1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
|
/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
/*
* Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include <stdarg.h>
#include "pipe/p_state.h"
#include "util/u_string.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "tgsi/tgsi_lowering.h"
#include "tgsi/tgsi_strings.h"
#include "nir/tgsi_to_nir.h"
#include "glsl/shader_enums.h"
#include "freedreno_util.h"
#include "ir3_compiler.h"
#include "ir3_shader.h"
#include "instr-a3xx.h"
#include "ir3.h"
static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val);
struct ir3_compile {
const struct tgsi_token *tokens;
struct nir_shader *s;
struct ir3 *ir;
struct ir3_shader_variant *so;
/* bitmask of which samplers are integer: */
uint16_t integer_s;
struct ir3_block *block;
/* For fragment shaders, from the hw perspective the only
* actual input is r0.xy position register passed to bary.f.
* But TGSI doesn't know that, it still declares things as
* IN[] registers. So we do all the input tracking normally
* and fix things up after compile_instructions()
*
* NOTE that frag_pos is the hardware position (possibly it
* is actually an index or tag or some such.. it is *not*
* values that can be directly used for gl_FragCoord..)
*/
struct ir3_instruction *frag_pos, *frag_face, *frag_coord[4];
/* For vertex shaders, keep track of the system values sources */
struct ir3_instruction *vertex_id, *basevertex, *instance_id;
/* mapping from nir_register to defining instruction: */
struct hash_table *def_ht;
/* a common pattern for indirect addressing is to request the
* same address register multiple times. To avoid generating
* duplicate instruction sequences (which our backend does not
* try to clean up, since that should be done as the NIR stage)
* we cache the address value generated for a given src value:
*/
struct hash_table *addr_ht;
/* for calculating input/output positions/linkages: */
unsigned next_inloc;
/* a4xx (at least patchlevel 0) cannot seem to flat-interpolate
* so we need to use ldlv.u32 to load the varying directly:
*/
bool flat_bypass;
/* for looking up which system value is which */
unsigned sysval_semantics[8];
/* list of kill instructions: */
struct ir3_instruction *kill[16];
unsigned int kill_count;
/* set if we encounter something we can't handle yet, so we
* can bail cleanly and fallback to TGSI compiler f/e
*/
bool error;
};
static struct nir_shader *to_nir(const struct tgsi_token *tokens)
{
struct nir_shader_compiler_options options = {
.lower_fpow = true,
.lower_fsat = true,
.lower_scmp = true,
.lower_flrp = true,
.native_integers = true,
};
bool progress;
struct nir_shader *s = tgsi_to_nir(tokens, &options);
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
debug_printf("----------------------\n");
nir_print_shader(s, stdout);
debug_printf("----------------------\n");
}
nir_opt_global_to_local(s);
nir_convert_to_ssa(s);
nir_lower_idiv(s);
do {
progress = false;
nir_lower_vars_to_ssa(s);
nir_lower_alu_to_scalar(s);
progress |= nir_copy_prop(s);
progress |= nir_opt_dce(s);
progress |= nir_opt_cse(s);
progress |= nir_opt_peephole_select(s);
progress |= nir_opt_algebraic(s);
progress |= nir_opt_constant_folding(s);
} while (progress);
nir_remove_dead_variables(s);
nir_validate_shader(s);
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
debug_printf("----------------------\n");
nir_print_shader(s, stdout);
debug_printf("----------------------\n");
}
return s;
}
/* TODO nir doesn't lower everything for us yet, but ideally it would: */
static const struct tgsi_token *
lower_tgsi(const struct tgsi_token *tokens, struct ir3_shader_variant *so)
{
struct tgsi_shader_info info;
struct tgsi_lowering_config lconfig = {
.color_two_side = so->key.color_two_side,
.lower_FRC = true,
};
switch (so->type) {
case SHADER_FRAGMENT:
case SHADER_COMPUTE:
lconfig.saturate_s = so->key.fsaturate_s;
lconfig.saturate_t = so->key.fsaturate_t;
lconfig.saturate_r = so->key.fsaturate_r;
break;
case SHADER_VERTEX:
lconfig.saturate_s = so->key.vsaturate_s;
lconfig.saturate_t = so->key.vsaturate_t;
lconfig.saturate_r = so->key.vsaturate_r;
break;
}
if (!so->shader) {
/* hack for standalone compiler which does not have
* screen/context:
*/
} else if (ir3_shader_gpuid(so->shader) >= 400) {
/* a4xx seems to have *no* sam.p */
lconfig.lower_TXP = ~0; /* lower all txp */
} else {
/* a3xx just needs to avoid sam.p for 3d tex */
lconfig.lower_TXP = (1 << TGSI_TEXTURE_3D);
}
return tgsi_transform_lowering(&lconfig, tokens, &info);
}
static struct ir3_compile *
compile_init(struct ir3_shader_variant *so,
const struct tgsi_token *tokens)
{
struct ir3_compile *ctx = rzalloc(NULL, struct ir3_compile);
const struct tgsi_token *lowered_tokens;
if (!so->shader) {
/* hack for standalone compiler which does not have
* screen/context:
*/
} else if (ir3_shader_gpuid(so->shader) >= 400) {
/* need special handling for "flat" */
ctx->flat_bypass = true;
} else {
/* no special handling for "flat" */
ctx->flat_bypass = false;
}
switch (so->type) {
case SHADER_FRAGMENT:
case SHADER_COMPUTE:
ctx->integer_s = so->key.finteger_s;
break;
case SHADER_VERTEX:
ctx->integer_s = so->key.vinteger_s;
break;
}
ctx->ir = so->ir;
ctx->so = so;
ctx->next_inloc = 8;
ctx->def_ht = _mesa_hash_table_create(ctx,
_mesa_hash_pointer, _mesa_key_pointer_equal);
ctx->addr_ht = _mesa_hash_table_create(ctx,
_mesa_hash_pointer, _mesa_key_pointer_equal);
lowered_tokens = lower_tgsi(tokens, so);
if (!lowered_tokens)
lowered_tokens = tokens;
ctx->s = to_nir(lowered_tokens);
if (lowered_tokens != tokens)
free((void *)lowered_tokens);
so->first_immediate = ctx->s->num_uniforms;
return ctx;
}
static void
compile_error(struct ir3_compile *ctx, const char *format, ...)
{
va_list ap;
va_start(ap, format);
_debug_vprintf(format, ap);
va_end(ap);
nir_print_shader(ctx->s, stdout);
ctx->error = true;
}
#define compile_assert(ctx, cond) do { \
if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \
} while (0)
static void
compile_free(struct ir3_compile *ctx)
{
ralloc_free(ctx);
}
/* allocate a n element value array (to be populated by caller) and
* insert in def_ht
*/
static struct ir3_instruction **
__get_dst(struct ir3_compile *ctx, void *key, unsigned n)
{
struct ir3_instruction **value =
ralloc_array(ctx->def_ht, struct ir3_instruction *, n);
_mesa_hash_table_insert(ctx->def_ht, key, value);
return value;
}
static struct ir3_instruction **
get_dst(struct ir3_compile *ctx, nir_dest *dst, unsigned n)
{
if (dst->is_ssa) {
return __get_dst(ctx, &dst->ssa, n);
} else {
return __get_dst(ctx, dst->reg.reg, n);
}
}
static struct ir3_instruction **
get_dst_ssa(struct ir3_compile *ctx, nir_ssa_def *dst, unsigned n)
{
return __get_dst(ctx, dst, n);
}
static struct ir3_instruction **
get_src(struct ir3_compile *ctx, nir_src *src)
{
struct hash_entry *entry;
if (src->is_ssa) {
entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
} else {
entry = _mesa_hash_table_search(ctx->def_ht, src->reg.reg);
}
compile_assert(ctx, entry);
return entry->data;
}
static struct ir3_instruction *
create_immed(struct ir3_block *block, uint32_t val)
{
struct ir3_instruction *mov;
mov = ir3_instr_create(block, 1, 0);
mov->cat1.src_type = TYPE_U32;
mov->cat1.dst_type = TYPE_U32;
ir3_reg_create(mov, 0, 0);
ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
return mov;
}
static struct ir3_instruction *
create_addr(struct ir3_block *block, struct ir3_instruction *src)
{
struct ir3_instruction *instr, *immed;
/* TODO in at least some cases, the backend could probably be
* made clever enough to propagate IR3_REG_HALF..
*/
instr = ir3_COV(block, src, TYPE_U32, TYPE_S16);
instr->regs[0]->flags |= IR3_REG_HALF;
immed = create_immed(block, 2);
immed->regs[0]->flags |= IR3_REG_HALF;
instr = ir3_SHL_B(block, instr, 0, immed, 0);
instr->regs[0]->flags |= IR3_REG_HALF;
instr->regs[1]->flags |= IR3_REG_HALF;
instr = ir3_MOV(block, instr, TYPE_S16);
instr->regs[0]->flags |= IR3_REG_ADDR | IR3_REG_HALF;
instr->regs[1]->flags |= IR3_REG_HALF;
return instr;
}
/* caches addr values to avoid generating multiple cov/shl/mova
* sequences for each use of a given NIR level src as address
*/
static struct ir3_instruction *
get_addr(struct ir3_compile *ctx, struct ir3_instruction *src)
{
struct ir3_instruction *addr;
struct hash_entry *entry;
entry = _mesa_hash_table_search(ctx->addr_ht, src);
if (entry)
return entry->data;
/* TODO do we need to cache per block? */
addr = create_addr(ctx->block, src);
_mesa_hash_table_insert(ctx->addr_ht, src, addr);
return addr;
}
static struct ir3_instruction *
create_uniform(struct ir3_block *block, unsigned n)
{
struct ir3_instruction *mov;
mov = ir3_instr_create(block, 1, 0);
/* TODO get types right? */
mov->cat1.src_type = TYPE_F32;
mov->cat1.dst_type = TYPE_F32;
ir3_reg_create(mov, 0, 0);
ir3_reg_create(mov, n, IR3_REG_CONST);
return mov;
}
static struct ir3_instruction *
create_uniform_indirect(struct ir3_block *block, unsigned n,
struct ir3_instruction *address)
{
struct ir3_instruction *mov;
mov = ir3_instr_create(block, 1, 0);
mov->cat1.src_type = TYPE_U32;
mov->cat1.dst_type = TYPE_U32;
ir3_reg_create(mov, 0, 0);
ir3_reg_create(mov, n, IR3_REG_CONST | IR3_REG_RELATIV);
mov->address = address;
return mov;
}
static struct ir3_instruction *
create_indirect(struct ir3_block *block, struct ir3_instruction **arr,
unsigned arrsz, unsigned n, struct ir3_instruction *address)
{
struct ir3_instruction *mov, *collect;
struct ir3_register *src;
collect = ir3_instr_create2(block, -1, OPC_META_FI, 1 + arrsz);
ir3_reg_create(collect, 0, 0);
for (unsigned i = 0; i < arrsz; i++)
ir3_reg_create(collect, 0, IR3_REG_SSA)->instr = arr[i];
mov = ir3_instr_create(block, 1, 0);
mov->cat1.src_type = TYPE_U32;
mov->cat1.dst_type = TYPE_U32;
ir3_reg_create(mov, 0, 0);
src = ir3_reg_create(mov, 0, IR3_REG_SSA | IR3_REG_RELATIV);
src->instr = collect;
src->size = arrsz;
mov->address = address;
return mov;
}
static struct ir3_instruction *
create_input(struct ir3_block *block, struct ir3_instruction *instr,
unsigned n)
{
struct ir3_instruction *in;
in = ir3_instr_create(block, -1, OPC_META_INPUT);
in->inout.block = block;
ir3_reg_create(in, n, 0);
if (instr)
ir3_reg_create(in, 0, IR3_REG_SSA)->instr = instr;
return in;
}
static struct ir3_instruction *
create_frag_input(struct ir3_compile *ctx, unsigned n, bool use_ldlv)
{
struct ir3_block *block = ctx->block;
struct ir3_instruction *instr;
struct ir3_instruction *inloc = create_immed(block, n);
if (use_ldlv) {
instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
instr->cat6.type = TYPE_U32;
instr->cat6.iim_val = 1;
} else {
instr = ir3_BARY_F(block, inloc, 0, ctx->frag_pos, 0);
instr->regs[2]->wrmask = 0x3;
}
return instr;
}
static struct ir3_instruction *
create_frag_coord(struct ir3_compile *ctx, unsigned comp)
{
struct ir3_block *block = ctx->block;
struct ir3_instruction *instr;
compile_assert(ctx, !ctx->frag_coord[comp]);
ctx->frag_coord[comp] = create_input(ctx->block, NULL, 0);
switch (comp) {
case 0: /* .x */
case 1: /* .y */
/* for frag_coord, we get unsigned values.. we need
* to subtract (integer) 8 and divide by 16 (right-
* shift by 4) then convert to float:
*
* add.s tmp, src, -8
* shr.b tmp, tmp, 4
* mov.u32f32 dst, tmp
*
*/
instr = ir3_ADD_S(block, ctx->frag_coord[comp], 0,
create_immed(block, -8), 0);
instr = ir3_SHR_B(block, instr, 0,
create_immed(block, 4), 0);
instr = ir3_COV(block, instr, TYPE_U32, TYPE_F32);
return instr;
case 2: /* .z */
case 3: /* .w */
default:
/* seems that we can use these as-is: */
return ctx->frag_coord[comp];
}
}
static struct ir3_instruction *
create_frag_face(struct ir3_compile *ctx, unsigned comp)
{
struct ir3_block *block = ctx->block;
struct ir3_instruction *instr;
switch (comp) {
case 0: /* .x */
compile_assert(ctx, !ctx->frag_face);
ctx->frag_face = create_input(block, NULL, 0);
/* for faceness, we always get -1 or 0 (int).. but TGSI expects
* positive vs negative float.. and piglit further seems to
* expect -1.0 or 1.0:
*
* mul.s tmp, hr0.x, 2
* add.s tmp, tmp, 1
* mov.s32f32, dst, tmp
*
*/
instr = ir3_MUL_S(block, ctx->frag_face, 0,
create_immed(block, 2), 0);
instr = ir3_ADD_S(block, instr, 0,
create_immed(block, 1), 0);
instr = ir3_COV(block, instr, TYPE_S32, TYPE_F32);
return instr;
case 1: /* .y */
case 2: /* .z */
return create_immed(block, fui(0.0));
default:
case 3: /* .w */
return create_immed(block, fui(1.0));
}
}
/*
* Adreno uses uint rather than having dedicated bool type,
* which (potentially) requires some conversion, in particular
* when using output of an bool instr to int input, or visa
* versa.
*
* | Adreno | NIR |
* -------+---------+-------+-
* true | 1 | ~0 |
* false | 0 | 0 |
*
* To convert from an adreno bool (uint) to nir, use:
*
* absneg.s dst, (neg)src
*
* To convert back in the other direction:
*
* absneg.s dst, (abs)arc
*
* The CP step can clean up the absneg.s that cancel each other
* out, and with a slight bit of extra cleverness (to recognize
* the instructions which produce either a 0 or 1) can eliminate
* the absneg.s's completely when an instruction that wants
* 0/1 consumes the result. For example, when a nir 'bcsel'
* consumes the result of 'feq'. So we should be able to get by
* without a boolean resolve step, and without incuring any
* extra penalty in instruction count.
*/
/* NIR bool -> native (adreno): */
static struct ir3_instruction *
ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr)
{
return ir3_ABSNEG_S(block, instr, IR3_REG_SABS);
}
/* native (adreno) -> NIR bool: */
static struct ir3_instruction *
ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr)
{
return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG);
}
/*
* alu/sfu instructions:
*/
static void
emit_alu(struct ir3_compile *ctx, nir_alu_instr *alu)
{
const nir_op_info *info = &nir_op_infos[alu->op];
struct ir3_instruction **dst, *src[info->num_inputs];
struct ir3_block *b = ctx->block;
dst = get_dst(ctx, &alu->dest.dest, MAX2(info->output_size, 1));
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in
* order into each writemask channel.
*/
if ((alu->op == nir_op_vec2) ||
(alu->op == nir_op_vec3) ||
(alu->op == nir_op_vec4)) {
for (int i = 0; i < info->num_inputs; i++) {
nir_alu_src *asrc = &alu->src[i];
compile_assert(ctx, !asrc->abs);
compile_assert(ctx, !asrc->negate);
src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[0]];
dst[i] = ir3_MOV(b, src[i], TYPE_U32);
}
return;
}
/* General case: We can just grab the one used channel per src. */
for (int i = 0; i < info->num_inputs; i++) {
unsigned chan = ffs(alu->dest.write_mask) - 1;
nir_alu_src *asrc = &alu->src[i];
compile_assert(ctx, !asrc->abs);
compile_assert(ctx, !asrc->negate);
src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
}
switch (alu->op) {
case nir_op_f2i:
dst[0] = ir3_COV(b, src[0], TYPE_F32, TYPE_S32);
break;
case nir_op_f2u:
dst[0] = ir3_COV(b, src[0], TYPE_F32, TYPE_U32);
break;
case nir_op_i2f:
dst[0] = ir3_COV(b, src[0], TYPE_S32, TYPE_F32);
break;
case nir_op_u2f:
dst[0] = ir3_COV(b, src[0], TYPE_U32, TYPE_F32);
break;
case nir_op_imov:
dst[0] = ir3_MOV(b, src[0], TYPE_S32);
break;
case nir_op_f2b:
dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
dst[0]->cat2.condition = IR3_COND_NE;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_b2f:
dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32);
break;
case nir_op_b2i:
dst[0] = ir3_b2n(b, src[0]);
break;
case nir_op_i2b:
dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
dst[0]->cat2.condition = IR3_COND_NE;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_fneg:
dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
break;
case nir_op_fabs:
dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
break;
case nir_op_fmax:
dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
break;
case nir_op_fmin:
dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
break;
case nir_op_fmul:
dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
break;
case nir_op_fadd:
dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
break;
case nir_op_fsub:
dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
break;
case nir_op_ffma:
dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
break;
case nir_op_fddx:
dst[0] = ir3_DSX(b, src[0], 0);
dst[0]->cat5.type = TYPE_F32;
break;
case nir_op_fddy:
dst[0] = ir3_DSY(b, src[0], 0);
dst[0]->cat5.type = TYPE_F32;
break;
break;
case nir_op_flt:
dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_LT;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_fge:
dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_GE;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_feq:
dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_EQ;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_fne:
dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_NE;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_fceil:
dst[0] = ir3_CEIL_F(b, src[0], 0);
break;
case nir_op_ffloor:
dst[0] = ir3_FLOOR_F(b, src[0], 0);
break;
case nir_op_ftrunc:
dst[0] = ir3_TRUNC_F(b, src[0], 0);
break;
case nir_op_fround_even:
dst[0] = ir3_RNDNE_F(b, src[0], 0);
break;
case nir_op_fsign:
dst[0] = ir3_SIGN_F(b, src[0], 0);
break;
case nir_op_fsin:
dst[0] = ir3_SIN(b, src[0], 0);
break;
case nir_op_fcos:
dst[0] = ir3_COS(b, src[0], 0);
break;
case nir_op_frsq:
dst[0] = ir3_RSQ(b, src[0], 0);
break;
case nir_op_frcp:
dst[0] = ir3_RCP(b, src[0], 0);
break;
case nir_op_flog2:
dst[0] = ir3_LOG2(b, src[0], 0);
break;
case nir_op_fexp2:
dst[0] = ir3_EXP2(b, src[0], 0);
break;
case nir_op_fsqrt:
dst[0] = ir3_SQRT(b, src[0], 0);
break;
case nir_op_iabs:
dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
break;
case nir_op_iadd:
dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
break;
case nir_op_iand:
dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
break;
case nir_op_imax:
dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
break;
case nir_op_imin:
dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
break;
case nir_op_imul:
/*
* dst = (al * bl) + (ah * bl << 16) + (al * bh << 16)
* mull.u tmp0, a, b ; mul low, i.e. al * bl
* madsh.m16 tmp1, a, b, tmp0 ; mul-add shift high mix, i.e. ah * bl << 16
* madsh.m16 dst, b, a, tmp1 ; i.e. al * bh << 16
*/
dst[0] = ir3_MADSH_M16(b, src[1], 0, src[0], 0,
ir3_MADSH_M16(b, src[0], 0, src[1], 0,
ir3_MULL_U(b, src[0], 0, src[1], 0), 0), 0);
break;
case nir_op_ineg:
dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
break;
case nir_op_inot:
dst[0] = ir3_NOT_B(b, src[0], 0);
break;
case nir_op_ior:
dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
break;
case nir_op_ishl:
dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
break;
case nir_op_ishr:
dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
break;
case nir_op_isign: {
/* maybe this would be sane to lower in nir.. */
struct ir3_instruction *neg, *pos;
neg = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
neg->cat2.condition = IR3_COND_LT;
pos = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
pos->cat2.condition = IR3_COND_GT;
dst[0] = ir3_SUB_U(b, pos, 0, neg, 0);
break;
}
case nir_op_isub:
dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
break;
case nir_op_ixor:
dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
break;
case nir_op_ushr:
dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
break;
case nir_op_ilt:
dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_LT;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_ige:
dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_GE;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_ieq:
dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_EQ;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_ine:
dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_NE;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_ult:
dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_LT;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_uge:
dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
dst[0]->cat2.condition = IR3_COND_GE;
dst[0] = ir3_n2b(b, dst[0]);
break;
case nir_op_bcsel:
dst[0] = ir3_SEL_B32(b, src[1], 0, ir3_b2n(b, src[0]), 0, src[2], 0);
break;
default:
compile_error(ctx, "Unhandled ALU op: %s\n",
nir_op_infos[alu->op].name);
break;
}
}
static void
emit_intrinisic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
{
const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
struct ir3_instruction **dst, **src;
struct ir3_block *b = ctx->block;
unsigned idx = intr->const_index[0];
if (info->has_dest) {
dst = get_dst(ctx, &intr->dest, intr->num_components);
}
switch (intr->intrinsic) {
case nir_intrinsic_load_uniform:
compile_assert(ctx, intr->const_index[1] == 1);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i;
dst[i] = create_uniform(b, n);
}
break;
case nir_intrinsic_load_uniform_indirect:
compile_assert(ctx, intr->const_index[1] == 1);
src = get_src(ctx, &intr->src[0]);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i;
dst[i] = create_uniform_indirect(b, n,
get_addr(ctx, src[0]));
}
break;
case nir_intrinsic_load_input:
compile_assert(ctx, intr->const_index[1] == 1);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i;
dst[i] = b->inputs[n];
}
break;
case nir_intrinsic_load_input_indirect:
compile_assert(ctx, intr->const_index[1] == 1);
src = get_src(ctx, &intr->src[0]);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i;
dst[i] = create_indirect(b, b->inputs, b->ninputs, n,
get_addr(ctx, src[i]));
}
break;
case nir_intrinsic_store_output:
compile_assert(ctx, intr->const_index[1] == 1);
src = get_src(ctx, &intr->src[0]);
for (int i = 0; i < intr->num_components; i++) {
unsigned n = idx * 4 + i;
b->outputs[n] = src[i];
}
break;
case nir_intrinsic_discard_if:
case nir_intrinsic_discard: {
struct ir3_instruction *cond, *kill;
if (intr->intrinsic == nir_intrinsic_discard_if) {
/* conditional discard: */
src = get_src(ctx, &intr->src[0]);
cond = ir3_b2n(b, src[0]);
} else {
/* unconditional discard: */
cond = create_immed(b, 1);
}
cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
cond->cat2.condition = IR3_COND_NE;
/* condition always goes in predicate register: */
cond->regs[0]->num = regid(REG_P0, 0);
kill = ir3_KILL(b, cond, 0);
ctx->kill[ctx->kill_count++] = kill;
ctx->so->has_kill = true;
break;
}
default:
compile_error(ctx, "Unhandled intrinsic type: %s\n",
nir_intrinsic_infos[intr->intrinsic].name);
break;
}
}
static void
emit_load_const(struct ir3_compile *ctx, nir_load_const_instr *instr)
{
struct ir3_instruction **dst = get_dst_ssa(ctx, &instr->def,
instr->def.num_components);
for (int i = 0; i < instr->def.num_components; i++)
dst[i] = create_immed(ctx->block, instr->value.u[i]);
}
static void
emit_undef(struct ir3_compile *ctx, nir_ssa_undef_instr *undef)
{
struct ir3_instruction **dst = get_dst_ssa(ctx, &undef->def,
undef->def.num_components);
/* backend doesn't want undefined instructions, so just plug
* in 0.0..
*/
for (int i = 0; i < undef->def.num_components; i++)
dst[i] = create_immed(ctx->block, fui(0.0));
}
/*
* texture fetch/sample instructions:
*/
static void
emit_tex(struct ir3_compile *ctx, nir_tex_instr *tex)
{
struct ir3_block *b = ctx->block;
struct ir3_instruction **dst, *src0, *src1, *sam;
struct ir3_instruction **coord, *lod, *compare, *proj, **off, **ddx, **ddy;
struct ir3_register *reg;
bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
unsigned i, coords, flags = 0;
opc_t opc;
/* TODO: might just be one component for gathers? */
dst = get_dst(ctx, &tex->dest, 4);
for (unsigned i = 0; i < tex->num_srcs; i++) {
switch (tex->src[i].src_type) {
case nir_tex_src_coord:
coord = get_src(ctx, &tex->src[i].src);
break;
case nir_tex_src_bias:
lod = get_src(ctx, &tex->src[i].src)[0];
has_bias = true;
break;
case nir_tex_src_lod:
lod = get_src(ctx, &tex->src[i].src)[0];
has_lod = true;
break;
case nir_tex_src_comparitor: /* shadow comparator */
compare = get_src(ctx, &tex->src[i].src)[0];
break;
case nir_tex_src_projector:
proj = get_src(ctx, &tex->src[i].src)[0];
has_proj = true;
break;
case nir_tex_src_offset:
off = get_src(ctx, &tex->src[i].src);
has_off = true;
break;
case nir_tex_src_ddx:
ddx = get_src(ctx, &tex->src[i].src);
break;
case nir_tex_src_ddy:
ddy = get_src(ctx, &tex->src[i].src);
break;
default:
compile_error(ctx, "Unhandled NIR tex serc type: %d\n",
tex->src[i].src_type);
return;
}
}
/*
* lay out the first argument in the proper order:
* - actual coordinates first
* - shadow reference
* - array index
* - projection w
* - starting at offset 4, dpdx.xy, dpdy.xy
*
* bias/lod go into the second arg
*/
src0 = ir3_instr_create2(b, -1, OPC_META_FI, 12);
ir3_reg_create(src0, 0, 0);
coords = tex->coord_components;
if (tex->is_array) /* array idx goes after shadow ref */
coords--;
/* insert tex coords: */
for (i = 0; i < coords; i++)
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr = coord[i];
if (coords == 1) {
/* hw doesn't do 1d, so we treat it as 2d with
* height of 1, and patch up the y coord.
* TODO: y coord should be (int)0 in some cases..
*/
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr =
create_immed(b, fui(0.5));
}
if (tex->is_shadow) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr = compare;
flags |= IR3_INSTR_S;
}
if (tex->is_array) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr = coord[coords];
flags |= IR3_INSTR_A;
}
if (has_proj) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr = proj;
flags |= IR3_INSTR_P;
}
/* pad to 4, then ddx/ddy: */
if (tex->op == nir_texop_txd) {
while (src0->regs_count < 5) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr =
create_immed(b, fui(0.0));
}
for (i = 0; i < coords; i++) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr = ddx[i];
}
if (coords < 2) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr =
create_immed(b, fui(0.0));
}
for (i = 0; i < coords; i++) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr = ddy[i];
}
if (coords < 2) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr =
create_immed(b, fui(0.0));
}
}
/*
* second argument (if applicable):
* - offsets
* - lod
* - bias
*/
if (has_off | has_lod | has_bias) {
src1 = ir3_instr_create2(b, -1, OPC_META_FI, 5);
ir3_reg_create(src1, 0, 0);
if (has_off) {
for (i = 0; i < coords; i++) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr = off[i];
}
if (coords < 2) {
ir3_reg_create(src0, 0, IR3_REG_SSA)->instr =
create_immed(b, fui(0.0));
}
flags |= IR3_INSTR_O;
}
if (has_lod | has_bias) {
ir3_reg_create(src1, 0, IR3_REG_SSA)->instr = lod;
}
} else {
src1 = NULL;
}
switch (tex->op) {
case nir_texop_tex: opc = OPC_SAM; break;
case nir_texop_txb: opc = OPC_SAMB; break;
case nir_texop_txl: opc = OPC_SAML; break;
case nir_texop_txd: opc = OPC_SAMGQ; break;
case nir_texop_txf: opc = OPC_ISAML; break;
case nir_texop_txf_ms:
case nir_texop_txs:
case nir_texop_lod:
case nir_texop_tg4:
case nir_texop_query_levels:
compile_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
return;
}
sam = ir3_instr_create(b, 5, opc);
sam->flags |= flags;
ir3_reg_create(sam, 0, 0)->wrmask = 0xf; // TODO proper wrmask??
reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
reg->instr = src0;
if (src1) {
reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
reg->instr = src1;
reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
}
sam->cat5.samp = tex->sampler_index;
sam->cat5.tex = tex->sampler_index;
switch (tex->dest_type) {
case nir_type_invalid:
case nir_type_float:
sam->cat5.type = TYPE_F32;
break;
case nir_type_int:
sam->cat5.type = TYPE_S32;
break;
case nir_type_unsigned:
case nir_type_bool:
sam->cat5.type = TYPE_U32;
}
// TODO maybe split this out into a helper, for other cases that
// write multiple?
struct ir3_instruction *prev = NULL;
for (int i = 0; i < 4; i++) {
struct ir3_instruction *split =
ir3_instr_create(b, -1, OPC_META_FO);
ir3_reg_create(split, 0, IR3_REG_SSA);
ir3_reg_create(split, 0, IR3_REG_SSA)->instr = sam;
split->fo.off = i;
if (prev) {
split->cp.left = prev;
split->cp.left_cnt++;
prev->cp.right = split;
prev->cp.right_cnt++;
}
prev = split;
dst[i] = split;
}
}
static void
emit_instr(struct ir3_compile *ctx, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
emit_alu(ctx, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
emit_intrinisic(ctx, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
emit_load_const(ctx, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
emit_undef(ctx, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex:
emit_tex(ctx, nir_instr_as_tex(instr));
break;
case nir_instr_type_call:
case nir_instr_type_jump:
case nir_instr_type_phi:
case nir_instr_type_parallel_copy:
compile_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
break;
}
}
static void
emit_block(struct ir3_compile *ctx, nir_block *block)
{
nir_foreach_instr(block, instr) {
emit_instr(ctx, instr);
if (ctx->error)
return;
}
}
static void
emit_function(struct ir3_compile *ctx, nir_function_impl *impl)
{
foreach_list_typed(nir_cf_node, node, node, &impl->body) {
switch (node->type) {
case nir_cf_node_block:
emit_block(ctx, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
case nir_cf_node_loop:
case nir_cf_node_function:
compile_error(ctx, "TODO\n");
break;
}
if (ctx->error)
return;
}
}
static void
setup_input(struct ir3_compile *ctx, nir_variable *in)
{
struct ir3_shader_variant *so = ctx->so;
unsigned array_len = MAX2(glsl_get_length(in->type), 1);
unsigned ncomp = glsl_get_components(in->type);
/* XXX: map loc slots to semantics */
unsigned semantic_name = in->data.location;
unsigned semantic_index = in->data.index;
unsigned n = in->data.driver_location;
DBG("; in: %u:%u, len=%ux%u, loc=%u\n",
semantic_name, semantic_index, array_len,
ncomp, n);
so->inputs[n].semantic =
ir3_semantic_name(semantic_name, semantic_index);
so->inputs[n].compmask = (1 << ncomp) - 1;
so->inputs[n].inloc = ctx->next_inloc;
so->inputs[n].interpolate = 0;
so->inputs_count = MAX2(so->inputs_count, n + 1);
/* the fdN_program_emit() code expects tgsi consts here, so map
* things back to tgsi for now:
*/
switch (in->data.interpolation) {
case INTERP_QUALIFIER_FLAT:
so->inputs[n].interpolate = TGSI_INTERPOLATE_CONSTANT;
break;
case INTERP_QUALIFIER_NOPERSPECTIVE:
so->inputs[n].interpolate = TGSI_INTERPOLATE_LINEAR;
break;
case INTERP_QUALIFIER_SMOOTH:
so->inputs[n].interpolate = TGSI_INTERPOLATE_PERSPECTIVE;
break;
}
for (int i = 0; i < ncomp; i++) {
struct ir3_instruction *instr = NULL;
unsigned idx = (n * 4) + i;
if (ctx->so->type == SHADER_FRAGMENT) {
if (semantic_name == TGSI_SEMANTIC_POSITION) {
so->inputs[n].bary = false;
so->frag_coord = true;
instr = create_frag_coord(ctx, i);
} else if (semantic_name == TGSI_SEMANTIC_FACE) {
so->inputs[n].bary = false;
so->frag_face = true;
instr = create_frag_face(ctx, i);
} else {
bool use_ldlv = false;
/* with NIR, we need to infer TGSI_INTERPOLATE_COLOR
* from the semantic name:
*/
if (semantic_name == TGSI_SEMANTIC_COLOR)
so->inputs[n].interpolate = TGSI_INTERPOLATE_COLOR;
if (ctx->flat_bypass) {
/* with NIR, we need to infer TGSI_INTERPOLATE_COLOR
* from the semantic name:
*/
switch (so->inputs[n].interpolate) {
case TGSI_INTERPOLATE_COLOR:
if (!ctx->so->key.rasterflat)
break;
/* fallthrough */
case TGSI_INTERPOLATE_CONSTANT:
use_ldlv = true;
break;
}
}
so->inputs[n].bary = true;
instr = create_frag_input(ctx, idx, use_ldlv);
}
} else {
instr = create_input(ctx->block, NULL, idx);
}
ctx->block->inputs[idx] = instr;
}
if (so->inputs[n].bary || (ctx->so->type == SHADER_VERTEX)) {
ctx->next_inloc += ncomp;
so->total_in += ncomp;
}
}
static void
setup_output(struct ir3_compile *ctx, nir_variable *out)
{
struct ir3_shader_variant *so = ctx->so;
unsigned array_len = MAX2(glsl_get_length(out->type), 1);
unsigned ncomp = glsl_get_components(out->type);
/* XXX: map loc slots to semantics */
unsigned semantic_name = out->data.location;
unsigned semantic_index = out->data.index;
unsigned n = out->data.driver_location;
unsigned comp = 0;
DBG("; out: %u:%u, len=%ux%u, loc=%u\n",
semantic_name, semantic_index, array_len,
ncomp, n);
if (ctx->so->type == SHADER_VERTEX) {
switch (semantic_name) {
case TGSI_SEMANTIC_POSITION:
so->writes_pos = true;
break;
case TGSI_SEMANTIC_PSIZE:
so->writes_psize = true;
break;
case TGSI_SEMANTIC_COLOR:
case TGSI_SEMANTIC_BCOLOR:
case TGSI_SEMANTIC_GENERIC:
case TGSI_SEMANTIC_FOG:
case TGSI_SEMANTIC_TEXCOORD:
break;
default:
compile_error(ctx, "unknown VS semantic name: %s\n",
tgsi_semantic_names[semantic_name]);
}
} else {
switch (semantic_name) {
case TGSI_SEMANTIC_POSITION:
comp = 2; /* tgsi will write to .z component */
so->writes_pos = true;
break;
case TGSI_SEMANTIC_COLOR:
break;
default:
compile_error(ctx, "unknown FS semantic name: %s\n",
tgsi_semantic_names[semantic_name]);
}
}
compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
so->outputs[n].semantic =
ir3_semantic_name(semantic_name, semantic_index);
so->outputs[n].regid = regid(n, comp);
so->outputs_count = MAX2(so->outputs_count, n + 1);
for (int i = 0; i < ncomp; i++) {
unsigned idx = (n * 4) + i;
ctx->block->outputs[idx] = create_immed(ctx->block, fui(0.0));
}
}
static void
emit_instructions(struct ir3_compile *ctx)
{
unsigned ninputs = exec_list_length(&ctx->s->inputs) * 4;
unsigned noutputs = exec_list_length(&ctx->s->outputs) * 4;
/* we need to allocate big enough outputs array so that
* we can stuff the kill's at the end:
*/
if (ctx->so->type == SHADER_FRAGMENT)
noutputs += ARRAY_SIZE(ctx->kill);
ctx->block = ir3_block_create(ctx->ir, 0, ninputs, noutputs);
if (ctx->so->type == SHADER_FRAGMENT)
ctx->block->noutputs -= ARRAY_SIZE(ctx->kill);
/* for fragment shader, we have a single input register (usually
* r0.xy) which is used as the base for bary.f varying fetch instrs:
*/
if (ctx->so->type == SHADER_FRAGMENT) {
// TODO maybe a helper for fi since we need it a few places..
struct ir3_instruction *instr;
instr = ir3_instr_create(ctx->block, -1, OPC_META_FI);
ir3_reg_create(instr, 0, 0);
ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.x */
ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.y */
ctx->frag_pos = instr;
}
/* Setup inputs: */
foreach_list_typed(nir_variable, var, node, &ctx->s->inputs) {
setup_input(ctx, var);
if (ctx->error)
return;
}
/* Setup outputs: */
foreach_list_typed(nir_variable, var, node, &ctx->s->outputs) {
setup_output(ctx, var);
if (ctx->error)
return;
}
/* Find the main function and emit the body: */
nir_foreach_overload(ctx->s, overload) {
compile_assert(ctx, strcmp(overload->function->name, "main") == 0);
compile_assert(ctx, overload->impl);
emit_function(ctx, overload->impl);
if (ctx->error)
return;
}
}
/* from NIR perspective, we actually have inputs. But most of the "inputs"
* for a fragment shader are just bary.f instructions. The *actual* inputs
* from the hw perspective are the frag_pos and optionally frag_coord and
* frag_face.
*/
static void
fixup_frag_inputs(struct ir3_compile *ctx)
{
struct ir3_shader_variant *so = ctx->so;
struct ir3_block *block = ctx->block;
struct ir3_instruction **inputs;
struct ir3_instruction *instr;
int n, regid = 0;
block->ninputs = 0;
n = 4; /* always have frag_pos */
n += COND(so->frag_face, 4);
n += COND(so->frag_coord, 4);
inputs = ir3_alloc(ctx->ir, n * (sizeof(struct ir3_instruction *)));
if (so->frag_face) {
/* this ultimately gets assigned to hr0.x so doesn't conflict
* with frag_coord/frag_pos..
*/
inputs[block->ninputs++] = ctx->frag_face;
ctx->frag_face->regs[0]->num = 0;
/* remaining channels not used, but let's avoid confusing
* other parts that expect inputs to come in groups of vec4
*/
inputs[block->ninputs++] = NULL;
inputs[block->ninputs++] = NULL;
inputs[block->ninputs++] = NULL;
}
/* since we don't know where to set the regid for frag_coord,
* we have to use r0.x for it. But we don't want to *always*
* use r1.x for frag_pos as that could increase the register
* footprint on simple shaders:
*/
if (so->frag_coord) {
ctx->frag_coord[0]->regs[0]->num = regid++;
ctx->frag_coord[1]->regs[0]->num = regid++;
ctx->frag_coord[2]->regs[0]->num = regid++;
ctx->frag_coord[3]->regs[0]->num = regid++;
inputs[block->ninputs++] = ctx->frag_coord[0];
inputs[block->ninputs++] = ctx->frag_coord[1];
inputs[block->ninputs++] = ctx->frag_coord[2];
inputs[block->ninputs++] = ctx->frag_coord[3];
}
/* we always have frag_pos: */
so->pos_regid = regid;
/* r0.x */
instr = create_input(block, NULL, block->ninputs);
instr->regs[0]->num = regid++;
inputs[block->ninputs++] = instr;
ctx->frag_pos->regs[1]->instr = instr;
/* r0.y */
instr = create_input(block, NULL, block->ninputs);
instr->regs[0]->num = regid++;
inputs[block->ninputs++] = instr;
ctx->frag_pos->regs[2]->instr = instr;
block->inputs = inputs;
}
static void
compile_dump(struct ir3_compile *ctx)
{
const char *name = (ctx->so->type == SHADER_VERTEX) ? "vert" : "frag";
static unsigned n = 0;
char fname[16];
FILE *f;
snprintf(fname, sizeof(fname), "%s-%04u.dot", name, n++);
f = fopen(fname, "w");
if (!f)
return;
ir3_block_depth(ctx->block);
ir3_dump(ctx->ir, name, ctx->block, f);
fclose(f);
}
int
ir3_compile_shader_nir(struct ir3_shader_variant *so,
const struct tgsi_token *tokens, struct ir3_shader_key key)
{
struct ir3_compile *ctx;
struct ir3_block *block;
struct ir3_instruction **inputs;
unsigned i, j, actual_in;
int ret = 0, max_bary;
assert(!so->ir);
so->ir = ir3_create();
assert(so->ir);
ctx = compile_init(so, tokens);
if (!ctx) {
DBG("INIT failed!");
ret = -1;
goto out;
}
emit_instructions(ctx);
if (ctx->error) {
DBG("EMIT failed!");
ret = -1;
goto out;
}
block = ctx->block;
so->ir->block = block;
/* keep track of the inputs from TGSI perspective.. */
inputs = block->inputs;
/* but fixup actual inputs for frag shader: */
if (so->type == SHADER_FRAGMENT)
fixup_frag_inputs(ctx);
/* at this point, for binning pass, throw away unneeded outputs: */
if (key.binning_pass) {
for (i = 0, j = 0; i < so->outputs_count; i++) {
unsigned name = sem2name(so->outputs[i].semantic);
unsigned idx = sem2idx(so->outputs[i].semantic);
/* throw away everything but first position/psize */
if ((idx == 0) && ((name == TGSI_SEMANTIC_POSITION) ||
(name == TGSI_SEMANTIC_PSIZE))) {
if (i != j) {
so->outputs[j] = so->outputs[i];
block->outputs[(j*4)+0] = block->outputs[(i*4)+0];
block->outputs[(j*4)+1] = block->outputs[(i*4)+1];
block->outputs[(j*4)+2] = block->outputs[(i*4)+2];
block->outputs[(j*4)+3] = block->outputs[(i*4)+3];
}
j++;
}
}
so->outputs_count = j;
block->noutputs = j * 4;
}
/* if we want half-precision outputs, mark the output registers
* as half:
*/
if (key.half_precision) {
for (i = 0; i < block->noutputs; i++) {
if (!block->outputs[i])
continue;
block->outputs[i]->regs[0]->flags |= IR3_REG_HALF;
}
}
/* at this point, we want the kill's in the outputs array too,
* so that they get scheduled (since they have no dst).. we've
* already ensured that the array is big enough in push_block():
*/
if (so->type == SHADER_FRAGMENT) {
for (i = 0; i < ctx->kill_count; i++)
block->outputs[block->noutputs++] = ctx->kill[i];
}
if (fd_mesa_debug & FD_DBG_OPTDUMP)
compile_dump(ctx);
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("BEFORE CP:\n");
ir3_dump_instr_list(block->head);
}
ir3_block_depth(block);
ir3_block_cp(block);
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("BEFORE GROUPING:\n");
ir3_dump_instr_list(block->head);
}
/* Group left/right neighbors, inserting mov's where needed to
* solve conflicts:
*/
ir3_block_group(block);
if (fd_mesa_debug & FD_DBG_OPTDUMP)
compile_dump(ctx);
ir3_block_depth(block);
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("AFTER DEPTH:\n");
ir3_dump_instr_list(block->head);
}
ret = ir3_block_sched(block);
if (ret) {
DBG("SCHED failed!");
goto out;
}
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("AFTER SCHED:\n");
ir3_dump_instr_list(block->head);
}
ret = ir3_block_ra(block, so->type, so->frag_coord, so->frag_face);
if (ret) {
DBG("RA failed!");
goto out;
}
if (fd_mesa_debug & FD_DBG_OPTMSGS) {
printf("AFTER RA:\n");
ir3_dump_instr_list(block->head);
}
ir3_block_legalize(block, &so->has_samp, &max_bary);
/* fixup input/outputs: */
for (i = 0; i < so->outputs_count; i++) {
so->outputs[i].regid = block->outputs[i*4]->regs[0]->num;
/* preserve hack for depth output.. tgsi writes depth to .z,
* but what we give the hw is the scalar register:
*/
if ((so->type == SHADER_FRAGMENT) &&
(sem2name(so->outputs[i].semantic) == TGSI_SEMANTIC_POSITION))
so->outputs[i].regid += 2;
}
/* Note that some or all channels of an input may be unused: */
actual_in = 0;
for (i = 0; i < so->inputs_count; i++) {
unsigned j, regid = ~0, compmask = 0;
so->inputs[i].ncomp = 0;
for (j = 0; j < 4; j++) {
struct ir3_instruction *in = inputs[(i*4) + j];
if (in) {
compmask |= (1 << j);
regid = in->regs[0]->num - j;
actual_in++;
so->inputs[i].ncomp++;
}
}
so->inputs[i].regid = regid;
so->inputs[i].compmask = compmask;
}
/* fragment shader always gets full vec4's even if it doesn't
* fetch all components, but vertex shader we need to update
* with the actual number of components fetch, otherwise thing
* will hang due to mismaptch between VFD_DECODE's and
* TOTALATTRTOVS
*/
if (so->type == SHADER_VERTEX)
so->total_in = actual_in;
else
so->total_in = align(max_bary + 1, 4);
out:
if (ret) {
ir3_destroy(so->ir);
so->ir = NULL;
}
compile_free(ctx);
return ret;
}
|