blob: 62d74d4c6f4faa8741a45b04680188e27a2b54c8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
#include "util/u_half.h"
/* see www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf
* "Fast Half Float Conversions" by Jeroen van der Zijp, Nov 2008
*/
/* Note that using a 64K * 4 table is a terrible idea since it will not fit
* in the L1 cache and will massively pollute the L2 cache as well
*
* These should instead fit in the L1 cache.
*
* TODO: we could use a denormal bias table instead of the mantissa/offset
* tables: this would reduce the L1 cache usage from 8704 to 2304 bytes
* but would involve more computation
*
* Note however that if denormals are never encountered, the L1 cache usage
* is only about 4608 bytes anyway.
*/
uint32_t util_half_to_float_mantissa_table[2048];
uint32_t util_half_to_float_exponent_table[64];
uint32_t util_half_to_float_offset_table[64];
uint16_t util_float_to_half_base_table[512];
uint8_t util_float_to_half_shift_table[512];
void util_half_init_tables(void)
{
int i;
/* zero */
util_half_to_float_mantissa_table[0] = 0;
/* denormals */
for(i = 1; i < 1024; ++i) {
unsigned int m = i << 13;
unsigned int e = 0;
/* Normalize number */
while(!(m & 0x00800000)) {
e -= 0x00800000;
m<<=1;
}
m &= ~0x00800000;
e+= 0x38800000;
util_half_to_float_mantissa_table[i] = m | e;
}
/* normals */
for(i = 1024; i < 2048; ++i)
util_half_to_float_mantissa_table[i] = ((i-1024)<<13);
/* positive zero or denormals */
util_half_to_float_exponent_table[0] = 0;
/* positive numbers */
for(i = 1; i <= 30; ++i)
util_half_to_float_exponent_table[i] = 0x38000000 + (i << 23);
/* positive infinity/NaN */
util_half_to_float_exponent_table[31] = 0x7f800000;
/* negative zero or denormals */
util_half_to_float_exponent_table[32] = 0x80000000;
/* negative numbers */
for(i = 33; i <= 62; ++i)
util_half_to_float_exponent_table[i] = 0xb8000000 + ((i - 32) << 23);
/* negative infinity/NaN */
util_half_to_float_exponent_table[63] = 0xff800000;
/* positive zero or denormals */
util_half_to_float_offset_table[0] = 0;
/* positive normals */
for(i = 1; i < 32; ++i)
util_half_to_float_offset_table[i] = 1024;
/* negative zero or denormals */
util_half_to_float_offset_table[32] = 0;
/* negative normals */
for(i = 33; i < 64; ++i)
util_half_to_float_offset_table[i] = 1024;
/* very small numbers mapping to zero */
for(i = -127; i < -24; ++i) {
util_float_to_half_base_table[127 + i] = 0;
util_float_to_half_shift_table[127 + i] = 24;
}
/* small numbers mapping to denormals */
for(i = -24; i < -14; ++i) {
util_float_to_half_base_table[127 + i] = 0x0400 >> (-14 - i);
util_float_to_half_shift_table[127 + i] = -i - 1;
}
/* normal numbers */
for(i = -14; i < 16; ++i) {
util_float_to_half_base_table[127 + i] = (i + 15) << 10;
util_float_to_half_shift_table[127 + i] = 13;
}
/* large numbers mapping to infinity */
for(i = 16; i < 128; ++i) {
util_float_to_half_base_table[127 + i] = 0x7c00;
util_float_to_half_shift_table[127 + i] = 24;
}
/* infinity and NaNs */
util_float_to_half_base_table[255] = 0x7c00;
util_float_to_half_shift_table[255] = 13;
/* negative numbers */
for(i = 0; i < 256; ++i) {
util_float_to_half_base_table[256 + i] = util_float_to_half_base_table[i] | 0x8000;
util_float_to_half_shift_table[256 + i] = util_float_to_half_shift_table[i];
}
}
|