1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
/**************************************************************************
*
* Copyright 2008-2010 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* OS independent time-manipulation functions.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "pipe/p_defines.h"
#include "util/u_atomic.h"
#if defined(PIPE_OS_UNIX)
# include <time.h> /* timeval */
# include <sys/time.h> /* timeval */
# include <sched.h> /* sched_yield */
# include <errno.h>
#elif defined(PIPE_SUBSYSTEM_WINDOWS_USER)
# include <windows.h>
#else
# error Unsupported OS
#endif
#include "os_time.h"
int64_t
os_time_get_nano(void)
{
#if defined(PIPE_OS_LINUX)
struct timespec tv;
clock_gettime(CLOCK_MONOTONIC, &tv);
return tv.tv_nsec + tv.tv_sec*INT64_C(1000000000);
#elif defined(PIPE_OS_UNIX)
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec*INT64_C(1000) + tv.tv_sec*INT64_C(1000000000);
#elif defined(PIPE_SUBSYSTEM_WINDOWS_USER)
static LARGE_INTEGER frequency;
LARGE_INTEGER counter;
int64_t secs, nanosecs;
if(!frequency.QuadPart)
QueryPerformanceFrequency(&frequency);
QueryPerformanceCounter(&counter);
/* Compute seconds and nanoseconds parts separately to
* reduce severity of precision loss.
*/
secs = counter.QuadPart / frequency.QuadPart;
nanosecs = (counter.QuadPart % frequency.QuadPart) * INT64_C(1000000000)
/ frequency.QuadPart;
return secs*INT64_C(1000000000) + nanosecs;
#else
#error Unsupported OS
#endif
}
void
os_time_sleep(int64_t usecs)
{
#if defined(PIPE_OS_LINUX)
struct timespec time;
time.tv_sec = usecs / 1000000;
time.tv_nsec = (usecs % 1000000) * 1000;
while (clock_nanosleep(CLOCK_MONOTONIC, 0, &time, &time) == EINTR);
#elif defined(PIPE_OS_UNIX)
usleep(usecs);
#elif defined(PIPE_SUBSYSTEM_WINDOWS_USER)
DWORD dwMilliseconds = (DWORD) ((usecs + 999) / 1000);
/* Avoid Sleep(O) as that would cause to sleep for an undetermined duration */
if (dwMilliseconds) {
Sleep(dwMilliseconds);
}
#else
# error Unsupported OS
#endif
}
int64_t
os_time_get_absolute_timeout(uint64_t timeout)
{
int64_t time, abs_timeout;
/* Also check for the type upper bound. */
if (timeout == PIPE_TIMEOUT_INFINITE || timeout > INT64_MAX)
return PIPE_TIMEOUT_INFINITE;
time = os_time_get_nano();
abs_timeout = time + (int64_t)timeout;
/* Check for overflow. */
if (abs_timeout < time)
return PIPE_TIMEOUT_INFINITE;
return abs_timeout;
}
bool
os_wait_until_zero(volatile int *var, uint64_t timeout)
{
if (!p_atomic_read(var))
return true;
if (!timeout)
return false;
if (timeout == PIPE_TIMEOUT_INFINITE) {
while (p_atomic_read(var)) {
#if defined(PIPE_OS_UNIX)
sched_yield();
#endif
}
return true;
}
else {
int64_t start_time = os_time_get_nano();
int64_t end_time = start_time + timeout;
while (p_atomic_read(var)) {
if (os_time_timeout(start_time, end_time, os_time_get_nano()))
return false;
#if defined(PIPE_OS_UNIX)
sched_yield();
#endif
}
return true;
}
}
bool
os_wait_until_zero_abs_timeout(volatile int *var, int64_t timeout)
{
if (!p_atomic_read(var))
return true;
if (timeout == PIPE_TIMEOUT_INFINITE)
return os_wait_until_zero(var, PIPE_TIMEOUT_INFINITE);
while (p_atomic_read(var)) {
if (os_time_get_nano() >= timeout)
return false;
#if defined(PIPE_OS_UNIX)
sched_yield();
#endif
}
return true;
}
|