1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper functions for logical operations.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_cpu_detect.h"
#include "util/u_memory.h"
#include "util/u_debug.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_swizzle.h"
#include "lp_bld_init.h"
#include "lp_bld_intr.h"
#include "lp_bld_debug.h"
#include "lp_bld_logic.h"
/*
* XXX
*
* Selection with vector conditional like
*
* select <4 x i1> %C, %A, %B
*
* is valid IR (e.g. llvm/test/Assembler/vector-select.ll), but it is only
* supported on some backends (x86) starting with llvm 3.1.
*
* Expanding the boolean vector to full SIMD register width, as in
*
* sext <4 x i1> %C to <4 x i32>
*
* is valid and supported (e.g., llvm/test/CodeGen/X86/vec_compare.ll), but
* it causes assertion failures in LLVM 2.6. It appears to work correctly on
* LLVM 2.7.
*/
/**
* Build code to compare two values 'a' and 'b' of 'type' using the given func.
* \param func one of PIPE_FUNC_x
* If the ordered argument is true the function will use LLVM's ordered
* comparisons, otherwise unordered comparisons will be used.
* The result values will be 0 for false or ~0 for true.
*/
static LLVMValueRef
lp_build_compare_ext(struct gallivm_state *gallivm,
const struct lp_type type,
unsigned func,
LLVMValueRef a,
LLVMValueRef b,
boolean ordered)
{
LLVMBuilderRef builder = gallivm->builder;
LLVMTypeRef int_vec_type = lp_build_int_vec_type(gallivm, type);
LLVMValueRef zeros = LLVMConstNull(int_vec_type);
LLVMValueRef ones = LLVMConstAllOnes(int_vec_type);
LLVMValueRef cond;
LLVMValueRef res;
assert(func >= PIPE_FUNC_NEVER);
assert(func <= PIPE_FUNC_ALWAYS);
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if(func == PIPE_FUNC_NEVER)
return zeros;
if(func == PIPE_FUNC_ALWAYS)
return ones;
if(type.floating) {
LLVMRealPredicate op;
switch(func) {
case PIPE_FUNC_EQUAL:
op = ordered ? LLVMRealOEQ : LLVMRealUEQ;
break;
case PIPE_FUNC_NOTEQUAL:
op = ordered ? LLVMRealONE : LLVMRealUNE;
break;
case PIPE_FUNC_LESS:
op = ordered ? LLVMRealOLT : LLVMRealULT;
break;
case PIPE_FUNC_LEQUAL:
op = ordered ? LLVMRealOLE : LLVMRealULE;
break;
case PIPE_FUNC_GREATER:
op = ordered ? LLVMRealOGT : LLVMRealUGT;
break;
case PIPE_FUNC_GEQUAL:
op = ordered ? LLVMRealOGE : LLVMRealUGE;
break;
default:
assert(0);
return lp_build_undef(gallivm, type);
}
cond = LLVMBuildFCmp(builder, op, a, b, "");
res = LLVMBuildSExt(builder, cond, int_vec_type, "");
}
else {
LLVMIntPredicate op;
switch(func) {
case PIPE_FUNC_EQUAL:
op = LLVMIntEQ;
break;
case PIPE_FUNC_NOTEQUAL:
op = LLVMIntNE;
break;
case PIPE_FUNC_LESS:
op = type.sign ? LLVMIntSLT : LLVMIntULT;
break;
case PIPE_FUNC_LEQUAL:
op = type.sign ? LLVMIntSLE : LLVMIntULE;
break;
case PIPE_FUNC_GREATER:
op = type.sign ? LLVMIntSGT : LLVMIntUGT;
break;
case PIPE_FUNC_GEQUAL:
op = type.sign ? LLVMIntSGE : LLVMIntUGE;
break;
default:
assert(0);
return lp_build_undef(gallivm, type);
}
cond = LLVMBuildICmp(builder, op, a, b, "");
res = LLVMBuildSExt(builder, cond, int_vec_type, "");
}
return res;
}
/**
* Build code to compare two values 'a' and 'b' of 'type' using the given func.
* \param func one of PIPE_FUNC_x
* The result values will be 0 for false or ~0 for true.
*/
LLVMValueRef
lp_build_compare(struct gallivm_state *gallivm,
const struct lp_type type,
unsigned func,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMTypeRef int_vec_type = lp_build_int_vec_type(gallivm, type);
LLVMValueRef zeros = LLVMConstNull(int_vec_type);
LLVMValueRef ones = LLVMConstAllOnes(int_vec_type);
assert(func >= PIPE_FUNC_NEVER);
assert(func <= PIPE_FUNC_ALWAYS);
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if(func == PIPE_FUNC_NEVER)
return zeros;
if(func == PIPE_FUNC_ALWAYS)
return ones;
#if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
/*
* There are no unsigned integer comparison instructions in SSE.
*/
if (!type.floating && !type.sign &&
type.width * type.length == 128 &&
util_cpu_caps.has_sse2 &&
(func == PIPE_FUNC_LESS ||
func == PIPE_FUNC_LEQUAL ||
func == PIPE_FUNC_GREATER ||
func == PIPE_FUNC_GEQUAL) &&
(gallivm_debug & GALLIVM_DEBUG_PERF)) {
debug_printf("%s: inefficient <%u x i%u> unsigned comparison\n",
__FUNCTION__, type.length, type.width);
}
#endif
return lp_build_compare_ext(gallivm, type, func, a, b, FALSE);
}
/**
* Build code to compare two values 'a' and 'b' using the given func.
* \param func one of PIPE_FUNC_x
* If the operands are floating point numbers, the function will use
* ordered comparison which means that it will return true if both
* operands are not a NaN and the specified condition evaluates to true.
* The result values will be 0 for false or ~0 for true.
*/
LLVMValueRef
lp_build_cmp_ordered(struct lp_build_context *bld,
unsigned func,
LLVMValueRef a,
LLVMValueRef b)
{
return lp_build_compare_ext(bld->gallivm, bld->type, func, a, b, TRUE);
}
/**
* Build code to compare two values 'a' and 'b' using the given func.
* \param func one of PIPE_FUNC_x
* If the operands are floating point numbers, the function will use
* unordered comparison which means that it will return true if either
* operand is a NaN or the specified condition evaluates to true.
* The result values will be 0 for false or ~0 for true.
*/
LLVMValueRef
lp_build_cmp(struct lp_build_context *bld,
unsigned func,
LLVMValueRef a,
LLVMValueRef b)
{
return lp_build_compare(bld->gallivm, bld->type, func, a, b);
}
/**
* Return (mask & a) | (~mask & b);
*/
LLVMValueRef
lp_build_select_bitwise(struct lp_build_context *bld,
LLVMValueRef mask,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMBuilderRef builder = bld->gallivm->builder;
struct lp_type type = bld->type;
LLVMValueRef res;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if (a == b) {
return a;
}
if(type.floating) {
LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
a = LLVMBuildBitCast(builder, a, int_vec_type, "");
b = LLVMBuildBitCast(builder, b, int_vec_type, "");
}
a = LLVMBuildAnd(builder, a, mask, "");
/* This often gets translated to PANDN, but sometimes the NOT is
* pre-computed and stored in another constant. The best strategy depends
* on available registers, so it is not a big deal -- hopefully LLVM does
* the right decision attending the rest of the program.
*/
b = LLVMBuildAnd(builder, b, LLVMBuildNot(builder, mask, ""), "");
res = LLVMBuildOr(builder, a, b, "");
if(type.floating) {
LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
res = LLVMBuildBitCast(builder, res, vec_type, "");
}
return res;
}
/**
* Return mask ? a : b;
*
* mask is a bitwise mask, composed of 0 or ~0 for each element. Any other value
* will yield unpredictable results.
*/
LLVMValueRef
lp_build_select(struct lp_build_context *bld,
LLVMValueRef mask,
LLVMValueRef a,
LLVMValueRef b)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMContextRef lc = bld->gallivm->context;
struct lp_type type = bld->type;
LLVMValueRef res;
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if(a == b)
return a;
if (type.length == 1) {
mask = LLVMBuildTrunc(builder, mask, LLVMInt1TypeInContext(lc), "");
res = LLVMBuildSelect(builder, mask, a, b, "");
}
else if (!(HAVE_LLVM == 0x0307) &&
(LLVMIsConstant(mask) ||
LLVMGetInstructionOpcode(mask) == LLVMSExt)) {
/* Generate a vector select.
*
* Using vector selects should avoid emitting intrinsics hence avoid
* hindering optimization passes, but vector selects weren't properly
* supported yet for a long time, and LLVM will generate poor code when
* the mask is not the result of a comparison.
* Also, llvm 3.7 may miscompile them (bug 94972).
*/
/* Convert the mask to a vector of booleans.
*
* XXX: In x86 the mask is controlled by the MSB, so if we shifted the
* mask by `type.width - 1`, LLVM should realize the mask is ready. Alas
* what really happens is that LLVM will emit two shifts back to back.
*/
if (0) {
LLVMValueRef shift = LLVMConstInt(bld->int_elem_type, bld->type.width - 1, 0);
shift = lp_build_broadcast(bld->gallivm, bld->int_vec_type, shift);
mask = LLVMBuildLShr(builder, mask, shift, "");
}
LLVMTypeRef bool_vec_type = LLVMVectorType(LLVMInt1TypeInContext(lc), type.length);
mask = LLVMBuildTrunc(builder, mask, bool_vec_type, "");
res = LLVMBuildSelect(builder, mask, a, b, "");
}
else if (((util_cpu_caps.has_sse4_1 &&
type.width * type.length == 128) ||
(util_cpu_caps.has_avx &&
type.width * type.length == 256 && type.width >= 32)) &&
!LLVMIsConstant(a) &&
!LLVMIsConstant(b) &&
!LLVMIsConstant(mask)) {
const char *intrinsic;
LLVMTypeRef arg_type;
LLVMValueRef args[3];
/*
* There's only float blend in AVX but can just cast i32/i64
* to float.
*/
if (type.width * type.length == 256) {
if (type.width == 64) {
intrinsic = "llvm.x86.avx.blendv.pd.256";
arg_type = LLVMVectorType(LLVMDoubleTypeInContext(lc), 4);
}
else {
intrinsic = "llvm.x86.avx.blendv.ps.256";
arg_type = LLVMVectorType(LLVMFloatTypeInContext(lc), 8);
}
}
else if (type.floating &&
type.width == 64) {
intrinsic = "llvm.x86.sse41.blendvpd";
arg_type = LLVMVectorType(LLVMDoubleTypeInContext(lc), 2);
} else if (type.floating &&
type.width == 32) {
intrinsic = "llvm.x86.sse41.blendvps";
arg_type = LLVMVectorType(LLVMFloatTypeInContext(lc), 4);
} else {
intrinsic = "llvm.x86.sse41.pblendvb";
arg_type = LLVMVectorType(LLVMInt8TypeInContext(lc), 16);
}
if (arg_type != bld->int_vec_type) {
mask = LLVMBuildBitCast(builder, mask, arg_type, "");
}
if (arg_type != bld->vec_type) {
a = LLVMBuildBitCast(builder, a, arg_type, "");
b = LLVMBuildBitCast(builder, b, arg_type, "");
}
args[0] = b;
args[1] = a;
args[2] = mask;
res = lp_build_intrinsic(builder, intrinsic,
arg_type, args, ARRAY_SIZE(args), 0);
if (arg_type != bld->vec_type) {
res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
}
}
else {
res = lp_build_select_bitwise(bld, mask, a, b);
}
return res;
}
/**
* Return mask ? a : b;
*
* mask is a TGSI_WRITEMASK_xxx.
*/
LLVMValueRef
lp_build_select_aos(struct lp_build_context *bld,
unsigned mask,
LLVMValueRef a,
LLVMValueRef b,
unsigned num_channels)
{
LLVMBuilderRef builder = bld->gallivm->builder;
const struct lp_type type = bld->type;
const unsigned n = type.length;
unsigned i, j;
assert((mask & ~0xf) == 0);
assert(lp_check_value(type, a));
assert(lp_check_value(type, b));
if(a == b)
return a;
if((mask & 0xf) == 0xf)
return a;
if((mask & 0xf) == 0x0)
return b;
if(a == bld->undef || b == bld->undef)
return bld->undef;
/*
* There are two major ways of accomplishing this:
* - with a shuffle
* - with a select
*
* The flip between these is empirical and might need to be adjusted.
*/
if (n <= 4) {
/*
* Shuffle.
*/
LLVMTypeRef elem_type = LLVMInt32TypeInContext(bld->gallivm->context);
LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
for(j = 0; j < n; j += num_channels)
for(i = 0; i < num_channels; ++i)
shuffles[j + i] = LLVMConstInt(elem_type,
(mask & (1 << i) ? 0 : n) + j + i,
0);
return LLVMBuildShuffleVector(builder, a, b, LLVMConstVector(shuffles, n), "");
}
else {
LLVMValueRef mask_vec = lp_build_const_mask_aos(bld->gallivm, type, mask, num_channels);
return lp_build_select(bld, mask_vec, a, b);
}
}
/**
* Return (scalar-cast)val ? true : false;
*/
LLVMValueRef
lp_build_any_true_range(struct lp_build_context *bld,
unsigned real_length,
LLVMValueRef val)
{
LLVMBuilderRef builder = bld->gallivm->builder;
LLVMTypeRef scalar_type;
LLVMTypeRef true_type;
assert(real_length <= bld->type.length);
true_type = LLVMIntTypeInContext(bld->gallivm->context,
bld->type.width * real_length);
scalar_type = LLVMIntTypeInContext(bld->gallivm->context,
bld->type.width * bld->type.length);
val = LLVMBuildBitCast(builder, val, scalar_type, "");
/*
* We're using always native types so we can use intrinsics.
* However, if we don't do per-element calculations, we must ensure
* the excess elements aren't used since they may contain garbage.
*/
if (real_length < bld->type.length) {
val = LLVMBuildTrunc(builder, val, true_type, "");
}
return LLVMBuildICmp(builder, LLVMIntNE,
val, LLVMConstNull(true_type), "");
}
|