summaryrefslogtreecommitdiffstats
path: root/src/compiler/spirv/vtn_glsl450.c
blob: 7f941ceeb0d0a95b8b69a76a3c30f3d3e9d9e646 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Jason Ekstrand (jason@jlekstrand.net)
 *
 */

#include <math.h>
#include "vtn_private.h"
#include "GLSL.std.450.h"

#define M_PIf   ((float) M_PI)
#define M_PI_2f ((float) M_PI_2)
#define M_PI_4f ((float) M_PI_4)

static nir_ssa_def *
build_mat2_det(nir_builder *b, nir_ssa_def *col[2])
{
   unsigned swiz[4] = {1, 0, 0, 0};
   nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2, true));
   return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1));
}

static nir_ssa_def *
build_mat3_det(nir_builder *b, nir_ssa_def *col[3])
{
   unsigned yzx[4] = {1, 2, 0, 0};
   unsigned zxy[4] = {2, 0, 1, 0};

   nir_ssa_def *prod0 =
      nir_fmul(b, col[0],
               nir_fmul(b, nir_swizzle(b, col[1], yzx, 3, true),
                           nir_swizzle(b, col[2], zxy, 3, true)));
   nir_ssa_def *prod1 =
      nir_fmul(b, col[0],
               nir_fmul(b, nir_swizzle(b, col[1], zxy, 3, true),
                           nir_swizzle(b, col[2], yzx, 3, true)));

   nir_ssa_def *diff = nir_fsub(b, prod0, prod1);

   return nir_fadd(b, nir_channel(b, diff, 0),
                      nir_fadd(b, nir_channel(b, diff, 1),
                                  nir_channel(b, diff, 2)));
}

static nir_ssa_def *
build_mat4_det(nir_builder *b, nir_ssa_def **col)
{
   nir_ssa_def *subdet[4];
   for (unsigned i = 0; i < 4; i++) {
      unsigned swiz[3];
      for (unsigned j = 0; j < 3; j++)
         swiz[j] = j + (j >= i);

      nir_ssa_def *subcol[3];
      subcol[0] = nir_swizzle(b, col[1], swiz, 3, true);
      subcol[1] = nir_swizzle(b, col[2], swiz, 3, true);
      subcol[2] = nir_swizzle(b, col[3], swiz, 3, true);

      subdet[i] = build_mat3_det(b, subcol);
   }

   nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4));

   return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0),
                                  nir_channel(b, prod, 1)),
                      nir_fsub(b, nir_channel(b, prod, 2),
                                  nir_channel(b, prod, 3)));
}

static nir_ssa_def *
build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src)
{
   unsigned size = glsl_get_vector_elements(src->type);

   nir_ssa_def *cols[4];
   for (unsigned i = 0; i < size; i++)
      cols[i] = src->elems[i]->def;

   switch(size) {
   case 2: return build_mat2_det(&b->nb, cols);
   case 3: return build_mat3_det(&b->nb, cols);
   case 4: return build_mat4_det(&b->nb, cols);
   default:
      vtn_fail("Invalid matrix size");
   }
}

/* Computes the determinate of the submatrix given by taking src and
 * removing the specified row and column.
 */
static nir_ssa_def *
build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src,
                 unsigned size, unsigned row, unsigned col)
{
   assert(row < size && col < size);
   if (size == 2) {
      return nir_channel(b, src->elems[1 - col]->def, 1 - row);
   } else {
      /* Swizzle to get all but the specified row */
      unsigned swiz[3];
      for (unsigned j = 0; j < 3; j++)
         swiz[j] = j + (j >= row);

      /* Grab all but the specified column */
      nir_ssa_def *subcol[3];
      for (unsigned j = 0; j < size; j++) {
         if (j != col) {
            subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def,
                                                swiz, size - 1, true);
         }
      }

      if (size == 3) {
         return build_mat2_det(b, subcol);
      } else {
         assert(size == 4);
         return build_mat3_det(b, subcol);
      }
   }
}

static struct vtn_ssa_value *
matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src)
{
   nir_ssa_def *adj_col[4];
   unsigned size = glsl_get_vector_elements(src->type);

   /* Build up an adjugate matrix */
   for (unsigned c = 0; c < size; c++) {
      nir_ssa_def *elem[4];
      for (unsigned r = 0; r < size; r++) {
         elem[r] = build_mat_subdet(&b->nb, src, size, c, r);

         if ((r + c) % 2)
            elem[r] = nir_fneg(&b->nb, elem[r]);
      }

      adj_col[c] = nir_vec(&b->nb, elem, size);
   }

   nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src));

   struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type);
   for (unsigned i = 0; i < size; i++)
      val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv);

   return val;
}

static nir_ssa_def*
build_length(nir_builder *b, nir_ssa_def *vec)
{
   switch (vec->num_components) {
   case 1: return nir_fsqrt(b, nir_fmul(b, vec, vec));
   case 2: return nir_fsqrt(b, nir_fdot2(b, vec, vec));
   case 3: return nir_fsqrt(b, nir_fdot3(b, vec, vec));
   case 4: return nir_fsqrt(b, nir_fdot4(b, vec, vec));
   default:
      unreachable("Invalid number of components");
   }
}

static inline nir_ssa_def *
build_fclamp(nir_builder *b,
             nir_ssa_def *x, nir_ssa_def *min_val, nir_ssa_def *max_val)
{
   return nir_fmin(b, nir_fmax(b, x, min_val), max_val);
}

/**
 * Return e^x.
 */
static nir_ssa_def *
build_exp(nir_builder *b, nir_ssa_def *x)
{
   return nir_fexp2(b, nir_fmul(b, x, nir_imm_float(b, M_LOG2E)));
}

/**
 * Return ln(x) - the natural logarithm of x.
 */
static nir_ssa_def *
build_log(nir_builder *b, nir_ssa_def *x)
{
   return nir_fmul(b, nir_flog2(b, x), nir_imm_float(b, 1.0 / M_LOG2E));
}

/**
 * Approximate asin(x) by the formula:
 *    asin~(x) = sign(x) * (pi/2 - sqrt(1 - |x|) * (pi/2 + |x|(pi/4 - 1 + |x|(p0 + |x|p1))))
 *
 * which is correct to first order at x=0 and x=±1 regardless of the p
 * coefficients but can be made second-order correct at both ends by selecting
 * the fit coefficients appropriately.  Different p coefficients can be used
 * in the asin and acos implementation to minimize some relative error metric
 * in each case.
 */
static nir_ssa_def *
build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1)
{
   nir_ssa_def *abs_x = nir_fabs(b, x);
   return nir_fmul(b, nir_fsign(b, x),
                   nir_fsub(b, nir_imm_float(b, M_PI_2f),
                            nir_fmul(b, nir_fsqrt(b, nir_fsub(b, nir_imm_float(b, 1.0f), abs_x)),
                                     nir_fadd(b, nir_imm_float(b, M_PI_2f),
                                              nir_fmul(b, abs_x,
                                                       nir_fadd(b, nir_imm_float(b, M_PI_4f - 1.0f),
                                                                nir_fmul(b, abs_x,
                                                                         nir_fadd(b, nir_imm_float(b, p0),
                                                                                  nir_fmul(b, abs_x,
                                                                                           nir_imm_float(b, p1))))))))));
}

/**
 * Compute xs[0] + xs[1] + xs[2] + ... using fadd.
 */
static nir_ssa_def *
build_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
{
   nir_ssa_def *accum = xs[0];

   for (int i = 1; i < terms; i++)
      accum = nir_fadd(b, accum, xs[i]);

   return accum;
}

static nir_ssa_def *
build_atan(nir_builder *b, nir_ssa_def *y_over_x)
{
   nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
   nir_ssa_def *one = nir_imm_float(b, 1.0f);

   /*
    * range-reduction, first step:
    *
    *      / y_over_x         if |y_over_x| <= 1.0;
    * x = <
    *      \ 1.0 / y_over_x   otherwise
    */
   nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
                                nir_fmax(b, abs_y_over_x, one));

   /*
    * approximate atan by evaluating polynomial:
    *
    * x   * 0.9999793128310355 - x^3  * 0.3326756418091246 +
    * x^5 * 0.1938924977115610 - x^7  * 0.1173503194786851 +
    * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
    */
   nir_ssa_def *x_2  = nir_fmul(b, x,   x);
   nir_ssa_def *x_3  = nir_fmul(b, x_2, x);
   nir_ssa_def *x_5  = nir_fmul(b, x_3, x_2);
   nir_ssa_def *x_7  = nir_fmul(b, x_5, x_2);
   nir_ssa_def *x_9  = nir_fmul(b, x_7, x_2);
   nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);

   nir_ssa_def *polynomial_terms[] = {
      nir_fmul(b, x,    nir_imm_float(b,  0.9999793128310355f)),
      nir_fmul(b, x_3,  nir_imm_float(b, -0.3326756418091246f)),
      nir_fmul(b, x_5,  nir_imm_float(b,  0.1938924977115610f)),
      nir_fmul(b, x_7,  nir_imm_float(b, -0.1173503194786851f)),
      nir_fmul(b, x_9,  nir_imm_float(b,  0.0536813784310406f)),
      nir_fmul(b, x_11, nir_imm_float(b, -0.0121323213173444f)),
   };

   nir_ssa_def *tmp =
      build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));

   /* range-reduction fixup */
   tmp = nir_fadd(b, tmp,
                  nir_fmul(b,
                           nir_b2f(b, nir_flt(b, one, abs_y_over_x)),
                           nir_fadd(b, nir_fmul(b, tmp,
                                                nir_imm_float(b, -2.0f)),
                                       nir_imm_float(b, M_PI_2f))));

   /* sign fixup */
   return nir_fmul(b, tmp, nir_fsign(b, y_over_x));
}

static nir_ssa_def *
build_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
{
   nir_ssa_def *zero = nir_imm_float(b, 0);
   nir_ssa_def *one = nir_imm_float(b, 1);

   /* If we're on the left half-plane rotate the coordinates π/2 clock-wise
    * for the y=0 discontinuity to end up aligned with the vertical
    * discontinuity of atan(s/t) along t=0.  This also makes sure that we
    * don't attempt to divide by zero along the vertical line, which may give
    * unspecified results on non-GLSL 4.1-capable hardware.
    */
   nir_ssa_def *flip = nir_fge(b, zero, x);
   nir_ssa_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
   nir_ssa_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));

   /* If the magnitude of the denominator exceeds some huge value, scale down
    * the arguments in order to prevent the reciprocal operation from flushing
    * its result to zero, which would cause precision problems, and for s
    * infinite would cause us to return a NaN instead of the correct finite
    * value.
    *
    * If fmin and fmax are respectively the smallest and largest positive
    * normalized floating point values representable by the implementation,
    * the constants below should be in agreement with:
    *
    *    huge <= 1 / fmin
    *    scale <= 1 / fmin / fmax (for |t| >= huge)
    *
    * In addition scale should be a negative power of two in order to avoid
    * loss of precision.  The values chosen below should work for most usual
    * floating point representations with at least the dynamic range of ATI's
    * 24-bit representation.
    */
   nir_ssa_def *huge = nir_imm_float(b, 1e18f);
   nir_ssa_def *scale = nir_bcsel(b, nir_fge(b, nir_fabs(b, t), huge),
                                  nir_imm_float(b, 0.25), one);
   nir_ssa_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
   nir_ssa_def *s_over_t = nir_fmul(b, nir_fmul(b, s, scale), rcp_scaled_t);

   /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
    * that ∞/∞ = 1) in order to comply with the rather artificial rules
    * inherited from IEEE 754-2008, namely:
    *
    *  "atan2(±∞, −∞) is ±3π/4
    *   atan2(±∞, +∞) is ±π/4"
    *
    * Note that this is inconsistent with the rules for the neighborhood of
    * zero that are based on iterated limits:
    *
    *  "atan2(±0, −0) is ±π
    *   atan2(±0, +0) is ±0"
    *
    * but GLSL specifically allows implementations to deviate from IEEE rules
    * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
    * well).
    */
   nir_ssa_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
                                one, nir_fabs(b, s_over_t));

   /* Calculate the arctangent and fix up the result if we had flipped the
    * coordinate system.
    */
   nir_ssa_def *arc = nir_fadd(b, nir_fmul(b, nir_b2f(b, flip),
                                           nir_imm_float(b, M_PI_2f)),
                               build_atan(b, tan));

   /* Rather convoluted calculation of the sign of the result.  When x < 0 we
    * cannot use fsign because we need to be able to distinguish between
    * negative and positive zero.  We don't use bitwise arithmetic tricks for
    * consistency with the GLSL front-end.  When x >= 0 rcp_scaled_t will
    * always be non-negative so this won't be able to distinguish between
    * negative and positive zero, but we don't care because atan2 is
    * continuous along the whole positive y = 0 half-line, so it won't affect
    * the result significantly.
    */
   return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
                    nir_fneg(b, arc), arc);
}

static nir_ssa_def *
build_frexp32(nir_builder *b, nir_ssa_def *x, nir_ssa_def **exponent)
{
   nir_ssa_def *abs_x = nir_fabs(b, x);
   nir_ssa_def *zero = nir_imm_float(b, 0.0f);

   /* Single-precision floating-point values are stored as
    *   1 sign bit;
    *   8 exponent bits;
    *   23 mantissa bits.
    *
    * An exponent shift of 23 will shift the mantissa out, leaving only the
    * exponent and sign bit (which itself may be zero, if the absolute value
    * was taken before the bitcast and shift.
    */
   nir_ssa_def *exponent_shift = nir_imm_int(b, 23);
   nir_ssa_def *exponent_bias = nir_imm_int(b, -126);

   nir_ssa_def *sign_mantissa_mask = nir_imm_int(b, 0x807fffffu);

   /* Exponent of floating-point values in the range [0.5, 1.0). */
   nir_ssa_def *exponent_value = nir_imm_int(b, 0x3f000000u);

   nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);

   *exponent =
      nir_iadd(b, nir_ushr(b, abs_x, exponent_shift),
                  nir_bcsel(b, is_not_zero, exponent_bias, zero));

   return nir_ior(b, nir_iand(b, x, sign_mantissa_mask),
                     nir_bcsel(b, is_not_zero, exponent_value, zero));
}

static nir_ssa_def *
build_frexp64(nir_builder *b, nir_ssa_def *x, nir_ssa_def **exponent)
{
   nir_ssa_def *abs_x = nir_fabs(b, x);
   nir_ssa_def *zero = nir_imm_double(b, 0.0);
   nir_ssa_def *zero32 = nir_imm_float(b, 0.0f);

   /* Double-precision floating-point values are stored as
    *   1 sign bit;
    *   11 exponent bits;
    *   52 mantissa bits.
    *
    * We only need to deal with the exponent so first we extract the upper 32
    * bits using nir_unpack_64_2x32_split_y.
    */
   nir_ssa_def *upper_x = nir_unpack_64_2x32_split_y(b, x);
   nir_ssa_def *abs_upper_x = nir_unpack_64_2x32_split_y(b, abs_x);

   /* An exponent shift of 20 will shift the remaining mantissa bits out,
    * leaving only the exponent and sign bit (which itself may be zero, if the
    * absolute value was taken before the bitcast and shift.
    */
   nir_ssa_def *exponent_shift = nir_imm_int(b, 20);
   nir_ssa_def *exponent_bias = nir_imm_int(b, -1022);

   nir_ssa_def *sign_mantissa_mask = nir_imm_int(b, 0x800fffffu);

   /* Exponent of floating-point values in the range [0.5, 1.0). */
   nir_ssa_def *exponent_value = nir_imm_int(b, 0x3fe00000u);

   nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);

   *exponent =
      nir_iadd(b, nir_ushr(b, abs_upper_x, exponent_shift),
                  nir_bcsel(b, is_not_zero, exponent_bias, zero32));

   nir_ssa_def *new_upper =
      nir_ior(b, nir_iand(b, upper_x, sign_mantissa_mask),
                 nir_bcsel(b, is_not_zero, exponent_value, zero32));

   nir_ssa_def *lower_x = nir_unpack_64_2x32_split_x(b, x);

   return nir_pack_64_2x32_split(b, lower_x, new_upper);
}

static nir_op
vtn_nir_alu_op_for_spirv_glsl_opcode(struct vtn_builder *b,
                                     enum GLSLstd450 opcode)
{
   switch (opcode) {
   case GLSLstd450Round:         return nir_op_fround_even;
   case GLSLstd450RoundEven:     return nir_op_fround_even;
   case GLSLstd450Trunc:         return nir_op_ftrunc;
   case GLSLstd450FAbs:          return nir_op_fabs;
   case GLSLstd450SAbs:          return nir_op_iabs;
   case GLSLstd450FSign:         return nir_op_fsign;
   case GLSLstd450SSign:         return nir_op_isign;
   case GLSLstd450Floor:         return nir_op_ffloor;
   case GLSLstd450Ceil:          return nir_op_fceil;
   case GLSLstd450Fract:         return nir_op_ffract;
   case GLSLstd450Sin:           return nir_op_fsin;
   case GLSLstd450Cos:           return nir_op_fcos;
   case GLSLstd450Pow:           return nir_op_fpow;
   case GLSLstd450Exp2:          return nir_op_fexp2;
   case GLSLstd450Log2:          return nir_op_flog2;
   case GLSLstd450Sqrt:          return nir_op_fsqrt;
   case GLSLstd450InverseSqrt:   return nir_op_frsq;
   case GLSLstd450NMin:          return nir_op_fmin;
   case GLSLstd450FMin:          return nir_op_fmin;
   case GLSLstd450UMin:          return nir_op_umin;
   case GLSLstd450SMin:          return nir_op_imin;
   case GLSLstd450NMax:          return nir_op_fmax;
   case GLSLstd450FMax:          return nir_op_fmax;
   case GLSLstd450UMax:          return nir_op_umax;
   case GLSLstd450SMax:          return nir_op_imax;
   case GLSLstd450FMix:          return nir_op_flrp;
   case GLSLstd450Fma:           return nir_op_ffma;
   case GLSLstd450Ldexp:         return nir_op_ldexp;
   case GLSLstd450FindILsb:      return nir_op_find_lsb;
   case GLSLstd450FindSMsb:      return nir_op_ifind_msb;
   case GLSLstd450FindUMsb:      return nir_op_ufind_msb;

   /* Packing/Unpacking functions */
   case GLSLstd450PackSnorm4x8:     return nir_op_pack_snorm_4x8;
   case GLSLstd450PackUnorm4x8:     return nir_op_pack_unorm_4x8;
   case GLSLstd450PackSnorm2x16:    return nir_op_pack_snorm_2x16;
   case GLSLstd450PackUnorm2x16:    return nir_op_pack_unorm_2x16;
   case GLSLstd450PackHalf2x16:     return nir_op_pack_half_2x16;
   case GLSLstd450PackDouble2x32:   return nir_op_pack_64_2x32;
   case GLSLstd450UnpackSnorm4x8:   return nir_op_unpack_snorm_4x8;
   case GLSLstd450UnpackUnorm4x8:   return nir_op_unpack_unorm_4x8;
   case GLSLstd450UnpackSnorm2x16:  return nir_op_unpack_snorm_2x16;
   case GLSLstd450UnpackUnorm2x16:  return nir_op_unpack_unorm_2x16;
   case GLSLstd450UnpackHalf2x16:   return nir_op_unpack_half_2x16;
   case GLSLstd450UnpackDouble2x32: return nir_op_unpack_64_2x32;

   default:
      vtn_fail("No NIR equivalent");
   }
}

#define NIR_IMM_FP(n, v) (nir_imm_floatN_t(n, v, src[0]->bit_size))

static void
handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint,
                   const uint32_t *w, unsigned count)
{
   struct nir_builder *nb = &b->nb;
   const struct glsl_type *dest_type =
      vtn_value(b, w[1], vtn_value_type_type)->type->type;

   struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
   val->ssa = vtn_create_ssa_value(b, dest_type);

   /* Collect the various SSA sources */
   unsigned num_inputs = count - 5;
   nir_ssa_def *src[3] = { NULL, };
   for (unsigned i = 0; i < num_inputs; i++) {
      /* These are handled specially below */
      if (vtn_untyped_value(b, w[i + 5])->value_type == vtn_value_type_pointer)
         continue;

      src[i] = vtn_ssa_value(b, w[i + 5])->def;
   }

   switch (entrypoint) {
   case GLSLstd450Radians:
      val->ssa->def = nir_fmul(nb, src[0], nir_imm_float(nb, 0.01745329251));
      return;
   case GLSLstd450Degrees:
      val->ssa->def = nir_fmul(nb, src[0], nir_imm_float(nb, 57.2957795131));
      return;
   case GLSLstd450Tan:
      val->ssa->def = nir_fdiv(nb, nir_fsin(nb, src[0]),
                               nir_fcos(nb, src[0]));
      return;

   case GLSLstd450Modf: {
      nir_ssa_def *sign = nir_fsign(nb, src[0]);
      nir_ssa_def *abs = nir_fabs(nb, src[0]);
      val->ssa->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
      nir_store_deref(nb, vtn_nir_deref(b, w[6]),
                      nir_fmul(nb, sign, nir_ffloor(nb, abs)), 0xf);
      return;
   }

   case GLSLstd450ModfStruct: {
      nir_ssa_def *sign = nir_fsign(nb, src[0]);
      nir_ssa_def *abs = nir_fabs(nb, src[0]);
      vtn_assert(glsl_type_is_struct(val->ssa->type));
      val->ssa->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
      val->ssa->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
      return;
   }

   case GLSLstd450Step:
      val->ssa->def = nir_sge(nb, src[1], src[0]);
      return;

   case GLSLstd450Length:
      val->ssa->def = build_length(nb, src[0]);
      return;
   case GLSLstd450Distance:
      val->ssa->def = build_length(nb, nir_fsub(nb, src[0], src[1]));
      return;
   case GLSLstd450Normalize:
      val->ssa->def = nir_fdiv(nb, src[0], build_length(nb, src[0]));
      return;

   case GLSLstd450Exp:
      val->ssa->def = build_exp(nb, src[0]);
      return;

   case GLSLstd450Log:
      val->ssa->def = build_log(nb, src[0]);
      return;

   case GLSLstd450FClamp:
   case GLSLstd450NClamp:
      val->ssa->def = build_fclamp(nb, src[0], src[1], src[2]);
      return;
   case GLSLstd450UClamp:
      val->ssa->def = nir_umin(nb, nir_umax(nb, src[0], src[1]), src[2]);
      return;
   case GLSLstd450SClamp:
      val->ssa->def = nir_imin(nb, nir_imax(nb, src[0], src[1]), src[2]);
      return;

   case GLSLstd450Cross: {
      unsigned yzx[4] = { 1, 2, 0, 0 };
      unsigned zxy[4] = { 2, 0, 1, 0 };
      val->ssa->def =
         nir_fsub(nb, nir_fmul(nb, nir_swizzle(nb, src[0], yzx, 3, true),
                                   nir_swizzle(nb, src[1], zxy, 3, true)),
                      nir_fmul(nb, nir_swizzle(nb, src[0], zxy, 3, true),
                                   nir_swizzle(nb, src[1], yzx, 3, true)));
      return;
   }

   case GLSLstd450SmoothStep: {
      /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
      nir_ssa_def *t =
         build_fclamp(nb, nir_fdiv(nb, nir_fsub(nb, src[2], src[0]),
                                       nir_fsub(nb, src[1], src[0])),
                          NIR_IMM_FP(nb, 0.0), NIR_IMM_FP(nb, 1.0));
      /* result = t * t * (3 - 2 * t) */
      val->ssa->def =
         nir_fmul(nb, t, nir_fmul(nb, t,
            nir_fsub(nb, NIR_IMM_FP(nb, 3.0),
                         nir_fmul(nb, NIR_IMM_FP(nb, 2.0), t))));
      return;
   }

   case GLSLstd450FaceForward:
      val->ssa->def =
         nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]),
                                   NIR_IMM_FP(nb, 0.0)),
                       src[0], nir_fneg(nb, src[0]));
      return;

   case GLSLstd450Reflect:
      /* I - 2 * dot(N, I) * N */
      val->ssa->def =
         nir_fsub(nb, src[0], nir_fmul(nb, NIR_IMM_FP(nb, 2.0),
                              nir_fmul(nb, nir_fdot(nb, src[0], src[1]),
                                           src[1])));
      return;

   case GLSLstd450Refract: {
      nir_ssa_def *I = src[0];
      nir_ssa_def *N = src[1];
      nir_ssa_def *eta = src[2];
      nir_ssa_def *n_dot_i = nir_fdot(nb, N, I);
      nir_ssa_def *one = NIR_IMM_FP(nb, 1.0);
      nir_ssa_def *zero = NIR_IMM_FP(nb, 0.0);
      /* According to the SPIR-V and GLSL specs, eta is always a float
       * regardless of the type of the other operands. However in practice it
       * seems that if you try to pass it a float then glslang will just
       * promote it to a double and generate invalid SPIR-V. In order to
       * support a hypothetical fixed version of glslang we’ll promote eta to
       * double if the other operands are double also.
       */
      if (I->bit_size != eta->bit_size) {
         nir_op conversion_op =
            nir_type_conversion_op(nir_type_float | eta->bit_size,
                                   nir_type_float | I->bit_size,
                                   nir_rounding_mode_undef);
         eta = nir_build_alu(nb, conversion_op, eta, NULL, NULL, NULL);
      }
      /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */
      nir_ssa_def *k =
         nir_fsub(nb, one, nir_fmul(nb, eta, nir_fmul(nb, eta,
                      nir_fsub(nb, one, nir_fmul(nb, n_dot_i, n_dot_i)))));
      nir_ssa_def *result =
         nir_fsub(nb, nir_fmul(nb, eta, I),
                      nir_fmul(nb, nir_fadd(nb, nir_fmul(nb, eta, n_dot_i),
                                                nir_fsqrt(nb, k)), N));
      /* XXX: bcsel, or if statement? */
      val->ssa->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result);
      return;
   }

   case GLSLstd450Sinh:
      /* 0.5 * (e^x - e^(-x)) */
      val->ssa->def =
         nir_fmul(nb, nir_imm_float(nb, 0.5f),
                      nir_fsub(nb, build_exp(nb, src[0]),
                                   build_exp(nb, nir_fneg(nb, src[0]))));
      return;

   case GLSLstd450Cosh:
      /* 0.5 * (e^x + e^(-x)) */
      val->ssa->def =
         nir_fmul(nb, nir_imm_float(nb, 0.5f),
                      nir_fadd(nb, build_exp(nb, src[0]),
                                   build_exp(nb, nir_fneg(nb, src[0]))));
      return;

   case GLSLstd450Tanh: {
      /* tanh(x) := (0.5 * (e^x - e^(-x))) / (0.5 * (e^x + e^(-x)))
       *
       * With a little algebra this reduces to (e^2x - 1) / (e^2x + 1)
       *
       * We clamp x to (-inf, +10] to avoid precision problems.  When x > 10,
       * e^2x is so much larger than 1.0 that 1.0 gets flushed to zero in the
       * computation e^2x +/- 1 so it can be ignored.
       */
      nir_ssa_def *x = nir_fmin(nb, src[0], nir_imm_float(nb, 10));
      nir_ssa_def *exp2x = build_exp(nb, nir_fmul(nb, x, nir_imm_float(nb, 2)));
      val->ssa->def = nir_fdiv(nb, nir_fsub(nb, exp2x, nir_imm_float(nb, 1)),
                                   nir_fadd(nb, exp2x, nir_imm_float(nb, 1)));
      return;
   }

   case GLSLstd450Asinh:
      val->ssa->def = nir_fmul(nb, nir_fsign(nb, src[0]),
         build_log(nb, nir_fadd(nb, nir_fabs(nb, src[0]),
                       nir_fsqrt(nb, nir_fadd(nb, nir_fmul(nb, src[0], src[0]),
                                                  nir_imm_float(nb, 1.0f))))));
      return;
   case GLSLstd450Acosh:
      val->ssa->def = build_log(nb, nir_fadd(nb, src[0],
         nir_fsqrt(nb, nir_fsub(nb, nir_fmul(nb, src[0], src[0]),
                                    nir_imm_float(nb, 1.0f)))));
      return;
   case GLSLstd450Atanh: {
      nir_ssa_def *one = nir_imm_float(nb, 1.0);
      val->ssa->def = nir_fmul(nb, nir_imm_float(nb, 0.5f),
         build_log(nb, nir_fdiv(nb, nir_fadd(nb, one, src[0]),
                                    nir_fsub(nb, one, src[0]))));
      return;
   }

   case GLSLstd450Asin:
      val->ssa->def = build_asin(nb, src[0], 0.086566724, -0.03102955);
      return;

   case GLSLstd450Acos:
      val->ssa->def = nir_fsub(nb, nir_imm_float(nb, M_PI_2f),
                               build_asin(nb, src[0], 0.08132463, -0.02363318));
      return;

   case GLSLstd450Atan:
      val->ssa->def = build_atan(nb, src[0]);
      return;

   case GLSLstd450Atan2:
      val->ssa->def = build_atan2(nb, src[0], src[1]);
      return;

   case GLSLstd450Frexp: {
      nir_ssa_def *exponent;
      if (src[0]->bit_size == 64)
         val->ssa->def = build_frexp64(nb, src[0], &exponent);
      else
         val->ssa->def = build_frexp32(nb, src[0], &exponent);
      nir_store_deref(nb, vtn_nir_deref(b, w[6]), exponent, 0xf);
      return;
   }

   case GLSLstd450FrexpStruct: {
      vtn_assert(glsl_type_is_struct(val->ssa->type));
      if (src[0]->bit_size == 64)
         val->ssa->elems[0]->def = build_frexp64(nb, src[0],
                                                 &val->ssa->elems[1]->def);
      else
         val->ssa->elems[0]->def = build_frexp32(nb, src[0],
                                                 &val->ssa->elems[1]->def);
      return;
   }

   default:
      val->ssa->def =
         nir_build_alu(&b->nb,
                       vtn_nir_alu_op_for_spirv_glsl_opcode(b, entrypoint),
                       src[0], src[1], src[2], NULL);
      return;
   }
}

static void
handle_glsl450_interpolation(struct vtn_builder *b, enum GLSLstd450 opcode,
                             const uint32_t *w, unsigned count)
{
   const struct glsl_type *dest_type =
      vtn_value(b, w[1], vtn_value_type_type)->type->type;

   struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
   val->ssa = vtn_create_ssa_value(b, dest_type);

   nir_intrinsic_op op;
   switch (opcode) {
   case GLSLstd450InterpolateAtCentroid:
      op = nir_intrinsic_interp_deref_at_centroid;
      break;
   case GLSLstd450InterpolateAtSample:
      op = nir_intrinsic_interp_deref_at_sample;
      break;
   case GLSLstd450InterpolateAtOffset:
      op = nir_intrinsic_interp_deref_at_offset;
      break;
   default:
      vtn_fail("Invalid opcode");
   }

   nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->nb.shader, op);

   struct vtn_pointer *ptr =
      vtn_value(b, w[5], vtn_value_type_pointer)->pointer;
   intrin->src[0] = nir_src_for_ssa(&vtn_pointer_to_deref(b, ptr)->dest.ssa);

   switch (opcode) {
   case GLSLstd450InterpolateAtCentroid:
      break;
   case GLSLstd450InterpolateAtSample:
   case GLSLstd450InterpolateAtOffset:
      intrin->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
      break;
   default:
      vtn_fail("Invalid opcode");
   }

   intrin->num_components = glsl_get_vector_elements(dest_type);
   nir_ssa_dest_init(&intrin->instr, &intrin->dest,
                     glsl_get_vector_elements(dest_type),
                     glsl_get_bit_size(dest_type), NULL);
   val->ssa->def = &intrin->dest.ssa;

   nir_builder_instr_insert(&b->nb, &intrin->instr);
}

bool
vtn_handle_glsl450_instruction(struct vtn_builder *b, SpvOp ext_opcode,
                               const uint32_t *w, unsigned count)
{
   switch ((enum GLSLstd450)ext_opcode) {
   case GLSLstd450Determinant: {
      struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
      val->ssa = rzalloc(b, struct vtn_ssa_value);
      val->ssa->type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
      val->ssa->def = build_mat_det(b, vtn_ssa_value(b, w[5]));
      break;
   }

   case GLSLstd450MatrixInverse: {
      struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
      val->ssa = matrix_inverse(b, vtn_ssa_value(b, w[5]));
      break;
   }

   case GLSLstd450InterpolateAtCentroid:
   case GLSLstd450InterpolateAtSample:
   case GLSLstd450InterpolateAtOffset:
      handle_glsl450_interpolation(b, ext_opcode, w, count);
      break;

   default:
      handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count);
   }

   return true;
}