1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
/**************************************************************************
*
* Copyright 2010, VMware Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Binning code for points
*/
#include "lp_setup_context.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "lp_perf.h"
#include "lp_rast.h"
#include "lp_state_fs.h"
#include "tgsi/tgsi_scan.h"
#define NUM_CHANNELS 4
struct point_info {
/* x,y deltas */
int dy01, dy12;
int dx01, dx12;
const float (*v0)[4];
};
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
*/
static void
constant_coef(struct lp_setup_context *setup,
struct lp_rast_triangle *point,
unsigned slot,
const float value,
unsigned i)
{
point->inputs.a0[slot][i] = value;
point->inputs.dadx[slot][i] = 0.0f;
point->inputs.dady[slot][i] = 0.0f;
}
/**
* Setup automatic texcoord coefficients (for sprite rendering).
* \param slot the vertex attribute slot to setup
* \param i the attribute channel in [0,3]
* \param sprite_coord_origin one of PIPE_SPRITE_COORD_x
* \param perspective_proj will the TEX instruction do a divide by Q?
*/
static void
texcoord_coef(struct lp_setup_context *setup,
struct lp_rast_triangle *point,
const struct point_info *info,
unsigned slot,
unsigned i,
unsigned sprite_coord_origin,
boolean perspective_proj)
{
assert(i < 4);
if (i == 0) {
float dadx = FIXED_ONE / (float)info->dx12;
float dady = 0.0f;
float x0 = info->v0[0][0] - setup->pixel_offset;
float y0 = info->v0[0][1] - setup->pixel_offset;
point->inputs.dadx[slot][0] = dadx;
point->inputs.dady[slot][0] = dady;
point->inputs.a0[slot][0] = 0.5 - (dadx * x0 + dady * y0);
if (!perspective_proj) {
/* Divide coefficients by vertex.w here.
*
* It would be clearer to always multiply by w0 above and
* then divide it out for perspective projection here, but
* doing it this way involves less algebra.
*/
float w0 = info->v0[0][3];
point->inputs.dadx[slot][0] *= w0;
point->inputs.dady[slot][0] *= w0;
point->inputs.a0[slot][0] *= w0;
}
}
else if (i == 1) {
float dadx = 0.0f;
float dady = FIXED_ONE / (float)info->dx12;
float x0 = info->v0[0][0] - setup->pixel_offset;
float y0 = info->v0[0][1] - setup->pixel_offset;
if (sprite_coord_origin == PIPE_SPRITE_COORD_LOWER_LEFT) {
dady = -dady;
}
point->inputs.dadx[slot][1] = dadx;
point->inputs.dady[slot][1] = dady;
point->inputs.a0[slot][1] = 0.5 - (dadx * x0 + dady * y0);
if (!perspective_proj) {
float w0 = info->v0[0][3];
point->inputs.dadx[slot][1] *= w0;
point->inputs.dady[slot][1] *= w0;
point->inputs.a0[slot][1] *= w0;
}
}
else if (i == 2) {
point->inputs.a0[slot][2] = 0.0f;
point->inputs.dadx[slot][2] = 0.0f;
point->inputs.dady[slot][2] = 0.0f;
}
else {
point->inputs.a0[slot][3] = 1.0f;
point->inputs.dadx[slot][3] = 0.0f;
point->inputs.dady[slot][3] = 0.0f;
}
}
/**
* Special coefficient setup for gl_FragCoord.
* X and Y are trivial
* Z and W are copied from position_coef which should have already been computed.
* We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
*/
static void
setup_point_fragcoord_coef(struct lp_setup_context *setup,
struct lp_rast_triangle *point,
const struct point_info *info,
unsigned slot,
unsigned usage_mask)
{
/*X*/
if (usage_mask & TGSI_WRITEMASK_X) {
point->inputs.a0[slot][0] = 0.0;
point->inputs.dadx[slot][0] = 1.0;
point->inputs.dady[slot][0] = 0.0;
}
/*Y*/
if (usage_mask & TGSI_WRITEMASK_Y) {
point->inputs.a0[slot][1] = 0.0;
point->inputs.dadx[slot][1] = 0.0;
point->inputs.dady[slot][1] = 1.0;
}
/*Z*/
if (usage_mask & TGSI_WRITEMASK_Z) {
constant_coef(setup, point, slot, info->v0[0][2], 2);
}
/*W*/
if (usage_mask & TGSI_WRITEMASK_W) {
constant_coef(setup, point, slot, info->v0[0][3], 3);
}
}
/**
* Compute the point->coef[] array dadx, dady, a0 values.
*/
static void
setup_point_coefficients( struct lp_setup_context *setup,
struct lp_rast_triangle *point,
const struct point_info *info)
{
const struct lp_fragment_shader *shader = setup->fs.current.variant->shader;
unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
unsigned slot;
/* setup interpolation for all the remaining attributes:
*/
for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
unsigned vert_attr = setup->fs.input[slot].src_index;
unsigned usage_mask = setup->fs.input[slot].usage_mask;
unsigned i;
switch (setup->fs.input[slot].interp) {
case LP_INTERP_POSITION:
/*
* The generated pixel interpolators will pick up the coeffs from
* slot 0, so all need to ensure that the usage mask is covers all
* usages.
*/
fragcoord_usage_mask |= usage_mask;
break;
case LP_INTERP_LINEAR:
/* Sprite tex coords may use linear interpolation someday */
/* fall-through */
case LP_INTERP_PERSPECTIVE:
/* check if the sprite coord flag is set for this attribute.
* If so, set it up so it up so x and y vary from 0 to 1.
*/
if (shader->info.input_semantic_name[slot] == TGSI_SEMANTIC_GENERIC) {
const int index = shader->info.input_semantic_index[slot];
/* Note that sprite_coord enable is a bitfield of
* PIPE_MAX_SHADER_OUTPUTS bits.
*/
if (index < PIPE_MAX_SHADER_OUTPUTS &&
(setup->sprite_coord_enable & (1 << index))) {
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
texcoord_coef(setup, point, info, slot + 1, i,
setup->sprite_coord_origin,
(usage_mask & TGSI_WRITEMASK_W));
fragcoord_usage_mask |= TGSI_WRITEMASK_W;
break;
}
}
/* FALLTHROUGH */
case LP_INTERP_CONSTANT:
for (i = 0; i < NUM_CHANNELS; i++) {
if (usage_mask & (1 << i))
constant_coef(setup, point, slot+1, info->v0[vert_attr][i], i);
}
break;
case LP_INTERP_FACING:
for (i = 0; i < NUM_CHANNELS; i++)
if (usage_mask & (1 << i))
constant_coef(setup, point, slot+1, 1.0, i);
break;
default:
assert(0);
break;
}
}
/* The internal position input is in slot zero:
*/
setup_point_fragcoord_coef(setup, point, info, 0,
fragcoord_usage_mask);
}
static INLINE int
subpixel_snap(float a)
{
return util_iround(FIXED_ONE * a);
}
static boolean
try_setup_point( struct lp_setup_context *setup,
const float (*v0)[4] )
{
/* x/y positions in fixed point */
const int sizeAttr = setup->psize;
const float size
= (setup->point_size_per_vertex && sizeAttr > 0) ? v0[sizeAttr][0]
: setup->point_size;
/* Point size as fixed point integer, remove rounding errors
* and gives minimum width for very small points
*/
int fixed_width = MAX2(FIXED_ONE,
(subpixel_snap(size) + FIXED_ONE/2 - 1) & ~(FIXED_ONE-1));
const int x0 = subpixel_snap(v0[0][0] - setup->pixel_offset) - fixed_width/2;
const int y0 = subpixel_snap(v0[0][1] - setup->pixel_offset) - fixed_width/2;
struct lp_scene *scene = setup->scene;
struct lp_rast_triangle *point;
unsigned bytes;
struct u_rect bbox;
unsigned nr_planes = 4;
struct point_info info;
/* Bounding rectangle (in pixels) */
{
/* Yes this is necessary to accurately calculate bounding boxes
* with the two fill-conventions we support. GL (normally) ends
* up needing a bottom-left fill convention, which requires
* slightly different rounding.
*/
int adj = (setup->pixel_offset != 0) ? 1 : 0;
bbox.x0 = (x0 + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
bbox.x1 = (x0 + fixed_width + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
bbox.y0 = (y0 + (FIXED_ONE-1)) >> FIXED_ORDER;
bbox.y1 = (y0 + fixed_width + (FIXED_ONE-1)) >> FIXED_ORDER;
/* Inclusive coordinates:
*/
bbox.x1--;
bbox.y1--;
}
if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
if (0) debug_printf("offscreen\n");
LP_COUNT(nr_culled_tris);
return TRUE;
}
u_rect_find_intersection(&setup->draw_region, &bbox);
point = lp_setup_alloc_triangle(scene,
setup->fs.nr_inputs,
nr_planes,
&bytes);
if (!point)
return FALSE;
#ifdef DEBUG
point->v[0][0] = v0[0][0];
point->v[0][1] = v0[0][1];
#endif
info.v0 = v0;
info.dx01 = 0;
info.dx12 = fixed_width;
info.dy01 = fixed_width;
info.dy12 = 0;
/* Setup parameter interpolants:
*/
setup_point_coefficients(setup, point, &info);
point->inputs.facing = 1.0F;
point->inputs.state = setup->fs.stored;
point->inputs.disable = FALSE;
point->inputs.opaque = FALSE;
{
point->plane[0].dcdx = -1;
point->plane[0].dcdy = 0;
point->plane[0].c = 1-bbox.x0;
point->plane[0].ei = 0;
point->plane[0].eo = 1;
point->plane[1].dcdx = 1;
point->plane[1].dcdy = 0;
point->plane[1].c = bbox.x1+1;
point->plane[1].ei = -1;
point->plane[1].eo = 0;
point->plane[2].dcdx = 0;
point->plane[2].dcdy = 1;
point->plane[2].c = 1-bbox.y0;
point->plane[2].ei = 0;
point->plane[2].eo = 1;
point->plane[3].dcdx = 0;
point->plane[3].dcdy = -1;
point->plane[3].c = bbox.y1+1;
point->plane[3].ei = -1;
point->plane[3].eo = 0;
}
return lp_setup_bin_triangle(setup, point, &bbox, nr_planes);
}
static void
lp_setup_point(struct lp_setup_context *setup,
const float (*v0)[4])
{
if (!try_setup_point( setup, v0 ))
{
lp_setup_flush_and_restart(setup);
if (!try_setup_point( setup, v0 ))
assert(0);
}
}
void
lp_setup_choose_point( struct lp_setup_context *setup )
{
setup->point = lp_setup_point;
}
|