summaryrefslogtreecommitdiffstats
path: root/src/gallium/drivers/iris/iris_query.c
blob: 139d9521a66f413e109defb419e4b83054ee32ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
/*
 * Copyright © 2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * @file iris_query.c
 *
 * ============================= GENXML CODE =============================
 *              [This file is compiled once per generation.]
 * =======================================================================
 *
 * Query object support.  This allows measuring various simple statistics
 * via counters on the GPU.  We use GenX code for MI_MATH calculations.
 */

#include <stdio.h>
#include <errno.h>
#include "perf/gen_perf.h"
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_inlines.h"
#include "util/u_upload_mgr.h"
#include "iris_context.h"
#include "iris_defines.h"
#include "iris_fence.h"
#include "iris_monitor.h"
#include "iris_resource.h"
#include "iris_screen.h"

#include "iris_genx_macros.h"

#define SO_PRIM_STORAGE_NEEDED(n) (GENX(SO_PRIM_STORAGE_NEEDED0_num) + (n) * 8)
#define SO_NUM_PRIMS_WRITTEN(n)   (GENX(SO_NUM_PRIMS_WRITTEN0_num) + (n) * 8)

struct iris_query {
   enum pipe_query_type type;
   int index;

   bool ready;

   bool stalled;

   uint64_t result;

   struct iris_state_ref query_state_ref;
   struct iris_query_snapshots *map;
   struct iris_syncpt *syncpt;

   int batch_idx;

   struct iris_monitor_object *monitor;
};

struct iris_query_snapshots {
   /** iris_render_condition's saved MI_PREDICATE_RESULT value. */
   uint64_t predicate_result;

   /** Have the start/end snapshots landed? */
   uint64_t snapshots_landed;

   /** Starting and ending counter snapshots */
   uint64_t start;
   uint64_t end;
};

struct iris_query_so_overflow {
   uint64_t predicate_result;
   uint64_t snapshots_landed;

   struct {
      uint64_t prim_storage_needed[2];
      uint64_t num_prims[2];
   } stream[4];
};

static struct gen_mi_value
query_mem64(struct iris_query *q, uint32_t offset)
{
   struct iris_address addr = {
      .bo = iris_resource_bo(q->query_state_ref.res),
      .offset = q->query_state_ref.offset + offset,
      .write = true
   };
   return gen_mi_mem64(addr);
}

/**
 * Is this type of query written by PIPE_CONTROL?
 */
static bool
iris_is_query_pipelined(struct iris_query *q)
{
   switch (q->type) {
   case PIPE_QUERY_OCCLUSION_COUNTER:
   case PIPE_QUERY_OCCLUSION_PREDICATE:
   case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE:
   case PIPE_QUERY_TIMESTAMP:
   case PIPE_QUERY_TIMESTAMP_DISJOINT:
   case PIPE_QUERY_TIME_ELAPSED:
      return true;

   default:
      return false;
   }
}

static void
mark_available(struct iris_context *ice, struct iris_query *q)
{
   struct iris_batch *batch = &ice->batches[q->batch_idx];
   unsigned flags = PIPE_CONTROL_WRITE_IMMEDIATE;
   unsigned offset = offsetof(struct iris_query_snapshots, snapshots_landed);
   struct iris_bo *bo = iris_resource_bo(q->query_state_ref.res);
   offset += q->query_state_ref.offset;

   if (!iris_is_query_pipelined(q)) {
      ice->vtbl.store_data_imm64(batch, bo, offset, true);
   } else {
      /* Order available *after* the query results. */
      flags |= PIPE_CONTROL_FLUSH_ENABLE;
      iris_emit_pipe_control_write(batch, "query: mark available",
                                   flags, bo, offset, true);
   }
}

/**
 * Write PS_DEPTH_COUNT to q->(dest) via a PIPE_CONTROL.
 */
static void
iris_pipelined_write(struct iris_batch *batch,
                     struct iris_query *q,
                     enum pipe_control_flags flags,
                     unsigned offset)
{
   const struct gen_device_info *devinfo = &batch->screen->devinfo;
   const unsigned optional_cs_stall =
      GEN_GEN == 9 && devinfo->gt == 4 ?  PIPE_CONTROL_CS_STALL : 0;
   struct iris_bo *bo = iris_resource_bo(q->query_state_ref.res);

   iris_emit_pipe_control_write(batch, "query: pipelined snapshot write",
                                flags | optional_cs_stall,
                                bo, offset, 0ull);
}

static void
write_value(struct iris_context *ice, struct iris_query *q, unsigned offset)
{
   struct iris_batch *batch = &ice->batches[q->batch_idx];
   struct iris_bo *bo = iris_resource_bo(q->query_state_ref.res);

   if (!iris_is_query_pipelined(q)) {
      iris_emit_pipe_control_flush(batch,
                                   "query: non-pipelined snapshot write",
                                   PIPE_CONTROL_CS_STALL |
                                   PIPE_CONTROL_STALL_AT_SCOREBOARD);
      q->stalled = true;
   }

   switch (q->type) {
   case PIPE_QUERY_OCCLUSION_COUNTER:
   case PIPE_QUERY_OCCLUSION_PREDICATE:
   case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE:
      if (GEN_GEN >= 10) {
         /* "Driver must program PIPE_CONTROL with only Depth Stall Enable
          *  bit set prior to programming a PIPE_CONTROL with Write PS Depth
          *  Count sync operation."
          */
         iris_emit_pipe_control_flush(batch,
                                      "workaround: depth stall before writing "
                                      "PS_DEPTH_COUNT",
                                      PIPE_CONTROL_DEPTH_STALL);
      }
      iris_pipelined_write(&ice->batches[IRIS_BATCH_RENDER], q,
                           PIPE_CONTROL_WRITE_DEPTH_COUNT |
                           PIPE_CONTROL_DEPTH_STALL,
                           offset);
      break;
   case PIPE_QUERY_TIME_ELAPSED:
   case PIPE_QUERY_TIMESTAMP:
   case PIPE_QUERY_TIMESTAMP_DISJOINT:
      iris_pipelined_write(&ice->batches[IRIS_BATCH_RENDER], q,
                           PIPE_CONTROL_WRITE_TIMESTAMP,
                           offset);
      break;
   case PIPE_QUERY_PRIMITIVES_GENERATED:
      ice->vtbl.store_register_mem64(batch,
                                     q->index == 0 ?
                                     GENX(CL_INVOCATION_COUNT_num) :
                                     SO_PRIM_STORAGE_NEEDED(q->index),
                                     bo, offset, false);
      break;
   case PIPE_QUERY_PRIMITIVES_EMITTED:
      ice->vtbl.store_register_mem64(batch,
                                     SO_NUM_PRIMS_WRITTEN(q->index),
                                     bo, offset, false);
      break;
   case PIPE_QUERY_PIPELINE_STATISTICS_SINGLE: {
      static const uint32_t index_to_reg[] = {
         GENX(IA_VERTICES_COUNT_num),
         GENX(IA_PRIMITIVES_COUNT_num),
         GENX(VS_INVOCATION_COUNT_num),
         GENX(GS_INVOCATION_COUNT_num),
         GENX(GS_PRIMITIVES_COUNT_num),
         GENX(CL_INVOCATION_COUNT_num),
         GENX(CL_PRIMITIVES_COUNT_num),
         GENX(PS_INVOCATION_COUNT_num),
         GENX(HS_INVOCATION_COUNT_num),
         GENX(DS_INVOCATION_COUNT_num),
         GENX(CS_INVOCATION_COUNT_num),
      };
      const uint32_t reg = index_to_reg[q->index];

      ice->vtbl.store_register_mem64(batch, reg, bo, offset, false);
      break;
   }
   default:
      assert(false);
   }
}

static void
write_overflow_values(struct iris_context *ice, struct iris_query *q, bool end)
{
   struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
   uint32_t count = q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ? 1 : 4;
   struct iris_bo *bo = iris_resource_bo(q->query_state_ref.res);
   uint32_t offset = q->query_state_ref.offset;

   iris_emit_pipe_control_flush(batch,
                                "query: write SO overflow snapshots",
                                PIPE_CONTROL_CS_STALL |
                                PIPE_CONTROL_STALL_AT_SCOREBOARD);
   for (uint32_t i = 0; i < count; i++) {
      int s = q->index + i;
      int g_idx = offset + offsetof(struct iris_query_so_overflow,
                           stream[s].num_prims[end]);
      int w_idx = offset + offsetof(struct iris_query_so_overflow,
                           stream[s].prim_storage_needed[end]);
      ice->vtbl.store_register_mem64(batch, SO_NUM_PRIMS_WRITTEN(s),
                                     bo, g_idx, false);
      ice->vtbl.store_register_mem64(batch, SO_PRIM_STORAGE_NEEDED(s),
                                     bo, w_idx, false);
   }
}

static uint64_t
iris_raw_timestamp_delta(uint64_t time0, uint64_t time1)
{
   if (time0 > time1) {
      return (1ULL << TIMESTAMP_BITS) + time1 - time0;
   } else {
      return time1 - time0;
   }
}

static bool
stream_overflowed(struct iris_query_so_overflow *so, int s)
{
   return (so->stream[s].prim_storage_needed[1] -
           so->stream[s].prim_storage_needed[0]) !=
          (so->stream[s].num_prims[1] - so->stream[s].num_prims[0]);
}

static void
calculate_result_on_cpu(const struct gen_device_info *devinfo,
                        struct iris_query *q)
{
   switch (q->type) {
   case PIPE_QUERY_OCCLUSION_PREDICATE:
   case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE:
      q->result = q->map->end != q->map->start;
      break;
   case PIPE_QUERY_TIMESTAMP:
   case PIPE_QUERY_TIMESTAMP_DISJOINT:
      /* The timestamp is the single starting snapshot. */
      q->result = gen_device_info_timebase_scale(devinfo, q->map->start);
      q->result &= (1ull << TIMESTAMP_BITS) - 1;
      break;
   case PIPE_QUERY_TIME_ELAPSED:
      q->result = iris_raw_timestamp_delta(q->map->start, q->map->end);
      q->result = gen_device_info_timebase_scale(devinfo, q->result);
      q->result &= (1ull << TIMESTAMP_BITS) - 1;
      break;
   case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
      q->result = stream_overflowed((void *) q->map, q->index);
      break;
   case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
      q->result = false;
      for (int i = 0; i < MAX_VERTEX_STREAMS; i++)
         q->result |= stream_overflowed((void *) q->map, i);
      break;
   case PIPE_QUERY_PIPELINE_STATISTICS_SINGLE:
      q->result = q->map->end - q->map->start;

      /* WaDividePSInvocationCountBy4:HSW,BDW */
      if (GEN_GEN == 8 && q->index == PIPE_STAT_QUERY_PS_INVOCATIONS)
         q->result /= 4;
      break;
   case PIPE_QUERY_OCCLUSION_COUNTER:
   case PIPE_QUERY_PRIMITIVES_GENERATED:
   case PIPE_QUERY_PRIMITIVES_EMITTED:
   default:
      q->result = q->map->end - q->map->start;
      break;
   }

   q->ready = true;
}

/**
 * Calculate the streamout overflow for stream \p idx:
 *
 * (num_prims[1] - num_prims[0]) - (storage_needed[1] - storage_needed[0])
 */
static struct gen_mi_value
calc_overflow_for_stream(struct gen_mi_builder *b,
                         struct iris_query *q,
                         int idx)
{
#define C(counter, i) query_mem64(q, \
   offsetof(struct iris_query_so_overflow, stream[idx].counter[i]))

   return gen_mi_isub(b, gen_mi_isub(b, C(num_prims, 1), C(num_prims, 0)),
                         gen_mi_isub(b, C(prim_storage_needed, 1),
                                        C(prim_storage_needed, 0)));
#undef C
}

/**
 * Calculate whether any stream has overflowed.
 */
static struct gen_mi_value
calc_overflow_any_stream(struct gen_mi_builder *b, struct iris_query *q)
{
   struct gen_mi_value stream_result[MAX_VERTEX_STREAMS];
   for (int i = 0; i < MAX_VERTEX_STREAMS; i++)
      stream_result[i] = calc_overflow_for_stream(b, q, i);

   struct gen_mi_value result = stream_result[0];
   for (int i = 1; i < MAX_VERTEX_STREAMS; i++)
      result = gen_mi_ior(b, result, stream_result[i]);

   return result;
}

static bool
query_is_boolean(enum pipe_query_type type)
{
   switch (type) {
   case PIPE_QUERY_OCCLUSION_PREDICATE:
   case PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE:
   case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
   case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
      return true;
   default:
      return false;
   }
}

/**
 * Calculate the result using MI_MATH.
 */
static struct gen_mi_value
calculate_result_on_gpu(const struct gen_device_info *devinfo,
                        struct gen_mi_builder *b,
                        struct iris_query *q)
{
   struct gen_mi_value result;
   struct gen_mi_value start_val =
      query_mem64(q, offsetof(struct iris_query_snapshots, start));
   struct gen_mi_value end_val =
      query_mem64(q, offsetof(struct iris_query_snapshots, end));

   switch (q->type) {
   case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
      result = calc_overflow_for_stream(b, q, q->index);
      break;
   case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
      result = calc_overflow_any_stream(b, q);
      break;
   case PIPE_QUERY_TIMESTAMP: {
      /* TODO: This discards any fractional bits of the timebase scale.
       * We would need to do a bit of fixed point math on the CS ALU, or
       * launch an actual shader to calculate this with full precision.
       */
      uint32_t scale = 1000000000ull / devinfo->timestamp_frequency;
      result = gen_mi_iand(b, gen_mi_imm((1ull << 36) - 1),
                           gen_mi_imul_imm(b, start_val, scale));
      break;
   }
   case PIPE_QUERY_TIME_ELAPSED: {
      /* TODO: This discards fractional bits (see above). */
      uint32_t scale = 1000000000ull / devinfo->timestamp_frequency;
      result = gen_mi_imul_imm(b, gen_mi_isub(b, end_val, start_val), scale);
      break;
   }
   default:
      result = gen_mi_isub(b, end_val, start_val);
      break;
   }

   /* WaDividePSInvocationCountBy4:HSW,BDW */
   if (GEN_GEN == 8 &&
       q->type == PIPE_QUERY_PIPELINE_STATISTICS_SINGLE &&
       q->index == PIPE_STAT_QUERY_PS_INVOCATIONS)
      result = gen_mi_ushr32_imm(b, result, 2);

   if (query_is_boolean(q->type))
      result = gen_mi_iand(b, gen_mi_nz(b, result), gen_mi_imm(1));

   return result;
}

static struct pipe_query *
iris_create_query(struct pipe_context *ctx,
                  unsigned query_type,
                  unsigned index)
{
   struct iris_query *q = calloc(1, sizeof(struct iris_query));

   q->type = query_type;
   q->index = index;
   q->monitor = NULL;

   if (q->type == PIPE_QUERY_PIPELINE_STATISTICS_SINGLE &&
       q->index == PIPE_STAT_QUERY_CS_INVOCATIONS)
      q->batch_idx = IRIS_BATCH_COMPUTE;
   else
      q->batch_idx = IRIS_BATCH_RENDER;
   return (struct pipe_query *) q;
}

static struct pipe_query *
iris_create_batch_query(struct pipe_context *ctx,
                        unsigned num_queries,
                        unsigned *query_types)
{
   struct iris_context *ice = (void *) ctx;
   struct iris_query *q = calloc(1, sizeof(struct iris_query));
   if (unlikely(!q))
      return NULL;
   q->type = PIPE_QUERY_DRIVER_SPECIFIC;
   q->index = -1;
   q->monitor = iris_create_monitor_object(ice, num_queries, query_types);
   if (unlikely(!q->monitor)) {
      free(q);
      return NULL;
   }

   return (struct pipe_query *) q;
}

static void
iris_destroy_query(struct pipe_context *ctx, struct pipe_query *p_query)
{
   struct iris_query *query = (void *) p_query;
   struct iris_screen *screen = (void *) ctx->screen;
   if (query->monitor) {
      iris_destroy_monitor_object(ctx, query->monitor);
      query->monitor = NULL;
   } else {
      iris_syncpt_reference(screen, &query->syncpt, NULL);
   }
   free(query);
}


static bool
iris_begin_query(struct pipe_context *ctx, struct pipe_query *query)
{
   struct iris_context *ice = (void *) ctx;
   struct iris_query *q = (void *) query;

   if (q->monitor)
      return iris_begin_monitor(ctx, q->monitor);

   void *ptr = NULL;
   uint32_t size;

   if (q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ||
       q->type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE)
      size = sizeof(struct iris_query_so_overflow);
   else
      size = sizeof(struct iris_query_snapshots);

   u_upload_alloc(ice->query_buffer_uploader, 0,
                  size, size, &q->query_state_ref.offset,
                  &q->query_state_ref.res, &ptr);

   if (!iris_resource_bo(q->query_state_ref.res))
      return false;

   q->map = ptr;
   if (!q->map)
      return false;

   q->result = 0ull;
   q->ready = false;
   WRITE_ONCE(q->map->snapshots_landed, false);

   if (q->type == PIPE_QUERY_PRIMITIVES_GENERATED && q->index == 0) {
      ice->state.prims_generated_query_active = true;
      ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
   }

   if (q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ||
       q->type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE)
      write_overflow_values(ice, q, false);
   else
      write_value(ice, q,
                  q->query_state_ref.offset +
                  offsetof(struct iris_query_snapshots, start));

   return true;
}

static bool
iris_end_query(struct pipe_context *ctx, struct pipe_query *query)
{
   struct iris_context *ice = (void *) ctx;
   struct iris_query *q = (void *) query;

   if (q->monitor)
      return iris_end_monitor(ctx, q->monitor);

   struct iris_batch *batch = &ice->batches[q->batch_idx];

   if (q->type == PIPE_QUERY_TIMESTAMP) {
      iris_begin_query(ctx, query);
      iris_batch_reference_signal_syncpt(batch, &q->syncpt);
      mark_available(ice, q);
      return true;
   }

   if (q->type == PIPE_QUERY_PRIMITIVES_GENERATED && q->index == 0) {
      ice->state.prims_generated_query_active = false;
      ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
   }

   if (q->type == PIPE_QUERY_SO_OVERFLOW_PREDICATE ||
       q->type == PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE)
      write_overflow_values(ice, q, true);
   else
      write_value(ice, q,
                  q->query_state_ref.offset +
                  offsetof(struct iris_query_snapshots, end));

   iris_batch_reference_signal_syncpt(batch, &q->syncpt);
   mark_available(ice, q);

   return true;
}

/**
 * See if the snapshots have landed for a query, and if so, compute the
 * result and mark it ready.  Does not flush (unlike iris_get_query_result).
 */
static void
iris_check_query_no_flush(struct iris_context *ice, struct iris_query *q)
{
   struct iris_screen *screen = (void *) ice->ctx.screen;
   const struct gen_device_info *devinfo = &screen->devinfo;

   if (!q->ready && READ_ONCE(q->map->snapshots_landed)) {
      calculate_result_on_cpu(devinfo, q);
   }
}

static bool
iris_get_query_result(struct pipe_context *ctx,
                      struct pipe_query *query,
                      bool wait,
                      union pipe_query_result *result)
{
   struct iris_context *ice = (void *) ctx;
   struct iris_query *q = (void *) query;

   if (q->monitor)
      return iris_get_monitor_result(ctx, q->monitor, wait, result->batch);

   struct iris_screen *screen = (void *) ctx->screen;
   const struct gen_device_info *devinfo = &screen->devinfo;

   if (unlikely(screen->no_hw)) {
      result->u64 = 0;
      return true;
   }

   if (!q->ready) {
      struct iris_batch *batch = &ice->batches[q->batch_idx];
      if (q->syncpt == iris_batch_get_signal_syncpt(batch))
         iris_batch_flush(batch);

      while (!READ_ONCE(q->map->snapshots_landed)) {
         if (wait)
            iris_wait_syncpt(ctx->screen, q->syncpt, INT64_MAX);
         else
            return false;
      }

      assert(READ_ONCE(q->map->snapshots_landed));
      calculate_result_on_cpu(devinfo, q);
   }

   assert(q->ready);

   result->u64 = q->result;

   return true;
}

static void
iris_get_query_result_resource(struct pipe_context *ctx,
                               struct pipe_query *query,
                               bool wait,
                               enum pipe_query_value_type result_type,
                               int index,
                               struct pipe_resource *p_res,
                               unsigned offset)
{
   struct iris_context *ice = (void *) ctx;
   struct iris_query *q = (void *) query;
   struct iris_batch *batch = &ice->batches[q->batch_idx];
   const struct gen_device_info *devinfo = &batch->screen->devinfo;
   struct iris_resource *res = (void *) p_res;
   struct iris_bo *query_bo = iris_resource_bo(q->query_state_ref.res);
   struct iris_bo *dst_bo = iris_resource_bo(p_res);
   unsigned snapshots_landed_offset =
      offsetof(struct iris_query_snapshots, snapshots_landed);

   res->bind_history |= PIPE_BIND_QUERY_BUFFER;

   if (index == -1) {
      /* They're asking for the availability of the result.  If we still
       * have commands queued up which produce the result, submit them
       * now so that progress happens.  Either way, copy the snapshots
       * landed field to the destination resource.
       */
      if (q->syncpt == iris_batch_get_signal_syncpt(batch))
         iris_batch_flush(batch);

      ice->vtbl.copy_mem_mem(batch, dst_bo, offset,
                             query_bo, snapshots_landed_offset,
                             result_type <= PIPE_QUERY_TYPE_U32 ? 4 : 8);
      return;
   }

   if (!q->ready && READ_ONCE(q->map->snapshots_landed)) {
      /* The final snapshots happen to have landed, so let's just compute
       * the result on the CPU now...
       */
      calculate_result_on_cpu(devinfo, q);
   }

   if (q->ready) {
      /* We happen to have the result on the CPU, so just copy it. */
      if (result_type <= PIPE_QUERY_TYPE_U32) {
         ice->vtbl.store_data_imm32(batch, dst_bo, offset, q->result);
      } else {
         ice->vtbl.store_data_imm64(batch, dst_bo, offset, q->result);
      }

      /* Make sure the result lands before they use bind the QBO elsewhere
       * and use the result.
       */
      // XXX: Why?  i965 doesn't do this.
      iris_emit_pipe_control_flush(batch,
                                   "query: unknown QBO flushing hack",
                                   PIPE_CONTROL_CS_STALL);
      return;
   }

   bool predicated = !wait && !q->stalled;

   struct gen_mi_builder b;
   gen_mi_builder_init(&b, batch);

   struct gen_mi_value result = calculate_result_on_gpu(devinfo, &b, q);
   struct gen_mi_value dst =
      result_type <= PIPE_QUERY_TYPE_U32 ? gen_mi_mem32(rw_bo(dst_bo, offset))
                                         : gen_mi_mem64(rw_bo(dst_bo, offset));

   if (predicated) {
      gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
                   gen_mi_mem64(ro_bo(query_bo, snapshots_landed_offset)));
      gen_mi_store_if(&b, dst, result);
   } else {
      gen_mi_store(&b, dst, result);
   }
}

static void
iris_set_active_query_state(struct pipe_context *ctx, bool enable)
{
   struct iris_context *ice = (void *) ctx;

   if (ice->state.statistics_counters_enabled == enable)
      return;

   // XXX: most packets aren't paying attention to this yet, because it'd
   // have to be done dynamically at draw time, which is a pain
   ice->state.statistics_counters_enabled = enable;
   ice->state.dirty |= IRIS_DIRTY_CLIP |
                       IRIS_DIRTY_GS |
                       IRIS_DIRTY_RASTER |
                       IRIS_DIRTY_STREAMOUT |
                       IRIS_DIRTY_TCS |
                       IRIS_DIRTY_TES |
                       IRIS_DIRTY_VS |
                       IRIS_DIRTY_WM;
}

static void
set_predicate_enable(struct iris_context *ice, bool value)
{
   if (value)
      ice->state.predicate = IRIS_PREDICATE_STATE_RENDER;
   else
      ice->state.predicate = IRIS_PREDICATE_STATE_DONT_RENDER;
}

static void
set_predicate_for_result(struct iris_context *ice,
                         struct iris_query *q,
                         bool inverted)
{
   struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
   struct iris_bo *bo = iris_resource_bo(q->query_state_ref.res);

   /* The CPU doesn't have the query result yet; use hardware predication */
   ice->state.predicate = IRIS_PREDICATE_STATE_USE_BIT;

   /* Ensure the memory is coherent for MI_LOAD_REGISTER_* commands. */
   iris_emit_pipe_control_flush(batch,
                                "conditional rendering: set predicate",
                                PIPE_CONTROL_FLUSH_ENABLE);
   q->stalled = true;

   struct gen_mi_builder b;
   gen_mi_builder_init(&b, batch);

   struct gen_mi_value result;

   switch (q->type) {
   case PIPE_QUERY_SO_OVERFLOW_PREDICATE:
      result = calc_overflow_for_stream(&b, q, q->index);
      break;
   case PIPE_QUERY_SO_OVERFLOW_ANY_PREDICATE:
      result = calc_overflow_any_stream(&b, q);
      break;
   default: {
      /* PIPE_QUERY_OCCLUSION_* */
      struct gen_mi_value start =
         query_mem64(q, offsetof(struct iris_query_snapshots, start));
      struct gen_mi_value end =
         query_mem64(q, offsetof(struct iris_query_snapshots, end));
      result = gen_mi_isub(&b, end, start);
      break;
   }
   }

   result = inverted ? gen_mi_z(&b, result) : gen_mi_nz(&b, result);
   result = gen_mi_iand(&b, result, gen_mi_imm(1));

   /* We immediately set the predicate on the render batch, as all the
    * counters come from 3D operations.  However, we may need to predicate
    * a compute dispatch, which executes in a different GEM context and has
    * a different MI_PREDICATE_RESULT register.  So, we save the result to
    * memory and reload it in iris_launch_grid.
    */
   gen_mi_value_ref(&b, result);
   gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT), result);
   gen_mi_store(&b, query_mem64(q, offsetof(struct iris_query_snapshots,
                                            predicate_result)), result);
   ice->state.compute_predicate = bo;
}

static void
iris_render_condition(struct pipe_context *ctx,
                      struct pipe_query *query,
                      bool condition,
                      enum pipe_render_cond_flag mode)
{
   struct iris_context *ice = (void *) ctx;
   struct iris_query *q = (void *) query;

   /* The old condition isn't relevant; we'll update it if necessary */
   ice->state.compute_predicate = NULL;
   ice->condition.query = q;
   ice->condition.condition = condition;

   if (!q) {
      ice->state.predicate = IRIS_PREDICATE_STATE_RENDER;
      return;
   }

   iris_check_query_no_flush(ice, q);

   if (q->result || q->ready) {
      set_predicate_enable(ice, (q->result != 0) ^ condition);
   } else {
      if (mode == PIPE_RENDER_COND_NO_WAIT ||
          mode == PIPE_RENDER_COND_BY_REGION_NO_WAIT) {
         perf_debug(&ice->dbg, "Conditional rendering demoted from "
                    "\"no wait\" to \"wait\".");
      }
      set_predicate_for_result(ice, q, condition);
   }
}

static void
iris_resolve_conditional_render(struct iris_context *ice)
{
   struct pipe_context *ctx = (void *) ice;
   struct iris_query *q = ice->condition.query;
   struct pipe_query *query = (void *) q;
   union pipe_query_result result;

   if (ice->state.predicate != IRIS_PREDICATE_STATE_USE_BIT)
      return;

   assert(q);

   iris_get_query_result(ctx, query, true, &result);
   set_predicate_enable(ice, (q->result != 0) ^ ice->condition.condition);
}

void
genX(init_query)(struct iris_context *ice)
{
   struct pipe_context *ctx = &ice->ctx;

   ctx->create_query = iris_create_query;
   ctx->create_batch_query = iris_create_batch_query;
   ctx->destroy_query = iris_destroy_query;
   ctx->begin_query = iris_begin_query;
   ctx->end_query = iris_end_query;
   ctx->get_query_result = iris_get_query_result;
   ctx->get_query_result_resource = iris_get_query_result_resource;
   ctx->set_active_query_state = iris_set_active_query_state;
   ctx->render_condition = iris_render_condition;

   ice->vtbl.resolve_conditional_render = iris_resolve_conditional_render;
}