summaryrefslogtreecommitdiffstats
path: root/src/gallium/auxiliary/gallivm/lp_bld_sample.c
blob: 844d1d935b59c0a19a8157208b1ad57bebaa5d6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/**************************************************************************
 *
 * Copyright 2009 VMware, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/

/**
 * @file
 * Texture sampling -- common code.
 *
 * @author Jose Fonseca <jfonseca@vmware.com>
 */

#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "util/u_format.h"
#include "util/u_math.h"
#include "lp_bld_arit.h"
#include "lp_bld_const.h"
#include "lp_bld_debug.h"
#include "lp_bld_printf.h"
#include "lp_bld_flow.h"
#include "lp_bld_sample.h"
#include "lp_bld_swizzle.h"
#include "lp_bld_type.h"


/*
 * Bri-linear factor. Should be greater than one.
 */
#define BRILINEAR_FACTOR 2


/**
 * Does the given texture wrap mode allow sampling the texture border color?
 * XXX maybe move this into gallium util code.
 */
boolean
lp_sampler_wrap_mode_uses_border_color(unsigned mode,
                                       unsigned min_img_filter,
                                       unsigned mag_img_filter)
{
   switch (mode) {
   case PIPE_TEX_WRAP_REPEAT:
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
   case PIPE_TEX_WRAP_MIRROR_REPEAT:
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
      return FALSE;
   case PIPE_TEX_WRAP_CLAMP:
   case PIPE_TEX_WRAP_MIRROR_CLAMP:
      if (min_img_filter == PIPE_TEX_FILTER_NEAREST &&
          mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
         return FALSE;
      } else {
         return TRUE;
      }
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
      return TRUE;
   default:
      assert(0 && "unexpected wrap mode");
      return FALSE;
   }
}


/**
 * Initialize lp_sampler_static_state object with the gallium sampler
 * and texture state.
 * The former is considered to be static and the later dynamic.
 */
void
lp_sampler_static_state(struct lp_sampler_static_state *state,
                        const struct pipe_sampler_view *view,
                        const struct pipe_sampler_state *sampler)
{
   const struct pipe_resource *texture = view->texture;

   memset(state, 0, sizeof *state);

   if(!texture)
      return;

   if(!sampler)
      return;

   /*
    * We don't copy sampler state over unless it is actually enabled, to avoid
    * spurious recompiles, as the sampler static state is part of the shader
    * key.
    *
    * Ideally the state tracker or cso_cache module would make all state
    * canonical, but until that happens it's better to be safe than sorry here.
    *
    * XXX: Actually there's much more than can be done here, especially
    * regarding 1D/2D/3D/CUBE textures, wrap modes, etc.
    */

   state->format            = view->format;
   state->swizzle_r         = view->swizzle_r;
   state->swizzle_g         = view->swizzle_g;
   state->swizzle_b         = view->swizzle_b;
   state->swizzle_a         = view->swizzle_a;

   state->target            = texture->target;
   state->pot_width         = util_is_power_of_two(texture->width0);
   state->pot_height        = util_is_power_of_two(texture->height0);
   state->pot_depth         = util_is_power_of_two(texture->depth0);

   state->wrap_s            = sampler->wrap_s;
   state->wrap_t            = sampler->wrap_t;
   state->wrap_r            = sampler->wrap_r;
   state->min_img_filter    = sampler->min_img_filter;
   state->mag_img_filter    = sampler->mag_img_filter;

   if (view->last_level && sampler->max_lod > 0.0f) {
      state->min_mip_filter = sampler->min_mip_filter;
   } else {
      state->min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
   }

   if (state->min_mip_filter != PIPE_TEX_MIPFILTER_NONE) {
      if (sampler->lod_bias != 0.0f) {
         state->lod_bias_non_zero = 1;
      }

      /* If min_lod == max_lod we can greatly simplify mipmap selection.
       * This is a case that occurs during automatic mipmap generation.
       */
      if (sampler->min_lod == sampler->max_lod) {
         state->min_max_lod_equal = 1;
      } else {
         if (sampler->min_lod > 0.0f) {
            state->apply_min_lod = 1;
         }

         if (sampler->max_lod < (float)view->last_level) {
            state->apply_max_lod = 1;
         }
      }
   }

   state->compare_mode      = sampler->compare_mode;
   if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
      state->compare_func   = sampler->compare_func;
   }

   state->normalized_coords = sampler->normalized_coords;

   /*
    * FIXME: Handle the remainder of pipe_sampler_view.
    */
}


/**
 * Generate code to compute coordinate gradient (rho).
 * \param ddx  partial derivatives of (s, t, r, q) with respect to X
 * \param ddy  partial derivatives of (s, t, r, q) with respect to Y
 *
 * XXX: The resulting rho is scalar, so we ignore all but the first element of
 * derivatives that are passed by the shader.
 */
static LLVMValueRef
lp_build_rho(struct lp_build_sample_context *bld,
             const LLVMValueRef ddx[4],
             const LLVMValueRef ddy[4])
{
   struct lp_build_context *float_size_bld = &bld->float_size_bld;
   struct lp_build_context *float_bld = &bld->float_bld;
   const unsigned dims = bld->dims;
   LLVMTypeRef i32t = LLVMInt32Type();
   LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
   LLVMValueRef index1 = LLVMConstInt(i32t, 1, 0);
   LLVMValueRef index2 = LLVMConstInt(i32t, 2, 0);
   LLVMValueRef dsdx, dsdy, dtdx, dtdy, drdx, drdy;
   LLVMValueRef rho_x, rho_y;
   LLVMValueRef rho_vec;
   LLVMValueRef float_size;
   LLVMValueRef rho;

   dsdx = ddx[0];
   dsdy = ddy[0];

   if (dims <= 1) {
      rho_x = dsdx;
      rho_y = dsdy;
   }
   else {
      rho_x = float_size_bld->undef;
      rho_y = float_size_bld->undef;

      rho_x = LLVMBuildInsertElement(bld->builder, rho_x, dsdx, index0, "");
      rho_y = LLVMBuildInsertElement(bld->builder, rho_y, dsdy, index0, "");

      dtdx = ddx[1];
      dtdy = ddy[1];

      rho_x = LLVMBuildInsertElement(bld->builder, rho_x, dtdx, index1, "");
      rho_y = LLVMBuildInsertElement(bld->builder, rho_y, dtdy, index1, "");

      if (dims >= 3) {
         drdx = ddx[2];
         drdy = ddy[2];

         rho_x = LLVMBuildInsertElement(bld->builder, rho_x, drdx, index2, "");
         rho_y = LLVMBuildInsertElement(bld->builder, rho_y, drdy, index2, "");
      }
   }

   rho_x = lp_build_abs(float_size_bld, rho_x);
   rho_y = lp_build_abs(float_size_bld, rho_y);

   rho_vec = lp_build_max(float_size_bld, rho_x, rho_y);

   float_size = lp_build_int_to_float(float_size_bld, bld->int_size);

   rho_vec = lp_build_mul(float_size_bld, rho_vec, float_size);

   if (dims <= 1) {
      rho = rho_vec;
   }
   else {
      if (dims >= 2) {
         LLVMValueRef rho_s, rho_t, rho_r;

         rho_s = LLVMBuildExtractElement(bld->builder, rho_vec, index0, "");
         rho_t = LLVMBuildExtractElement(bld->builder, rho_vec, index1, "");

         rho = lp_build_max(float_bld, rho_s, rho_t);

         if (dims >= 3) {
            rho_r = LLVMBuildExtractElement(bld->builder, rho_vec, index0, "");
            rho = lp_build_max(float_bld, rho, rho_r);
         }
      }
   }

   return rho;
}


/*
 * Bri-linear lod computation
 *
 * Use a piece-wise linear approximation of log2 such that:
 * - round to nearest, for values in the neighborhood of -1, 0, 1, 2, etc.
 * - linear approximation for values in the neighborhood of 0.5, 1.5., etc,
 *   with the steepness specified in 'factor'
 * - exact result for 0.5, 1.5, etc.
 *
 *
 *   1.0 -              /----*
 *                     /
 *                    /
 *                   /
 *   0.5 -          *
 *                 /
 *                /
 *               /
 *   0.0 - *----/
 *
 *         |                 |
 *        2^0               2^1
 *
 * This is a technique also commonly used in hardware:
 * - http://ixbtlabs.com/articles2/gffx/nv40-rx800-3.html
 *
 * TODO: For correctness, this should only be applied when texture is known to
 * have regular mipmaps, i.e., mipmaps derived from the base level.
 *
 * TODO: This could be done in fixed point, where applicable.
 */
static void
lp_build_brilinear_lod(struct lp_build_context *bld,
                       LLVMValueRef lod,
                       double factor,
                       LLVMValueRef *out_lod_ipart,
                       LLVMValueRef *out_lod_fpart)
{
   LLVMValueRef lod_fpart;
   double pre_offset = (factor - 0.5)/factor - 0.5;
   double post_offset = 1 - factor;

   if (0) {
      lp_build_printf(bld->builder, "lod = %f\n", lod);
   }

   lod = lp_build_add(bld, lod,
                      lp_build_const_vec(bld->type, pre_offset));

   lp_build_ifloor_fract(bld, lod, out_lod_ipart, &lod_fpart);

   lod_fpart = lp_build_mul(bld, lod_fpart,
                            lp_build_const_vec(bld->type, factor));

   lod_fpart = lp_build_add(bld, lod_fpart,
                            lp_build_const_vec(bld->type, post_offset));

   /*
    * It's not necessary to clamp lod_fpart since:
    * - the above expression will never produce numbers greater than one.
    * - the mip filtering branch is only taken if lod_fpart is positive
    */

   *out_lod_fpart = lod_fpart;

   if (0) {
      lp_build_printf(bld->builder, "lod_ipart = %i\n", *out_lod_ipart);
      lp_build_printf(bld->builder, "lod_fpart = %f\n\n", *out_lod_fpart);
   }
}


/*
 * Combined log2 and brilinear lod computation.
 *
 * It's in all identical to calling lp_build_fast_log2() and
 * lp_build_brilinear_lod() above, but by combining we can compute the interger
 * and fractional part independently.
 */
static void
lp_build_brilinear_rho(struct lp_build_context *bld,
                       LLVMValueRef rho,
                       double factor,
                       LLVMValueRef *out_lod_ipart,
                       LLVMValueRef *out_lod_fpart)
{
   LLVMValueRef lod_ipart;
   LLVMValueRef lod_fpart;

   const double pre_factor = (2*factor - 0.5)/(M_SQRT2*factor);
   const double post_offset = 1 - 2*factor;

   assert(bld->type.floating);

   assert(lp_check_value(bld->type, rho));

   /*
    * The pre factor will make the intersections with the exact powers of two
    * happen precisely where we want then to be, which means that the integer
    * part will not need any post adjustments.
    */
   rho = lp_build_mul(bld, rho,
                      lp_build_const_vec(bld->type, pre_factor));

   /* ipart = ifloor(log2(rho)) */
   lod_ipart = lp_build_extract_exponent(bld, rho, 0);

   /* fpart = rho / 2**ipart */
   lod_fpart = lp_build_extract_mantissa(bld, rho);

   lod_fpart = lp_build_mul(bld, lod_fpart,
                            lp_build_const_vec(bld->type, factor));

   lod_fpart = lp_build_add(bld, lod_fpart,
                            lp_build_const_vec(bld->type, post_offset));

   /*
    * Like lp_build_brilinear_lod, it's not necessary to clamp lod_fpart since:
    * - the above expression will never produce numbers greater than one.
    * - the mip filtering branch is only taken if lod_fpart is positive
    */

   *out_lod_ipart = lod_ipart;
   *out_lod_fpart = lod_fpart;
}


/**
 * Generate code to compute texture level of detail (lambda).
 * \param ddx  partial derivatives of (s, t, r, q) with respect to X
 * \param ddy  partial derivatives of (s, t, r, q) with respect to Y
 * \param lod_bias  optional float vector with the shader lod bias
 * \param explicit_lod  optional float vector with the explicit lod
 * \param width  scalar int texture width
 * \param height  scalar int texture height
 * \param depth  scalar int texture depth
 *
 * XXX: The resulting lod is scalar, so ignore all but the first element of
 * derivatives, lod_bias, etc that are passed by the shader.
 */
void
lp_build_lod_selector(struct lp_build_sample_context *bld,
                      unsigned unit,
                      const LLVMValueRef ddx[4],
                      const LLVMValueRef ddy[4],
                      LLVMValueRef lod_bias, /* optional */
                      LLVMValueRef explicit_lod, /* optional */
                      unsigned mip_filter,
                      LLVMValueRef *out_lod_ipart,
                      LLVMValueRef *out_lod_fpart)

{
   struct lp_build_context *float_bld = &bld->float_bld;
   LLVMValueRef lod;

   *out_lod_ipart = bld->int_bld.zero;
   *out_lod_fpart = bld->float_bld.zero;

   if (bld->static_state->min_max_lod_equal) {
      /* User is forcing sampling from a particular mipmap level.
       * This is hit during mipmap generation.
       */
      LLVMValueRef min_lod =
         bld->dynamic_state->min_lod(bld->dynamic_state, bld->builder, unit);

      lod = min_lod;
   }
   else {
      LLVMValueRef sampler_lod_bias =
         bld->dynamic_state->lod_bias(bld->dynamic_state, bld->builder, unit);
      LLVMValueRef index0 = LLVMConstInt(LLVMInt32Type(), 0, 0);

      if (explicit_lod) {
         lod = LLVMBuildExtractElement(bld->builder, explicit_lod,
                                       index0, "");
      }
      else {
         LLVMValueRef rho;

         rho = lp_build_rho(bld, ddx, ddy);

         /*
          * Compute lod = log2(rho)
          */

         if (!lod_bias &&
             !bld->static_state->lod_bias_non_zero &&
             !bld->static_state->apply_max_lod &&
             !bld->static_state->apply_min_lod) {
            /*
             * Special case when there are no post-log2 adjustments, which
             * saves instructions but keeping the integer and fractional lod
             * computations separate from the start.
             */

            if (mip_filter == PIPE_TEX_MIPFILTER_NONE ||
                mip_filter == PIPE_TEX_MIPFILTER_NEAREST) {
               *out_lod_ipart = lp_build_ilog2(float_bld, rho);
               *out_lod_fpart = bld->float_bld.zero;
               return;
            }
            if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR &&
                !(gallivm_debug & GALLIVM_DEBUG_NO_BRILINEAR)) {
               lp_build_brilinear_rho(float_bld, rho, BRILINEAR_FACTOR,
                                      out_lod_ipart, out_lod_fpart);
               return;
            }
         }

         if (0) {
            lod = lp_build_log2(float_bld, rho);
         }
         else {
            lod = lp_build_fast_log2(float_bld, rho);
         }

         /* add shader lod bias */
         if (lod_bias) {
            lod_bias = LLVMBuildExtractElement(bld->builder, lod_bias,
                                               index0, "");
            lod = LLVMBuildFAdd(bld->builder, lod, lod_bias, "shader_lod_bias");
         }
      }

      /* add sampler lod bias */
      if (bld->static_state->lod_bias_non_zero)
         lod = LLVMBuildFAdd(bld->builder, lod, sampler_lod_bias, "sampler_lod_bias");


      /* clamp lod */
      if (bld->static_state->apply_max_lod) {
         LLVMValueRef max_lod =
            bld->dynamic_state->max_lod(bld->dynamic_state, bld->builder, unit);

         lod = lp_build_min(float_bld, lod, max_lod);
      }
      if (bld->static_state->apply_min_lod) {
         LLVMValueRef min_lod =
            bld->dynamic_state->min_lod(bld->dynamic_state, bld->builder, unit);

         lod = lp_build_max(float_bld, lod, min_lod);
      }
   }

   if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
      if (!(gallivm_debug & GALLIVM_DEBUG_NO_BRILINEAR)) {
         lp_build_brilinear_lod(float_bld, lod, BRILINEAR_FACTOR,
                                out_lod_ipart, out_lod_fpart);
      }
      else {
         lp_build_ifloor_fract(float_bld, lod, out_lod_ipart, out_lod_fpart);
      }

      lp_build_name(*out_lod_fpart, "lod_fpart");
   }
   else {
      *out_lod_ipart = lp_build_iround(float_bld, lod);
   }

   lp_build_name(*out_lod_ipart, "lod_ipart");

   return;
}


/**
 * For PIPE_TEX_MIPFILTER_NEAREST, convert float LOD to integer
 * mipmap level index.
 * Note: this is all scalar code.
 * \param lod  scalar float texture level of detail
 * \param level_out  returns integer 
 */
void
lp_build_nearest_mip_level(struct lp_build_sample_context *bld,
                           unsigned unit,
                           LLVMValueRef lod_ipart,
                           LLVMValueRef *level_out)
{
   struct lp_build_context *int_bld = &bld->int_bld;
   LLVMValueRef last_level, level;

   LLVMValueRef zero = LLVMConstInt(LLVMInt32Type(), 0, 0);

   last_level = bld->dynamic_state->last_level(bld->dynamic_state,
                                               bld->builder, unit);

   /* convert float lod to integer */
   level = lod_ipart;

   /* clamp level to legal range of levels */
   *level_out = lp_build_clamp(int_bld, level, zero, last_level);
}


/**
 * For PIPE_TEX_MIPFILTER_LINEAR, convert float LOD to integer to
 * two (adjacent) mipmap level indexes.  Later, we'll sample from those
 * two mipmap levels and interpolate between them.
 */
void
lp_build_linear_mip_levels(struct lp_build_sample_context *bld,
                           unsigned unit,
                           LLVMValueRef lod_ipart,
                           LLVMValueRef *lod_fpart_inout,
                           LLVMValueRef *level0_out,
                           LLVMValueRef *level1_out)
{
   LLVMBuilderRef builder = bld->builder;
   struct lp_build_context *int_bld = &bld->int_bld;
   struct lp_build_context *float_bld = &bld->float_bld;
   LLVMValueRef last_level;
   LLVMValueRef clamp_min;
   LLVMValueRef clamp_max;

   *level0_out = lod_ipart;
   *level1_out = lp_build_add(int_bld, lod_ipart, int_bld->one);

   last_level = bld->dynamic_state->last_level(bld->dynamic_state,
                                               bld->builder, unit);

   /*
    * Clamp both lod_ipart and lod_ipart + 1 to [0, last_level], with the
    * minimum number of comparisons, and zeroing lod_fpart in the extreme
    * ends in the process.
    */

   /* lod_ipart < 0 */
   clamp_min = LLVMBuildICmp(builder, LLVMIntSLT,
                             lod_ipart, int_bld->zero,
                             "clamp_lod_to_zero");

   *level0_out = LLVMBuildSelect(builder, clamp_min,
                                 int_bld->zero, *level0_out, "");

   *level1_out = LLVMBuildSelect(builder, clamp_min,
                                 int_bld->zero, *level1_out, "");

   *lod_fpart_inout = LLVMBuildSelect(builder, clamp_min,
                                      float_bld->zero, *lod_fpart_inout, "");

   /* lod_ipart >= last_level */
   clamp_max = LLVMBuildICmp(builder, LLVMIntSGE,
                             lod_ipart, last_level,
                             "clamp_lod_to_last");

   *level0_out = LLVMBuildSelect(builder, clamp_max,
                                 last_level, *level0_out, "");

   *level1_out = LLVMBuildSelect(builder, clamp_max,
                                 last_level, *level1_out, "");

   *lod_fpart_inout = LLVMBuildSelect(builder, clamp_max,
                                      float_bld->zero, *lod_fpart_inout, "");

   lp_build_name(*level0_out, "sampler%u_miplevel0", unit);
   lp_build_name(*level1_out, "sampler%u_miplevel1", unit);
   lp_build_name(*lod_fpart_inout, "sampler%u_mipweight", unit);
}


/**
 * Return pointer to a single mipmap level.
 * \param data_array  array of pointers to mipmap levels
 * \param level  integer mipmap level
 */
LLVMValueRef
lp_build_get_mipmap_level(struct lp_build_sample_context *bld,
                          LLVMValueRef level)
{
   LLVMValueRef indexes[2], data_ptr;
   indexes[0] = LLVMConstInt(LLVMInt32Type(), 0, 0);
   indexes[1] = level;
   data_ptr = LLVMBuildGEP(bld->builder, bld->data_array, indexes, 2, "");
   data_ptr = LLVMBuildLoad(bld->builder, data_ptr, "");
   return data_ptr;
}


LLVMValueRef
lp_build_get_const_mipmap_level(struct lp_build_sample_context *bld,
                                int level)
{
   LLVMValueRef lvl = LLVMConstInt(LLVMInt32Type(), level, 0);
   return lp_build_get_mipmap_level(bld, lvl);
}


/**
 * Codegen equivalent for u_minify().
 * Return max(1, base_size >> level);
 */
static LLVMValueRef
lp_build_minify(struct lp_build_context *bld,
                LLVMValueRef base_size,
                LLVMValueRef level)
{
   assert(lp_check_value(bld->type, base_size));
   assert(lp_check_value(bld->type, level));

   if (level == bld->zero) {
      /* if we're using mipmap level zero, no minification is needed */
      return base_size;
   }
   else {
      LLVMValueRef size =
         LLVMBuildLShr(bld->builder, base_size, level, "minify");
      assert(bld->type.sign);
      size = lp_build_max(bld, size, bld->one);
      return size;
   }
}


/**
 * Dereference stride_array[mipmap_level] array to get a stride.
 * Return stride as a vector.
 */
static LLVMValueRef
lp_build_get_level_stride_vec(struct lp_build_sample_context *bld,
                              LLVMValueRef stride_array, LLVMValueRef level)
{
   LLVMValueRef indexes[2], stride;
   indexes[0] = LLVMConstInt(LLVMInt32Type(), 0, 0);
   indexes[1] = level;
   stride = LLVMBuildGEP(bld->builder, stride_array, indexes, 2, "");
   stride = LLVMBuildLoad(bld->builder, stride, "");
   stride = lp_build_broadcast_scalar(&bld->int_coord_bld, stride);
   return stride;
}


/**
 * When sampling a mipmap, we need to compute the width, height, depth
 * of the source levels from the level indexes.  This helper function
 * does that.
 */
void
lp_build_mipmap_level_sizes(struct lp_build_sample_context *bld,
                            LLVMValueRef ilevel,
                            LLVMValueRef *out_size,
                            LLVMValueRef *row_stride_vec,
                            LLVMValueRef *img_stride_vec)
{
   const unsigned dims = bld->dims;
   LLVMValueRef ilevel_vec;

   ilevel_vec = lp_build_broadcast_scalar(&bld->int_size_bld, ilevel);

   /*
    * Compute width, height, depth at mipmap level 'ilevel'
    */
   *out_size = lp_build_minify(&bld->int_size_bld, bld->int_size, ilevel_vec);

   if (dims >= 2) {
      *row_stride_vec = lp_build_get_level_stride_vec(bld,
                                                      bld->row_stride_array,
                                                      ilevel);
      if (dims == 3 || bld->static_state->target == PIPE_TEXTURE_CUBE) {
         *img_stride_vec = lp_build_get_level_stride_vec(bld,
                                                         bld->img_stride_array,
                                                         ilevel);
      }
   }
}


/**
 * Extract and broadcast texture size.
 *
 * @param size_type   type of the texture size vector (either
 *                    bld->int_size_type or bld->float_size_type)
 * @param coord_type  type of the texture size vector (either
 *                    bld->int_coord_type or bld->coord_type)
 * @param int_size    vector with the integer texture size (width, height,
 *                    depth)
 */
void
lp_build_extract_image_sizes(struct lp_build_sample_context *bld,
                             struct lp_type size_type,
                             struct lp_type coord_type,
                             LLVMValueRef size,
                             LLVMValueRef *out_width,
                             LLVMValueRef *out_height,
                             LLVMValueRef *out_depth)
{
   const unsigned dims = bld->dims;
   LLVMTypeRef i32t = LLVMInt32Type();

   *out_width = lp_build_extract_broadcast(bld->builder,
                                           size_type,
                                           coord_type,
                                           size,
                                           LLVMConstInt(i32t, 0, 0));
   if (dims >= 2) {
      *out_height = lp_build_extract_broadcast(bld->builder,
                                               size_type,
                                               coord_type,
                                               size,
                                               LLVMConstInt(i32t, 1, 0));
      if (dims == 3) {
         *out_depth = lp_build_extract_broadcast(bld->builder,
                                                 size_type,
                                                 coord_type,
                                                 size,
                                                 LLVMConstInt(i32t, 2, 0));
      }
   }
}


/**
 * Unnormalize coords.
 *
 * @param int_size  vector with the integer texture size (width, height, depth)
 */
void
lp_build_unnormalized_coords(struct lp_build_sample_context *bld,
                             LLVMValueRef flt_size,
                             LLVMValueRef *s,
                             LLVMValueRef *t,
                             LLVMValueRef *r)
{
   const unsigned dims = bld->dims;
   LLVMValueRef width;
   LLVMValueRef height;
   LLVMValueRef depth;

   lp_build_extract_image_sizes(bld,
                                bld->float_size_type,
                                bld->coord_type,
                                flt_size,
                                &width,
                                &height,
                                &depth);

   /* s = s * width, t = t * height */
   *s = lp_build_mul(&bld->coord_bld, *s, width);
   if (dims >= 2) {
      *t = lp_build_mul(&bld->coord_bld, *t, height);
      if (dims >= 3) {
         *r = lp_build_mul(&bld->coord_bld, *r, depth);
      }
   }
}


/** Helper used by lp_build_cube_lookup() */
static LLVMValueRef
lp_build_cube_ima(struct lp_build_context *coord_bld, LLVMValueRef coord)
{
   /* ima = -0.5 / abs(coord); */
   LLVMValueRef negHalf = lp_build_const_vec(coord_bld->type, -0.5);
   LLVMValueRef absCoord = lp_build_abs(coord_bld, coord);
   LLVMValueRef ima = lp_build_div(coord_bld, negHalf, absCoord);
   return ima;
}


/**
 * Helper used by lp_build_cube_lookup()
 * \param sign  scalar +1 or -1
 * \param coord  float vector
 * \param ima  float vector
 */
static LLVMValueRef
lp_build_cube_coord(struct lp_build_context *coord_bld,
                    LLVMValueRef sign, int negate_coord,
                    LLVMValueRef coord, LLVMValueRef ima)
{
   /* return negate(coord) * ima * sign + 0.5; */
   LLVMValueRef half = lp_build_const_vec(coord_bld->type, 0.5);
   LLVMValueRef res;

   assert(negate_coord == +1 || negate_coord == -1);

   if (negate_coord == -1) {
      coord = lp_build_negate(coord_bld, coord);
   }

   res = lp_build_mul(coord_bld, coord, ima);
   if (sign) {
      sign = lp_build_broadcast_scalar(coord_bld, sign);
      res = lp_build_mul(coord_bld, res, sign);
   }
   res = lp_build_add(coord_bld, res, half);

   return res;
}


/** Helper used by lp_build_cube_lookup()
 * Return (major_coord >= 0) ? pos_face : neg_face;
 */
static LLVMValueRef
lp_build_cube_face(struct lp_build_sample_context *bld,
                   LLVMValueRef major_coord,
                   unsigned pos_face, unsigned neg_face)
{
   LLVMValueRef cmp = LLVMBuildFCmp(bld->builder, LLVMRealUGE,
                                    major_coord,
                                    bld->float_bld.zero, "");
   LLVMValueRef pos = LLVMConstInt(LLVMInt32Type(), pos_face, 0);
   LLVMValueRef neg = LLVMConstInt(LLVMInt32Type(), neg_face, 0);
   LLVMValueRef res = LLVMBuildSelect(bld->builder, cmp, pos, neg, "");
   return res;
}



/**
 * Generate code to do cube face selection and compute per-face texcoords.
 */
void
lp_build_cube_lookup(struct lp_build_sample_context *bld,
                     LLVMValueRef s,
                     LLVMValueRef t,
                     LLVMValueRef r,
                     LLVMValueRef *face,
                     LLVMValueRef *face_s,
                     LLVMValueRef *face_t)
{
   struct lp_build_context *float_bld = &bld->float_bld;
   struct lp_build_context *coord_bld = &bld->coord_bld;
   LLVMValueRef rx, ry, rz;
   LLVMValueRef arx, ary, arz;
   LLVMValueRef c25 = LLVMConstReal(LLVMFloatType(), 0.25);
   LLVMValueRef arx_ge_ary, arx_ge_arz;
   LLVMValueRef ary_ge_arx, ary_ge_arz;
   LLVMValueRef arx_ge_ary_arz, ary_ge_arx_arz;
   LLVMValueRef rx_pos, ry_pos, rz_pos;

   assert(bld->coord_bld.type.length == 4);

   /*
    * Use the average of the four pixel's texcoords to choose the face.
    */
   rx = lp_build_mul(float_bld, c25,
                     lp_build_sum_vector(&bld->coord_bld, s));
   ry = lp_build_mul(float_bld, c25,
                     lp_build_sum_vector(&bld->coord_bld, t));
   rz = lp_build_mul(float_bld, c25,
                     lp_build_sum_vector(&bld->coord_bld, r));

   arx = lp_build_abs(float_bld, rx);
   ary = lp_build_abs(float_bld, ry);
   arz = lp_build_abs(float_bld, rz);

   /*
    * Compare sign/magnitude of rx,ry,rz to determine face
    */
   arx_ge_ary = LLVMBuildFCmp(bld->builder, LLVMRealUGE, arx, ary, "");
   arx_ge_arz = LLVMBuildFCmp(bld->builder, LLVMRealUGE, arx, arz, "");
   ary_ge_arx = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ary, arx, "");
   ary_ge_arz = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ary, arz, "");

   arx_ge_ary_arz = LLVMBuildAnd(bld->builder, arx_ge_ary, arx_ge_arz, "");
   ary_ge_arx_arz = LLVMBuildAnd(bld->builder, ary_ge_arx, ary_ge_arz, "");

   rx_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, rx, float_bld->zero, "");
   ry_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ry, float_bld->zero, "");
   rz_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, rz, float_bld->zero, "");

   {
      struct lp_build_if_state if_ctx;
      LLVMValueRef face_s_var;
      LLVMValueRef face_t_var;
      LLVMValueRef face_var;

      face_s_var = lp_build_alloca(bld->builder, bld->coord_bld.vec_type, "face_s_var");
      face_t_var = lp_build_alloca(bld->builder, bld->coord_bld.vec_type, "face_t_var");
      face_var = lp_build_alloca(bld->builder, bld->int_bld.vec_type, "face_var");

      lp_build_if(&if_ctx, bld->builder, arx_ge_ary_arz);
      {
         /* +/- X face */
         LLVMValueRef sign = lp_build_sgn(float_bld, rx);
         LLVMValueRef ima = lp_build_cube_ima(coord_bld, s);
         *face_s = lp_build_cube_coord(coord_bld, sign, +1, r, ima);
         *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
         *face = lp_build_cube_face(bld, rx,
                                    PIPE_TEX_FACE_POS_X,
                                    PIPE_TEX_FACE_NEG_X);
         LLVMBuildStore(bld->builder, *face_s, face_s_var);
         LLVMBuildStore(bld->builder, *face_t, face_t_var);
         LLVMBuildStore(bld->builder, *face, face_var);
      }
      lp_build_else(&if_ctx);
      {
         struct lp_build_if_state if_ctx2;

         ary_ge_arx_arz = LLVMBuildAnd(bld->builder, ary_ge_arx, ary_ge_arz, "");

         lp_build_if(&if_ctx2, bld->builder, ary_ge_arx_arz);
         {
            /* +/- Y face */
            LLVMValueRef sign = lp_build_sgn(float_bld, ry);
            LLVMValueRef ima = lp_build_cube_ima(coord_bld, t);
            *face_s = lp_build_cube_coord(coord_bld, NULL, -1, s, ima);
            *face_t = lp_build_cube_coord(coord_bld, sign, -1, r, ima);
            *face = lp_build_cube_face(bld, ry,
                                       PIPE_TEX_FACE_POS_Y,
                                       PIPE_TEX_FACE_NEG_Y);
            LLVMBuildStore(bld->builder, *face_s, face_s_var);
            LLVMBuildStore(bld->builder, *face_t, face_t_var);
            LLVMBuildStore(bld->builder, *face, face_var);
         }
         lp_build_else(&if_ctx2);
         {
            /* +/- Z face */
            LLVMValueRef sign = lp_build_sgn(float_bld, rz);
            LLVMValueRef ima = lp_build_cube_ima(coord_bld, r);
            *face_s = lp_build_cube_coord(coord_bld, sign, -1, s, ima);
            *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
            *face = lp_build_cube_face(bld, rz,
                                       PIPE_TEX_FACE_POS_Z,
                                       PIPE_TEX_FACE_NEG_Z);
            LLVMBuildStore(bld->builder, *face_s, face_s_var);
            LLVMBuildStore(bld->builder, *face_t, face_t_var);
            LLVMBuildStore(bld->builder, *face, face_var);
         }
         lp_build_endif(&if_ctx2);
      }

      lp_build_endif(&if_ctx);

      *face_s = LLVMBuildLoad(bld->builder, face_s_var, "face_s");
      *face_t = LLVMBuildLoad(bld->builder, face_t_var, "face_t");
      *face   = LLVMBuildLoad(bld->builder, face_var, "face");
   }
}


/**
 * Compute the partial offset of a pixel block along an arbitrary axis.
 *
 * @param coord   coordinate in pixels
 * @param stride  number of bytes between rows of successive pixel blocks
 * @param block_length  number of pixels in a pixels block along the coordinate
 *                      axis
 * @param out_offset    resulting relative offset of the pixel block in bytes
 * @param out_subcoord  resulting sub-block pixel coordinate
 */
void
lp_build_sample_partial_offset(struct lp_build_context *bld,
                               unsigned block_length,
                               LLVMValueRef coord,
                               LLVMValueRef stride,
                               LLVMValueRef *out_offset,
                               LLVMValueRef *out_subcoord)
{
   LLVMValueRef offset;
   LLVMValueRef subcoord;

   if (block_length == 1) {
      subcoord = bld->zero;
   }
   else {
      /*
       * Pixel blocks have power of two dimensions. LLVM should convert the
       * rem/div to bit arithmetic.
       * TODO: Verify this.
       * It does indeed BUT it does transform it to scalar (and back) when doing so
       * (using roughly extract, shift/and, mov, unpack) (llvm 2.7).
       * The generated code looks seriously unfunny and is quite expensive.
       */
#if 0
      LLVMValueRef block_width = lp_build_const_int_vec(bld->type, block_length);
      subcoord = LLVMBuildURem(bld->builder, coord, block_width, "");
      coord    = LLVMBuildUDiv(bld->builder, coord, block_width, "");
#else
      unsigned logbase2 = util_unsigned_logbase2(block_length);
      LLVMValueRef block_shift = lp_build_const_int_vec(bld->type, logbase2);
      LLVMValueRef block_mask = lp_build_const_int_vec(bld->type, block_length - 1);
      subcoord = LLVMBuildAnd(bld->builder, coord, block_mask, "");
      coord = LLVMBuildLShr(bld->builder, coord, block_shift, "");
#endif
   }

   offset = lp_build_mul(bld, coord, stride);

   assert(out_offset);
   assert(out_subcoord);

   *out_offset = offset;
   *out_subcoord = subcoord;
}


/**
 * Compute the offset of a pixel block.
 *
 * x, y, z, y_stride, z_stride are vectors, and they refer to pixels.
 *
 * Returns the relative offset and i,j sub-block coordinates
 */
void
lp_build_sample_offset(struct lp_build_context *bld,
                       const struct util_format_description *format_desc,
                       LLVMValueRef x,
                       LLVMValueRef y,
                       LLVMValueRef z,
                       LLVMValueRef y_stride,
                       LLVMValueRef z_stride,
                       LLVMValueRef *out_offset,
                       LLVMValueRef *out_i,
                       LLVMValueRef *out_j)
{
   LLVMValueRef x_stride;
   LLVMValueRef offset;

   x_stride = lp_build_const_vec(bld->type, format_desc->block.bits/8);

   lp_build_sample_partial_offset(bld,
                                  format_desc->block.width,
                                  x, x_stride,
                                  &offset, out_i);

   if (y && y_stride) {
      LLVMValueRef y_offset;
      lp_build_sample_partial_offset(bld,
                                     format_desc->block.height,
                                     y, y_stride,
                                     &y_offset, out_j);
      offset = lp_build_add(bld, offset, y_offset);
   }
   else {
      *out_j = bld->zero;
   }

   if (z && z_stride) {
      LLVMValueRef z_offset;
      LLVMValueRef k;
      lp_build_sample_partial_offset(bld,
                                     1, /* pixel blocks are always 2D */
                                     z, z_stride,
                                     &z_offset, &k);
      offset = lp_build_add(bld, offset, z_offset);
   }

   *out_offset = offset;
}