buf, NOUVEAU_BO_GART))
      return FALSE;

   ret = nouveau_bo_map(buf->bo, 0, nv->client);
   if (ret)
      return FALSE;
   memcpy((uint8_t *)buf->bo->map + buf->offset + base, buf->data + base, size);

   return TRUE;
}


/* Scratch data allocation. */

static INLINE int
nouveau_scratch_bo_alloc(struct nouveau_context *nv, struct nouveau_bo **pbo,
                         unsigned size)
{
   return nouveau_bo_new(nv->screen->device, NOUVEAU_BO_GART | NOUVEAU_BO_MAP,
                         4096, size, NULL, pbo);
}

static void
nouveau_scratch_unref_bos(void *d)
{
   struct runout *b = d;
   int i;

   for (i = 0; i < b->nr; ++i)
      nouveau_bo_ref(NULL, &b->bo[i]);

   FREE(b);
}

void
nouveau_scratch_runout_release(struct nouveau_context *nv)
{
   if (!nv->scratch.runout)
      return;

   if (!nouveau_fence_work(nv->screen->fence.current, nouveau_scratch_unref_bos,
         nv->scratch.runout))
      return;

   nv->scratch.end = 0;
   nv->scratch.runout = NULL;
}

/* Allocate an extra bo if we can't fit everything we need simultaneously.
 * (Could happen for very large user arrays.)
 */
static INLINE boolean
nouveau_scratch_runout(struct nouveau_context *nv, unsigned size)
{
   int ret;
   unsigned n;

   if (nv->scratch.runout)
      n = nv->scratch.runout->nr;
   else
      n = 0;
   nv->scratch.runout = REALLOC(nv->scratch.runout, n == 0 ? 0 :
                                (sizeof(*nv->scratch.runout) + (n + 0) * sizeof(void *)),
                                 sizeof(*nv->scratch.runout) + (n + 1) * sizeof(void *));
   nv->scratch.runout->nr = n + 1;
   nv->scratch.runout->bo[n] = NULL;

   ret = nouveau_scratch_bo_alloc(nv, &nv->scratch.runout->bo[n], size);
   if (!ret) {
      ret = nouveau_bo_map(nv->scratch.runout->bo[n], 0, NULL);
      if (ret)
         nouveau_bo_ref(NULL, &nv->scratch.runout->bo[--nv->scratch.runout->nr]);
   }
   if (!ret) {
      nv->scratch.current = nv->scratch.runout->bo[n];
      nv->scratch.offset = 0;
      nv->scratch.end = size;
      nv->scratch.map = nv->scratch.current->map;
   }
   return !ret;
}

/* Continue to next scratch buffer, if available (no wrapping, large enough).
 * Allocate it if it has not yet been created.
 */
static INLINE boolean
nouveau_scratch_next(struct nouveau_context *nv, unsigned size)
{
   struct nouveau_bo *bo;
   int ret;
   const unsigned i = (nv->scratch.id + 1) % NOUVEAU_MAX_SCRATCH_BUFS;

   if ((size > nv->scratch.bo_size) || (i == nv->scratch.wrap))
      return FALSE;
   nv->scratch.id = i;

   bo = nv->scratch.bo[i];
   if (!bo) {
      ret = nouveau_scratch_bo_alloc(nv, &bo, nv->scratch.bo_size);
      if (ret)
         return FALSE;
      nv->scratch.bo[i] = bo;
   }
   nv->scratch.current = bo;
   nv->scratch.offset = 0;
   nv->scratch.end = nv->scratch.bo_size;

   ret = nouveau_bo_map(bo, NOUVEAU_BO_WR, nv->client);
   if (!ret)
      nv->scratch.map = bo->map;
   return !ret;
}

static boolean
nouveau_scratch_more(struct nouveau_context *nv, unsigned min_size)
{
   boolean ret;

   ret = nouveau_scratch_next(nv, min_size);
   if (!ret)
      ret = nouveau_scratch_runout(nv, min_size);
   return ret;
}


/* Copy data to a scratch buffer and return address & bo the data resides in. */
uint64_t
nouveau_scratch_data(struct nouveau_context *nv,
                     const void *data, unsigned base, unsigned size,
                     struct nouveau_bo **bo)
{
   unsigned bgn = MAX2(base, nv->scratch.offset);
   unsigned end = bgn + size;

   if (end >= nv->scratch.end) {
      end = base + size;
      if (!nouveau_scratch_more(nv, end))
         return 0;
      bgn = base;
   }
   nv->scratch.offset = align(end, 4);

   memcpy(nv->scratch.map + bgn, (const uint8_t *)data + base, size);

   *bo = nv->scratch.current;
   return (*bo)->offset + (bgn - base);
}

void *
nouveau_scratch_get(struct nouveau_context *nv,
                    unsigned size, uint64_t *gpu_addr, struct nouveau_bo **pbo)
{
   unsigned bgn = nv->scratch.offset;
   unsigned end = nv->scratch.offset + size;

   if (end >= nv->scratch.end) {
      end = size;
      if (!nouveau_scratch_more(nv, end))
         return NULL;
      bgn = 0;
   }
   nv->scratch.offset = align(end, 4);

   *pbo = nv->scratch.current;
   *gpu_addr = nv->scratch.current->offset + bgn;
   return nv->scratch.map + bgn;
}