1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
|
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper functions for packing/unpacking.
*
* Pack/unpacking is necessary for conversion between types of different
* bit width.
*
* They are also commonly used when an computation needs higher
* precision for the intermediate values. For example, if one needs the
* function:
*
* c = compute(a, b);
*
* to use more precision for intermediate results then one should implement it
* as:
*
* LLVMValueRef
* compute(LLVMBuilderRef builder struct lp_type type, LLVMValueRef a, LLVMValueRef b)
* {
* struct lp_type wide_type = lp_wider_type(type);
* LLVMValueRef al, ah, bl, bh, cl, ch, c;
*
* lp_build_unpack2(builder, type, wide_type, a, &al, &ah);
* lp_build_unpack2(builder, type, wide_type, b, &bl, &bh);
*
* cl = compute_half(al, bl);
* ch = compute_half(ah, bh);
*
* c = lp_build_pack2(bld->builder, wide_type, type, cl, ch);
*
* return c;
* }
*
* where compute_half() would do the computation for half the elements with
* twice the precision.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_debug.h"
#include "util/u_math.h"
#include "util/u_cpu_detect.h"
#include "util/u_memory.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_init.h"
#include "lp_bld_intr.h"
#include "lp_bld_arit.h"
#include "lp_bld_pack.h"
#include "lp_bld_swizzle.h"
/**
* Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions.
*/
static LLVMValueRef
lp_build_const_unpack_shuffle(struct gallivm_state *gallivm,
unsigned n, unsigned lo_hi)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i, j;
assert(n <= LP_MAX_VECTOR_LENGTH);
assert(lo_hi < 2);
/* TODO: cache results in a static table */
for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) {
elems[i + 0] = lp_build_const_int32(gallivm, 0 + j);
elems[i + 1] = lp_build_const_int32(gallivm, n + j);
}
return LLVMConstVector(elems, n);
}
/**
* Similar to lp_build_const_unpack_shuffle but for special AVX 256bit unpack.
* See comment above lp_build_interleave2_half for more details.
*/
static LLVMValueRef
lp_build_const_unpack_shuffle_half(struct gallivm_state *gallivm,
unsigned n, unsigned lo_hi)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i, j;
assert(n <= LP_MAX_VECTOR_LENGTH);
assert(lo_hi < 2);
for (i = 0, j = lo_hi*(n/4); i < n; i += 2, ++j) {
if (i == (n / 2))
j += n / 4;
elems[i + 0] = lp_build_const_int32(gallivm, 0 + j);
elems[i + 1] = lp_build_const_int32(gallivm, n + j);
}
return LLVMConstVector(elems, n);
}
/**
* Build shuffle vectors that match PACKxx (SSE) instructions or
* VPERM (Altivec).
*/
static LLVMValueRef
lp_build_const_pack_shuffle(struct gallivm_state *gallivm, unsigned n)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i;
assert(n <= LP_MAX_VECTOR_LENGTH);
for(i = 0; i < n; ++i)
#ifdef PIPE_ARCH_LITTLE_ENDIAN
elems[i] = lp_build_const_int32(gallivm, 2*i);
#else
elems[i] = lp_build_const_int32(gallivm, 2*i+1);
#endif
return LLVMConstVector(elems, n);
}
/**
* Return a vector with elements src[start:start+size]
* Most useful for getting half the values out of a 256bit sized vector,
* otherwise may cause data rearrangement to happen.
*/
LLVMValueRef
lp_build_extract_range(struct gallivm_state *gallivm,
LLVMValueRef src,
unsigned start,
unsigned size)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i;
assert(size <= ARRAY_SIZE(elems));
for (i = 0; i < size; ++i)
elems[i] = lp_build_const_int32(gallivm, i + start);
if (size == 1) {
return LLVMBuildExtractElement(gallivm->builder, src, elems[0], "");
}
else {
return LLVMBuildShuffleVector(gallivm->builder, src, src,
LLVMConstVector(elems, size), "");
}
}
/**
* Concatenates several (must be a power of 2) vectors (of same type)
* into a larger one.
* Most useful for building up a 256bit sized vector out of two 128bit ones.
*/
LLVMValueRef
lp_build_concat(struct gallivm_state *gallivm,
LLVMValueRef src[],
struct lp_type src_type,
unsigned num_vectors)
{
unsigned new_length, i;
LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH/2];
LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
assert(src_type.length * num_vectors <= ARRAY_SIZE(shuffles));
assert(util_is_power_of_two(num_vectors));
new_length = src_type.length;
for (i = 0; i < num_vectors; i++)
tmp[i] = src[i];
while (num_vectors > 1) {
num_vectors >>= 1;
new_length <<= 1;
for (i = 0; i < new_length; i++) {
shuffles[i] = lp_build_const_int32(gallivm, i);
}
for (i = 0; i < num_vectors; i++) {
tmp[i] = LLVMBuildShuffleVector(gallivm->builder, tmp[i*2], tmp[i*2 + 1],
LLVMConstVector(shuffles, new_length), "");
}
}
return tmp[0];
}
/**
* Combines vectors to reduce from num_srcs to num_dsts.
* Returns the number of src vectors concatenated in a single dst.
*
* num_srcs must be exactly divisible by num_dsts.
*
* e.g. For num_srcs = 4 and src = [x, y, z, w]
* num_dsts = 1 dst = [xyzw] return = 4
* num_dsts = 2 dst = [xy, zw] return = 2
*/
int
lp_build_concat_n(struct gallivm_state *gallivm,
struct lp_type src_type,
LLVMValueRef *src,
unsigned num_srcs,
LLVMValueRef *dst,
unsigned num_dsts)
{
int size = num_srcs / num_dsts;
unsigned i;
assert(num_srcs >= num_dsts);
assert((num_srcs % size) == 0);
if (num_srcs == num_dsts) {
for (i = 0; i < num_dsts; ++i) {
dst[i] = src[i];
}
return 1;
}
for (i = 0; i < num_dsts; ++i) {
dst[i] = lp_build_concat(gallivm, &src[i * size], src_type, size);
}
return size;
}
/**
* Un-interleave vector.
* This will return a vector consisting of every second element
* (depending on lo_hi, beginning at 0 or 1).
* The returned vector size (elems and width) will only be half
* that of the source vector.
*/
LLVMValueRef
lp_build_uninterleave1(struct gallivm_state *gallivm,
unsigned num_elems,
LLVMValueRef a,
unsigned lo_hi)
{
LLVMValueRef shuffle, elems[LP_MAX_VECTOR_LENGTH];
unsigned i;
assert(num_elems <= LP_MAX_VECTOR_LENGTH);
for (i = 0; i < num_elems / 2; ++i)
elems[i] = lp_build_const_int32(gallivm, 2*i + lo_hi);
shuffle = LLVMConstVector(elems, num_elems / 2);
return LLVMBuildShuffleVector(gallivm->builder, a, a, shuffle, "");
}
/**
* Interleave vector elements.
*
* Matches the PUNPCKLxx and PUNPCKHxx SSE instructions
* (but not for 256bit AVX vectors).
*/
LLVMValueRef
lp_build_interleave2(struct gallivm_state *gallivm,
struct lp_type type,
LLVMValueRef a,
LLVMValueRef b,
unsigned lo_hi)
{
LLVMValueRef shuffle;
if (type.length == 2 && type.width == 128 && util_cpu_caps.has_avx) {
/*
* XXX: This is a workaround for llvm code generation deficiency. Strangely
* enough, while this needs vinsertf128/vextractf128 instructions (hence
* a natural match when using 2x128bit vectors) the "normal" unpack shuffle
* generates code ranging from atrocious (llvm 3.1) to terrible (llvm 3.2, 3.3).
* So use some different shuffles instead (the exact shuffles don't seem to
* matter, as long as not using 128bit wide vectors, works with 8x32 or 4x64).
*/
struct lp_type tmp_type = type;
LLVMValueRef srchalf[2], tmpdst;
tmp_type.length = 4;
tmp_type.width = 64;
a = LLVMBuildBitCast(gallivm->builder, a, lp_build_vec_type(gallivm, tmp_type), "");
b = LLVMBuildBitCast(gallivm->builder, b, lp_build_vec_type(gallivm, tmp_type), "");
srchalf[0] = lp_build_extract_range(gallivm, a, lo_hi * 2, 2);
srchalf[1] = lp_build_extract_range(gallivm, b, lo_hi * 2, 2);
tmp_type.length = 2;
tmpdst = lp_build_concat(gallivm, srchalf, tmp_type, 2);
return LLVMBuildBitCast(gallivm->builder, tmpdst, lp_build_vec_type(gallivm, type), "");
}
shuffle = lp_build_const_unpack_shuffle(gallivm, type.length, lo_hi);
return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
}
/**
* Interleave vector elements but with 256 bit,
* treats it as interleave with 2 concatenated 128 bit vectors.
*
* This differs to lp_build_interleave2 as that function would do the following (for lo):
* a0 b0 a1 b1 a2 b2 a3 b3, and this does not compile into an AVX unpack instruction.
*
*
* An example interleave 8x float with 8x float on AVX 256bit unpack:
* a0 a1 a2 a3 a4 a5 a6 a7 <-> b0 b1 b2 b3 b4 b5 b6 b7
*
* Equivalent to interleaving 2x 128 bit vectors
* a0 a1 a2 a3 <-> b0 b1 b2 b3 concatenated with a4 a5 a6 a7 <-> b4 b5 b6 b7
*
* So interleave-lo would result in:
* a0 b0 a1 b1 a4 b4 a5 b5
*
* And interleave-hi would result in:
* a2 b2 a3 b3 a6 b6 a7 b7
*/
LLVMValueRef
lp_build_interleave2_half(struct gallivm_state *gallivm,
struct lp_type type,
LLVMValueRef a,
LLVMValueRef b,
unsigned lo_hi)
{
if (type.length * type.width == 256) {
LLVMValueRef shuffle = lp_build_const_unpack_shuffle_half(gallivm, type.length, lo_hi);
return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
} else {
return lp_build_interleave2(gallivm, type, a, b, lo_hi);
}
}
/**
* Double the bit width.
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*/
void
lp_build_unpack2(struct gallivm_state *gallivm,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef src,
LLVMValueRef *dst_lo,
LLVMValueRef *dst_hi)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef msb;
LLVMTypeRef dst_vec_type;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(dst_type.width == src_type.width * 2);
assert(dst_type.length * 2 == src_type.length);
if(dst_type.sign && src_type.sign) {
/* Replicate the sign bit in the most significant bits */
msb = LLVMBuildAShr(builder, src, lp_build_const_int_vec(gallivm, src_type, src_type.width - 1), "");
}
else
/* Most significant bits always zero */
msb = lp_build_zero(gallivm, src_type);
/* Interleave bits */
#ifdef PIPE_ARCH_LITTLE_ENDIAN
*dst_lo = lp_build_interleave2(gallivm, src_type, src, msb, 0);
*dst_hi = lp_build_interleave2(gallivm, src_type, src, msb, 1);
#else
*dst_lo = lp_build_interleave2(gallivm, src_type, msb, src, 0);
*dst_hi = lp_build_interleave2(gallivm, src_type, msb, src, 1);
#endif
/* Cast the result into the new type (twice as wide) */
dst_vec_type = lp_build_vec_type(gallivm, dst_type);
*dst_lo = LLVMBuildBitCast(builder, *dst_lo, dst_vec_type, "");
*dst_hi = LLVMBuildBitCast(builder, *dst_hi, dst_vec_type, "");
}
/**
* Expand the bit width.
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*/
void
lp_build_unpack(struct gallivm_state *gallivm,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef src,
LLVMValueRef *dst, unsigned num_dsts)
{
unsigned num_tmps;
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length == dst_type.length * num_dsts);
num_tmps = 1;
dst[0] = src;
while(src_type.width < dst_type.width) {
struct lp_type tmp_type = src_type;
tmp_type.width *= 2;
tmp_type.length /= 2;
for(i = num_tmps; i--; ) {
lp_build_unpack2(gallivm, src_type, tmp_type, dst[i], &dst[2*i + 0], &dst[2*i + 1]);
}
src_type = tmp_type;
num_tmps *= 2;
}
assert(num_tmps == num_dsts);
}
/**
* Non-interleaved pack.
*
* This will move values as
* (LSB) (MSB)
* lo = l0 __ l1 __ l2 __.. __ ln __
* hi = h0 __ h1 __ h2 __.. __ hn __
* res = l0 l1 l2 .. ln h0 h1 h2 .. hn
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*
* It is assumed the values are already clamped into the destination type range.
* Values outside that range will produce undefined results. Use
* lp_build_packs2 instead.
*/
LLVMValueRef
lp_build_pack2(struct gallivm_state *gallivm,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMTypeRef dst_vec_type = lp_build_vec_type(gallivm, dst_type);
LLVMValueRef shuffle;
LLVMValueRef res = NULL;
struct lp_type intr_type = dst_type;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(src_type.width == dst_type.width * 2);
assert(src_type.length * 2 == dst_type.length);
/* Check for special cases first */
if ((util_cpu_caps.has_sse2 || util_cpu_caps.has_altivec) &&
src_type.width * src_type.length >= 128) {
const char *intrinsic = NULL;
boolean swap_intrinsic_operands = FALSE;
switch(src_type.width) {
case 32:
if (util_cpu_caps.has_sse2) {
if (dst_type.sign) {
intrinsic = "llvm.x86.sse2.packssdw.128";
} else {
if (util_cpu_caps.has_sse4_1) {
intrinsic = "llvm.x86.sse41.packusdw";
}
}
} else if (util_cpu_caps.has_altivec) {
if (dst_type.sign) {
intrinsic = "llvm.ppc.altivec.vpkswss";
} else {
intrinsic = "llvm.ppc.altivec.vpkuwus";
}
#ifdef PIPE_ARCH_LITTLE_ENDIAN
swap_intrinsic_operands = TRUE;
#endif
}
break;
case 16:
if (dst_type.sign) {
if (util_cpu_caps.has_sse2) {
intrinsic = "llvm.x86.sse2.packsswb.128";
} else if (util_cpu_caps.has_altivec) {
intrinsic = "llvm.ppc.altivec.vpkshss";
#ifdef PIPE_ARCH_LITTLE_ENDIAN
swap_intrinsic_operands = TRUE;
#endif
}
} else {
if (util_cpu_caps.has_sse2) {
intrinsic = "llvm.x86.sse2.packuswb.128";
} else if (util_cpu_caps.has_altivec) {
intrinsic = "llvm.ppc.altivec.vpkshus";
#ifdef PIPE_ARCH_LITTLE_ENDIAN
swap_intrinsic_operands = TRUE;
#endif
}
}
break;
/* default uses generic shuffle below */
}
if (intrinsic) {
if (src_type.width * src_type.length == 128) {
LLVMTypeRef intr_vec_type = lp_build_vec_type(gallivm, intr_type);
if (swap_intrinsic_operands) {
res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, hi, lo);
} else {
res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, lo, hi);
}
if (dst_vec_type != intr_vec_type) {
res = LLVMBuildBitCast(builder, res, dst_vec_type, "");
}
}
else {
int num_split = src_type.width * src_type.length / 128;
int i;
int nlen = 128 / src_type.width;
int lo_off = swap_intrinsic_operands ? nlen : 0;
int hi_off = swap_intrinsic_operands ? 0 : nlen;
struct lp_type ndst_type = lp_type_unorm(dst_type.width, 128);
struct lp_type nintr_type = lp_type_unorm(intr_type.width, 128);
LLVMValueRef tmpres[LP_MAX_VECTOR_WIDTH / 128];
LLVMValueRef tmplo, tmphi;
LLVMTypeRef ndst_vec_type = lp_build_vec_type(gallivm, ndst_type);
LLVMTypeRef nintr_vec_type = lp_build_vec_type(gallivm, nintr_type);
assert(num_split <= LP_MAX_VECTOR_WIDTH / 128);
for (i = 0; i < num_split / 2; i++) {
tmplo = lp_build_extract_range(gallivm,
lo, i*nlen*2 + lo_off, nlen);
tmphi = lp_build_extract_range(gallivm,
lo, i*nlen*2 + hi_off, nlen);
tmpres[i] = lp_build_intrinsic_binary(builder, intrinsic,
nintr_vec_type, tmplo, tmphi);
if (ndst_vec_type != nintr_vec_type) {
tmpres[i] = LLVMBuildBitCast(builder, tmpres[i], ndst_vec_type, "");
}
}
for (i = 0; i < num_split / 2; i++) {
tmplo = lp_build_extract_range(gallivm,
hi, i*nlen*2 + lo_off, nlen);
tmphi = lp_build_extract_range(gallivm,
hi, i*nlen*2 + hi_off, nlen);
tmpres[i+num_split/2] = lp_build_intrinsic_binary(builder, intrinsic,
nintr_vec_type,
tmplo, tmphi);
if (ndst_vec_type != nintr_vec_type) {
tmpres[i+num_split/2] = LLVMBuildBitCast(builder, tmpres[i+num_split/2],
ndst_vec_type, "");
}
}
res = lp_build_concat(gallivm, tmpres, ndst_type, num_split);
}
return res;
}
}
/* generic shuffle */
lo = LLVMBuildBitCast(builder, lo, dst_vec_type, "");
hi = LLVMBuildBitCast(builder, hi, dst_vec_type, "");
shuffle = lp_build_const_pack_shuffle(gallivm, dst_type.length);
res = LLVMBuildShuffleVector(builder, lo, hi, shuffle, "");
return res;
}
/**
* Non-interleaved pack and saturate.
*
* Same as lp_build_pack2 but will saturate values so that they fit into the
* destination type.
*/
LLVMValueRef
lp_build_packs2(struct gallivm_state *gallivm,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi)
{
boolean clamp;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(src_type.sign == dst_type.sign);
assert(src_type.width == dst_type.width * 2);
assert(src_type.length * 2 == dst_type.length);
clamp = TRUE;
/* All X86 SSE non-interleaved pack instructions take signed inputs and
* saturate them, so no need to clamp for those cases. */
if(util_cpu_caps.has_sse2 &&
src_type.width * src_type.length >= 128 &&
src_type.sign &&
(src_type.width == 32 || src_type.width == 16))
clamp = FALSE;
if(clamp) {
struct lp_build_context bld;
unsigned dst_bits = dst_type.sign ? dst_type.width - 1 : dst_type.width;
LLVMValueRef dst_max = lp_build_const_int_vec(gallivm, src_type, ((unsigned long long)1 << dst_bits) - 1);
lp_build_context_init(&bld, gallivm, src_type);
lo = lp_build_min(&bld, lo, dst_max);
hi = lp_build_min(&bld, hi, dst_max);
/* FIXME: What about lower bound? */
}
return lp_build_pack2(gallivm, src_type, dst_type, lo, hi);
}
/**
* Truncate the bit width.
*
* TODO: Handle saturation consistently.
*/
LLVMValueRef
lp_build_pack(struct gallivm_state *gallivm,
struct lp_type src_type,
struct lp_type dst_type,
boolean clamped,
const LLVMValueRef *src, unsigned num_srcs)
{
LLVMValueRef (*pack2)(struct gallivm_state *gallivm,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi);
LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length * num_srcs == dst_type.length);
if(clamped)
pack2 = &lp_build_pack2;
else
pack2 = &lp_build_packs2;
for(i = 0; i < num_srcs; ++i)
tmp[i] = src[i];
while(src_type.width > dst_type.width) {
struct lp_type tmp_type = src_type;
tmp_type.width /= 2;
tmp_type.length *= 2;
/* Take in consideration the sign changes only in the last step */
if(tmp_type.width == dst_type.width)
tmp_type.sign = dst_type.sign;
num_srcs /= 2;
for(i = 0; i < num_srcs; ++i)
tmp[i] = pack2(gallivm, src_type, tmp_type,
tmp[2*i + 0], tmp[2*i + 1]);
src_type = tmp_type;
}
assert(num_srcs == 1);
return tmp[0];
}
/**
* Truncate or expand the bitwidth.
*
* NOTE: Getting the right sign flags is crucial here, as we employ some
* intrinsics that do saturation.
*/
void
lp_build_resize(struct gallivm_state *gallivm,
struct lp_type src_type,
struct lp_type dst_type,
const LLVMValueRef *src, unsigned num_srcs,
LLVMValueRef *dst, unsigned num_dsts)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
unsigned i;
/*
* We don't support float <-> int conversion here. That must be done
* before/after calling this function.
*/
assert(src_type.floating == dst_type.floating);
/*
* We don't support double <-> float conversion yet, although it could be
* added with little effort.
*/
assert((!src_type.floating && !dst_type.floating) ||
src_type.width == dst_type.width);
/* We must not loose or gain channels. Only precision */
assert(src_type.length * num_srcs == dst_type.length * num_dsts);
assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
assert(num_dsts <= LP_MAX_VECTOR_LENGTH);
if (src_type.width > dst_type.width) {
/*
* Truncate bit width.
*/
/* Conversion must be M:1 */
assert(num_dsts == 1);
if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
/*
* Register width remains constant -- use vector packing intrinsics
*/
tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, src, num_srcs);
}
else {
if (src_type.width / dst_type.width > num_srcs) {
/*
* First change src vectors size (with shuffle) so they have the
* same size as the destination vector, then pack normally.
* Note: cannot use cast/extract because llvm generates atrocious code.
*/
unsigned size_ratio = (src_type.width * src_type.length) /
(dst_type.length * dst_type.width);
unsigned new_length = src_type.length / size_ratio;
for (i = 0; i < size_ratio * num_srcs; i++) {
unsigned start_index = (i % size_ratio) * new_length;
tmp[i] = lp_build_extract_range(gallivm, src[i / size_ratio],
start_index, new_length);
}
num_srcs *= size_ratio;
src_type.length = new_length;
tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, tmp, num_srcs);
}
else {
/*
* Truncate bit width but expand vector size - first pack
* then expand simply because this should be more AVX-friendly
* for the cases we probably hit.
*/
unsigned size_ratio = (dst_type.width * dst_type.length) /
(src_type.length * src_type.width);
unsigned num_pack_srcs = num_srcs / size_ratio;
dst_type.length = dst_type.length / size_ratio;
for (i = 0; i < size_ratio; i++) {
tmp[i] = lp_build_pack(gallivm, src_type, dst_type, TRUE,
&src[i*num_pack_srcs], num_pack_srcs);
}
tmp[0] = lp_build_concat(gallivm, tmp, dst_type, size_ratio);
}
}
}
else if (src_type.width < dst_type.width) {
/*
* Expand bit width.
*/
/* Conversion must be 1:N */
assert(num_srcs == 1);
if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
/*
* Register width remains constant -- use vector unpack intrinsics
*/
lp_build_unpack(gallivm, src_type, dst_type, src[0], tmp, num_dsts);
}
else {
/*
* Do it element-wise.
*/
assert(src_type.length * num_srcs == dst_type.length * num_dsts);
for (i = 0; i < num_dsts; i++) {
tmp[i] = lp_build_undef(gallivm, dst_type);
}
for (i = 0; i < src_type.length; ++i) {
unsigned j = i / dst_type.length;
LLVMValueRef srcindex = lp_build_const_int32(gallivm, i);
LLVMValueRef dstindex = lp_build_const_int32(gallivm, i % dst_type.length);
LLVMValueRef val = LLVMBuildExtractElement(builder, src[0], srcindex, "");
if (src_type.sign && dst_type.sign) {
val = LLVMBuildSExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
} else {
val = LLVMBuildZExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
}
tmp[j] = LLVMBuildInsertElement(builder, tmp[j], val, dstindex, "");
}
}
}
else {
/*
* No-op
*/
/* "Conversion" must be N:N */
assert(num_srcs == num_dsts);
for(i = 0; i < num_dsts; ++i)
tmp[i] = src[i];
}
for(i = 0; i < num_dsts; ++i)
dst[i] = tmp[i];
}
/**
* Expands src vector from src.length to dst_length
*/
LLVMValueRef
lp_build_pad_vector(struct gallivm_state *gallivm,
LLVMValueRef src,
unsigned dst_length)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
LLVMValueRef undef;
LLVMTypeRef type;
unsigned i, src_length;
type = LLVMTypeOf(src);
if (LLVMGetTypeKind(type) != LLVMVectorTypeKind) {
/* Can't use ShuffleVector on non-vector type */
undef = LLVMGetUndef(LLVMVectorType(type, dst_length));
return LLVMBuildInsertElement(gallivm->builder, undef, src, lp_build_const_int32(gallivm, 0), "");
}
undef = LLVMGetUndef(type);
src_length = LLVMGetVectorSize(type);
assert(dst_length <= ARRAY_SIZE(elems));
assert(dst_length >= src_length);
if (src_length == dst_length)
return src;
/* All elements from src vector */
for (i = 0; i < src_length; ++i)
elems[i] = lp_build_const_int32(gallivm, i);
/* Undef fill remaining space */
for (i = src_length; i < dst_length; ++i)
elems[i] = lp_build_const_int32(gallivm, src_length);
/* Combine the two vectors */
return LLVMBuildShuffleVector(gallivm->builder, src, undef, LLVMConstVector(elems, dst_length), "");
}
|