1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
|
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "iris_batch.h"
#include "iris_bufmgr.h"
#include "iris_context.h"
#include "common/gen_decoder.h"
#include "drm-uapi/i915_drm.h"
#include "util/hash_table.h"
#include "main/macros.h"
#include <errno.h>
#include <xf86drm.h>
#define FILE_DEBUG_FLAG DEBUG_BUFMGR
/**
* Target sizes of the batch and state buffers. We create the initial
* buffers at these sizes, and flush when they're nearly full. If we
* underestimate how close we are to the end, and suddenly need more space
* in the middle of a draw, we can grow the buffers, and finish the draw.
* At that point, we'll be over our target size, so the next operation
* should flush. Each time we flush the batch, we recreate both buffers
* at the original target size, so it doesn't grow without bound.
*/
#define BATCH_SZ (20 * 1024)
#define STATE_SZ (18 * 1024)
static void decode_batch(struct iris_batch *batch);
static void
iris_batch_reset(struct iris_batch *batch);
UNUSED static void
dump_validation_list(struct iris_batch *batch)
{
fprintf(stderr, "Validation list (length %d):\n", batch->exec_count);
for (int i = 0; i < batch->exec_count; i++) {
assert(batch->validation_list[i].handle ==
batch->exec_bos[i]->gem_handle);
fprintf(stderr, "[%d] = %d %s %p\n", i,
batch->validation_list[i].handle,
batch->exec_bos[i]->name,
batch->exec_bos[i]);
}
}
static bool
uint_key_compare(const void *a, const void *b)
{
return a == b;
}
static uint32_t
uint_key_hash(const void *key)
{
return (uintptr_t) key;
}
static void
init_reloc_list(struct iris_reloc_list *rlist, int count)
{
rlist->reloc_count = 0;
rlist->reloc_array_size = count;
rlist->relocs = malloc(rlist->reloc_array_size *
sizeof(struct drm_i915_gem_relocation_entry));
}
static void
create_batch_buffer(struct iris_bufmgr *bufmgr,
struct iris_batch_buffer *buf,
const char *name, unsigned size)
{
buf->bo = iris_bo_alloc(bufmgr, name, size, 4096);
buf->bo->kflags |= EXEC_OBJECT_CAPTURE;
buf->map = iris_bo_map(NULL, buf->bo, MAP_READ | MAP_WRITE);
buf->map_next = buf->map;
}
void
iris_init_batch(struct iris_batch *batch,
struct iris_screen *screen,
struct pipe_debug_callback *dbg,
uint8_t ring)
{
batch->screen = screen;
batch->dbg = dbg;
/* ring should be one of I915_EXEC_RENDER, I915_EXEC_BLT, etc. */
assert((ring & ~I915_EXEC_RING_MASK) == 0);
assert(util_bitcount(ring) == 1);
batch->ring = ring;
init_reloc_list(&batch->cmdbuf.relocs, 256);
init_reloc_list(&batch->statebuf.relocs, 256);
batch->exec_count = 0;
batch->exec_array_size = 100;
batch->exec_bos =
malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
batch->validation_list =
malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
if (unlikely(INTEL_DEBUG)) {
batch->state_sizes =
_mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare);
}
iris_batch_reset(batch);
}
#define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
static unsigned
add_exec_bo(struct iris_batch *batch, struct iris_bo *bo)
{
unsigned index = READ_ONCE(bo->index);
if (index < batch->exec_count && batch->exec_bos[index] == bo)
return index;
/* May have been shared between multiple active batches */
for (index = 0; index < batch->exec_count; index++) {
if (batch->exec_bos[index] == bo)
return index;
}
iris_bo_reference(bo);
if (batch->exec_count == batch->exec_array_size) {
batch->exec_array_size *= 2;
batch->exec_bos =
realloc(batch->exec_bos,
batch->exec_array_size * sizeof(batch->exec_bos[0]));
batch->validation_list =
realloc(batch->validation_list,
batch->exec_array_size * sizeof(batch->validation_list[0]));
}
batch->validation_list[batch->exec_count] =
(struct drm_i915_gem_exec_object2) {
.handle = bo->gem_handle,
.alignment = bo->align,
.offset = bo->gtt_offset,
.flags = bo->kflags,
};
bo->index = batch->exec_count;
batch->exec_bos[batch->exec_count] = bo;
batch->aperture_space += bo->size;
return batch->exec_count++;
}
static void
iris_batch_reset(struct iris_batch *batch)
{
struct iris_screen *screen = batch->screen;
struct iris_bufmgr *bufmgr = screen->bufmgr;
if (batch->last_cmd_bo != NULL) {
iris_bo_unreference(batch->last_cmd_bo);
batch->last_cmd_bo = NULL;
}
batch->last_cmd_bo = batch->cmdbuf.bo;
create_batch_buffer(bufmgr, &batch->cmdbuf, "command buffer", BATCH_SZ);
create_batch_buffer(bufmgr, &batch->statebuf, "state buffer", STATE_SZ);
/* Avoid making 0 a valid state offset - otherwise the decoder will try
* and decode data when we use offset 0 as a null pointer.
*/
batch->statebuf.map_next += 1;
add_exec_bo(batch, batch->cmdbuf.bo);
assert(batch->cmdbuf.bo->index == 0);
if (batch->state_sizes)
_mesa_hash_table_clear(batch->state_sizes, NULL);
if (batch->ring == I915_EXEC_RENDER)
batch->emit_state_base_address(batch);
}
static void
iris_batch_reset_and_clear_render_cache(struct iris_batch *batch)
{
iris_batch_reset(batch);
// XXX: iris_render_cache_set_clear(batch);
}
static void
free_batch_buffer(struct iris_batch_buffer *buf)
{
iris_bo_unreference(buf->bo);
buf->bo = NULL;
buf->map = NULL;
buf->map_next = NULL;
free(buf->relocs.relocs);
buf->relocs.relocs = NULL;
buf->relocs.reloc_array_size = 0;
}
void
iris_batch_free(struct iris_batch *batch)
{
for (int i = 0; i < batch->exec_count; i++) {
iris_bo_unreference(batch->exec_bos[i]);
}
free(batch->exec_bos);
free(batch->validation_list);
free_batch_buffer(&batch->cmdbuf);
free_batch_buffer(&batch->statebuf);
iris_bo_unreference(batch->last_cmd_bo);
if (batch->state_sizes)
_mesa_hash_table_destroy(batch->state_sizes, NULL);
}
/**
* Finish copying the old batch/state buffer's contents to the new one
* after we tried to "grow" the buffer in an earlier operation.
*/
static void
finish_growing_bos(struct iris_batch_buffer *buf)
{
struct iris_bo *old_bo = buf->partial_bo;
if (!old_bo)
return;
void *old_map = old_bo->map_cpu ? old_bo->map_cpu : old_bo->map_wc;
memcpy(buf->map, old_map, buf->partial_bytes);
buf->partial_bo = NULL;
buf->partial_bytes = 0;
iris_bo_unreference(old_bo);
}
static unsigned
buffer_bytes_used(struct iris_batch_buffer *buf)
{
return buf->map_next - buf->map;
}
/**
* Grow either the batch or state buffer to a new larger size.
*
* We can't actually grow buffers, so we allocate a new one, copy over
* the existing contents, and update our lists to refer to the new one.
*
* Note that this is only temporary - each new batch recreates the buffers
* at their original target size (BATCH_SZ or STATE_SZ).
*/
static void
grow_buffer(struct iris_batch *batch,
struct iris_batch_buffer *buf,
unsigned new_size)
{
struct iris_bufmgr *bufmgr = batch->screen->bufmgr;
struct iris_bo *bo = buf->bo;
perf_debug(batch->dbg, "Growing %s - ran out of space\n", bo->name);
if (buf->partial_bo) {
/* We've already grown once, and now we need to do it again.
* Finish our last grow operation so we can start a new one.
* This should basically never happen.
*/
perf_debug(batch->dbg, "Had to grow multiple times");
finish_growing_bos(buf);
}
const unsigned existing_bytes = buffer_bytes_used(buf);
struct iris_bo *new_bo =
iris_bo_alloc(bufmgr, bo->name, new_size, bo->align);
buf->map = iris_bo_map(NULL, new_bo, MAP_READ | MAP_WRITE);
buf->map_next = buf->map + existing_bytes;
/* Try to put the new BO at the same GTT offset as the old BO (which
* we're throwing away, so it doesn't need to be there).
*
* This guarantees that our relocations continue to work: values we've
* already written into the buffer, values we're going to write into the
* buffer, and the validation/relocation lists all will match.
*
* Also preserve kflags for EXEC_OBJECT_CAPTURE.
*/
new_bo->gtt_offset = bo->gtt_offset;
new_bo->index = bo->index;
new_bo->kflags = bo->kflags;
/* Batch/state buffers are per-context, and if we've run out of space,
* we must have actually used them before, so...they will be in the list.
*/
assert(bo->index < batch->exec_count);
assert(batch->exec_bos[bo->index] == bo);
/* Update the validation list to use the new BO. */
batch->exec_bos[bo->index] = new_bo;
batch->validation_list[bo->index].handle = new_bo->gem_handle;
/* Exchange the two BOs...without breaking pointers to the old BO.
*
* Consider this scenario:
*
* 1. Somebody calls iris_state_batch() to get a region of memory, and
* and then creates a iris_address pointing to iris->batch.state.bo.
* 2. They then call iris_state_batch() a second time, which happens to
* grow and replace the state buffer. They then try to emit a
* relocation to their first section of memory.
*
* If we replace the iris->batch.state.bo pointer at step 2, we would
* break the address created in step 1. They'd have a pointer to the
* old destroyed BO. Emitting a relocation would add this dead BO to
* the validation list...causing /both/ statebuffers to be in the list,
* and all kinds of disasters.
*
* This is not a contrived case - BLORP vertex data upload hits this.
*
* There are worse scenarios too. Fences for GL sync objects reference
* iris->batch.batch.bo. If we replaced the batch pointer when growing,
* we'd need to chase down every fence and update it to point to the
* new BO. Otherwise, it would refer to a "batch" that never actually
* gets submitted, and would fail to trigger.
*
* To work around both of these issues, we transmutate the buffers in
* place, making the existing struct iris_bo represent the new buffer,
* and "new_bo" represent the old BO. This is highly unusual, but it
* seems like a necessary evil.
*
* We also defer the memcpy of the existing batch's contents. Callers
* may make multiple iris_state_batch calls, and retain pointers to the
* old BO's map. We'll perform the memcpy in finish_growing_bo() when
* we finally submit the batch, at which point we've finished uploading
* state, and nobody should have any old references anymore.
*
* To do that, we keep a reference to the old BO in grow->partial_bo,
* and store the number of bytes to copy in grow->partial_bytes. We
* can monkey with the refcounts directly without atomics because these
* are per-context BOs and they can only be touched by this thread.
*/
assert(new_bo->refcount == 1);
new_bo->refcount = bo->refcount;
bo->refcount = 1;
struct iris_bo tmp;
memcpy(&tmp, bo, sizeof(struct iris_bo));
memcpy(bo, new_bo, sizeof(struct iris_bo));
memcpy(new_bo, &tmp, sizeof(struct iris_bo));
buf->partial_bo = new_bo; /* the one reference of the OLD bo */
buf->partial_bytes = existing_bytes;
}
static void
require_buffer_space(struct iris_batch *batch,
struct iris_batch_buffer *buf,
unsigned size,
unsigned flush_threshold,
unsigned max_buffer_size)
{
const unsigned required_bytes = buffer_bytes_used(buf) + size;
if (!batch->no_wrap && required_bytes >= flush_threshold) {
iris_batch_flush(batch);
} else if (required_bytes >= buf->bo->size) {
grow_buffer(batch, buf,
MIN2(buf->bo->size + buf->bo->size / 2, max_buffer_size));
assert(required_bytes < buf->bo->size);
}
}
void
iris_require_command_space(struct iris_batch *batch, unsigned size)
{
require_buffer_space(batch, &batch->cmdbuf, size, BATCH_SZ, MAX_BATCH_SIZE);
}
/**
* Reserve some space in the statebuffer, or flush.
*
* This is used to estimate when we're near the end of the batch,
* so we can flush early.
*/
void
iris_require_state_space(struct iris_batch *batch, unsigned size)
{
require_buffer_space(batch, &batch->statebuf, size, STATE_SZ,
MAX_STATE_SIZE);
}
void
iris_batch_emit(struct iris_batch *batch, const void *data, unsigned size)
{
iris_require_command_space(batch, size);
memcpy(batch->cmdbuf.map_next, data, size);
batch->cmdbuf.map_next += size;
}
/**
* Called from iris_batch_flush before emitting MI_BATCHBUFFER_END and
* sending it off.
*
* This function can emit state (say, to preserve registers that aren't saved
* between batches).
*/
static void
iris_finish_batch(struct iris_batch *batch)
{
batch->no_wrap = true;
/* Mark the end of the buffer. */
const uint32_t MI_BATCH_BUFFER_END = (0xA << 23);
iris_batch_emit(batch, &MI_BATCH_BUFFER_END, sizeof(uint32_t));
batch->no_wrap = false;
}
static int
submit_batch(struct iris_batch *batch, int in_fence_fd, int *out_fence_fd)
{
iris_bo_unmap(batch->cmdbuf.bo);
iris_bo_unmap(batch->statebuf.bo);
/* The requirement for using I915_EXEC_NO_RELOC are:
*
* The addresses written in the objects must match the corresponding
* reloc.gtt_offset which in turn must match the corresponding
* execobject.offset.
*
* Any render targets written to in the batch must be flagged with
* EXEC_OBJECT_WRITE.
*
* To avoid stalling, execobject.offset should match the current
* address of that object within the active context.
*/
/* Set statebuffer relocations */
const unsigned state_index = batch->statebuf.bo->index;
if (state_index < batch->exec_count &&
batch->exec_bos[state_index] == batch->statebuf.bo) {
struct drm_i915_gem_exec_object2 *entry =
&batch->validation_list[state_index];
assert(entry->handle == batch->statebuf.bo->gem_handle);
entry->relocation_count = batch->statebuf.relocs.reloc_count;
entry->relocs_ptr = (uintptr_t) batch->statebuf.relocs.relocs;
}
/* Set batchbuffer relocations */
struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
assert(entry->handle == batch->cmdbuf.bo->gem_handle);
entry->relocation_count = batch->cmdbuf.relocs.reloc_count;
entry->relocs_ptr = (uintptr_t) batch->cmdbuf.relocs.relocs;
struct drm_i915_gem_execbuffer2 execbuf = {
.buffers_ptr = (uintptr_t) batch->validation_list,
.buffer_count = batch->exec_count,
.batch_start_offset = 0,
.batch_len = buffer_bytes_used(&batch->cmdbuf),
.flags = batch->ring |
I915_EXEC_NO_RELOC |
I915_EXEC_BATCH_FIRST |
I915_EXEC_HANDLE_LUT,
.rsvd1 = batch->hw_ctx_id, /* rsvd1 is actually the context ID */
};
unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
if (in_fence_fd != -1) {
execbuf.rsvd2 = in_fence_fd;
execbuf.flags |= I915_EXEC_FENCE_IN;
}
if (out_fence_fd != NULL) {
cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
*out_fence_fd = -1;
execbuf.flags |= I915_EXEC_FENCE_OUT;
}
#if 1
int ret = drm_ioctl(batch->screen->fd, cmd, &execbuf);
if (ret != 0) {
ret = -errno;
DBG("execbuf FAILED: errno = %d\n", -ret);
} else {
DBG("execbuf succeeded\n");
}
#else
int ret = 0;
fprintf(stderr, "execbuf disabled for now\n");
#endif
for (int i = 0; i < batch->exec_count; i++) {
struct iris_bo *bo = batch->exec_bos[i];
bo->idle = false;
bo->index = -1;
/* Update iris_bo::gtt_offset */
if (batch->validation_list[i].offset != bo->gtt_offset) {
DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
bo->gem_handle, bo->gtt_offset,
batch->validation_list[i].offset);
bo->gtt_offset = batch->validation_list[i].offset;
}
}
if (ret == 0 && out_fence_fd != NULL)
*out_fence_fd = execbuf.rsvd2 >> 32;
return ret;
}
/**
* The in_fence_fd is ignored if -1. Otherwise this function takes ownership
* of the fd.
*
* The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
* of the returned fd.
*/
int
_iris_batch_flush_fence(struct iris_batch *batch,
int in_fence_fd, int *out_fence_fd,
const char *file, int line)
{
if (buffer_bytes_used(&batch->cmdbuf) == 0)
return 0;
/* Check that we didn't just wrap our batchbuffer at a bad time. */
assert(!batch->no_wrap);
iris_finish_batch(batch);
if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
int bytes_for_commands = buffer_bytes_used(&batch->cmdbuf);
int bytes_for_state = buffer_bytes_used(&batch->statebuf);
fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
" %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
" %4d batch relocs, %4d state relocs\n", file, line,
bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
batch->exec_count,
(float) batch->aperture_space / (1024 * 1024),
batch->cmdbuf.relocs.reloc_count,
batch->statebuf.relocs.reloc_count);
}
int ret = submit_batch(batch, in_fence_fd, out_fence_fd);
if (ret < 0)
return ret;
//throttle(iris);
if (unlikely(INTEL_DEBUG & DEBUG_BATCH))
decode_batch(batch);
//if (iris->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
//iris_check_for_reset(ice);
if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
dbg_printf("waiting for idle\n");
iris_bo_wait_rendering(batch->cmdbuf.bo);
}
/* Clean up after the batch we submitted and prepare for a new one. */
for (int i = 0; i < batch->exec_count; i++) {
iris_bo_unreference(batch->exec_bos[i]);
batch->exec_bos[i] = NULL;
}
batch->cmdbuf.relocs.reloc_count = 0;
batch->statebuf.relocs.reloc_count = 0;
batch->exec_count = 0;
batch->aperture_space = 0;
iris_bo_unreference(batch->statebuf.bo);
/* Start a new batch buffer. */
iris_batch_reset_and_clear_render_cache(batch);
return 0;
}
bool
iris_batch_references(struct iris_batch *batch, struct iris_bo *bo)
{
unsigned index = READ_ONCE(bo->index);
if (index < batch->exec_count && batch->exec_bos[index] == bo)
return true;
for (int i = 0; i < batch->exec_count; i++) {
if (batch->exec_bos[i] == bo)
return true;
}
return false;
}
/* This is the only way buffers get added to the validate list.
*/
static uint64_t
emit_reloc(struct iris_batch *batch,
struct iris_reloc_list *rlist, uint32_t offset,
struct iris_bo *target, uint32_t target_offset,
unsigned int reloc_flags)
{
assert(target != NULL);
unsigned int index = add_exec_bo(batch, target);
struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
if (target->kflags & EXEC_OBJECT_PINNED) {
assert(entry->offset == target->gtt_offset);
return entry->offset + target_offset;
}
if (rlist->reloc_count == rlist->reloc_array_size) {
rlist->reloc_array_size *= 2;
rlist->relocs = realloc(rlist->relocs,
rlist->reloc_array_size *
sizeof(struct drm_i915_gem_relocation_entry));
}
rlist->relocs[rlist->reloc_count++] =
(struct drm_i915_gem_relocation_entry) {
.offset = offset,
.delta = target_offset,
.target_handle = index,
.presumed_offset = entry->offset,
};
/* Using the old buffer offset, write in what the right data would be, in
* case the buffer doesn't move and we can short-circuit the relocation
* processing in the kernel
*/
return entry->offset + target_offset;
}
void
iris_use_pinned_bo(struct iris_batch *batch, struct iris_bo *bo)
{
assert(bo->kflags & EXEC_OBJECT_PINNED);
add_exec_bo(batch, bo);
}
uint64_t
iris_batch_reloc(struct iris_batch *batch, uint32_t batch_offset,
struct iris_bo *target, uint32_t target_offset,
unsigned int reloc_flags)
{
assert(batch_offset <= batch->cmdbuf.bo->size - sizeof(uint32_t));
return emit_reloc(batch, &batch->cmdbuf.relocs, batch_offset,
target, target_offset, reloc_flags);
}
uint64_t
iris_state_reloc(struct iris_batch *batch, uint32_t state_offset,
struct iris_bo *target, uint32_t target_offset,
unsigned int reloc_flags)
{
assert(state_offset <= batch->statebuf.bo->size - sizeof(uint32_t));
return emit_reloc(batch, &batch->statebuf.relocs, state_offset,
target, target_offset, reloc_flags);
}
static uint32_t
iris_state_entry_size(struct iris_batch *batch, uint32_t offset)
{
struct hash_entry *entry =
_mesa_hash_table_search(batch->state_sizes, (void *)(uintptr_t) offset);
return entry ? (uintptr_t) entry->data : 0;
}
/**
* Allocates a block of space in the batchbuffer for indirect state.
*/
void *
iris_alloc_state(struct iris_batch *batch,
int size, int alignment,
uint32_t *out_offset)
{
assert(size < batch->statebuf.bo->size);
const unsigned existing_bytes = buffer_bytes_used(&batch->statebuf);
unsigned aligned_size =
ALIGN(existing_bytes, alignment) - existing_bytes + size;
require_buffer_space(batch, &batch->statebuf, aligned_size,
STATE_SZ, MAX_STATE_SIZE);
unsigned offset = ALIGN(buffer_bytes_used(&batch->statebuf), alignment);
if (unlikely(batch->state_sizes)) {
_mesa_hash_table_insert(batch->state_sizes,
(void *) (uintptr_t) offset,
(void *) (uintptr_t) size);
}
batch->statebuf.map_next += aligned_size;
*out_offset = offset;
return batch->statebuf.map + offset;
}
uint32_t
iris_emit_state(struct iris_batch *batch,
const void *data,
int size, int alignment)
{
uint32_t out_offset;
void *dest = iris_alloc_state(batch, size, alignment, &out_offset);
memcpy(dest, data, size);
return out_offset;
}
static void
decode_batch(struct iris_batch *batch)
{
// XXX: decode the batch
}
|