1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
|
#
# Copyright (C) 2014 Connor Abbott
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# Authors:
# Connor Abbott (cwabbott0@gmail.com)
import re
# Class that represents all the information we have about the opcode
# NOTE: this must be kept in sync with nir_op_info
class Opcode(object):
"""Class that represents all the information we have about the opcode
NOTE: this must be kept in sync with nir_op_info
"""
def __init__(self, name, output_size, output_type, input_sizes,
input_types, is_conversion, algebraic_properties, const_expr):
"""Parameters:
- name is the name of the opcode (prepend nir_op_ for the enum name)
- all types are strings that get nir_type_ prepended to them
- input_types is a list of types
- is_conversion is true if this opcode represents a type conversion
- algebraic_properties is a space-seperated string, where nir_op_is_ is
prepended before each entry
- const_expr is an expression or series of statements that computes the
constant value of the opcode given the constant values of its inputs.
Constant expressions are formed from the variables src0, src1, ...,
src(N-1), where N is the number of arguments. The output of the
expression should be stored in the dst variable. Per-component input
and output variables will be scalars and non-per-component input and
output variables will be a struct with fields named x, y, z, and w
all of the correct type. Input and output variables can be assumed
to already be of the correct type and need no conversion. In
particular, the conversion from the C bool type to/from NIR_TRUE and
NIR_FALSE happens automatically.
For per-component instructions, the entire expression will be
executed once for each component. For non-per-component
instructions, the expression is expected to store the correct values
in dst.x, dst.y, etc. If "dst" does not exist anywhere in the
constant expression, an assignment to dst will happen automatically
and the result will be equivalent to "dst = <expression>" for
per-component instructions and "dst.x = dst.y = ... = <expression>"
for non-per-component instructions.
"""
assert isinstance(name, str)
assert isinstance(output_size, int)
assert isinstance(output_type, str)
assert isinstance(input_sizes, list)
assert isinstance(input_sizes[0], int)
assert isinstance(input_types, list)
assert isinstance(input_types[0], str)
assert isinstance(is_conversion, bool)
assert isinstance(algebraic_properties, str)
assert isinstance(const_expr, str)
assert len(input_sizes) == len(input_types)
assert 0 <= output_size <= 4
for size in input_sizes:
assert 0 <= size <= 4
if output_size != 0:
assert size != 0
self.name = name
self.num_inputs = len(input_sizes)
self.output_size = output_size
self.output_type = output_type
self.input_sizes = input_sizes
self.input_types = input_types
self.is_conversion = is_conversion
self.algebraic_properties = algebraic_properties
self.const_expr = const_expr
# helper variables for strings
tfloat = "float"
tint = "int"
tbool = "bool"
tbool1 = "bool1"
tbool32 = "bool32"
tuint = "uint"
tuint16 = "uint16"
tfloat32 = "float32"
tint32 = "int32"
tuint32 = "uint32"
tint64 = "int64"
tuint64 = "uint64"
tfloat64 = "float64"
_TYPE_SPLIT_RE = re.compile(r'(?P<type>int|uint|float|bool)(?P<bits>\d+)?')
def type_has_size(type_):
m = _TYPE_SPLIT_RE.match(type_)
assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
return m.group('bits') is not None
def type_size(type_):
m = _TYPE_SPLIT_RE.match(type_)
assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
assert m.group('bits') is not None, \
'NIR type string has no bit size: "{}"'.format(type_)
return int(m.group('bits'))
def type_sizes(type_):
if type_has_size(type_):
return [type_size(type_)]
elif type_ == 'bool':
return [1, 32]
elif type_ == 'float':
return [16, 32, 64]
else:
return [1, 8, 16, 32, 64]
def type_base_type(type_):
m = _TYPE_SPLIT_RE.match(type_)
assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
return m.group('type')
# Operation where the first two sources are commutative.
#
# For 2-source operations, this just mathematical commutativity. Some
# 3-source operations, like ffma, are only commutative in the first two
# sources.
_2src_commutative = "2src_commutative "
associative = "associative "
# global dictionary of opcodes
opcodes = {}
def opcode(name, output_size, output_type, input_sizes, input_types,
is_conversion, algebraic_properties, const_expr):
assert name not in opcodes
opcodes[name] = Opcode(name, output_size, output_type, input_sizes,
input_types, is_conversion, algebraic_properties,
const_expr)
def unop_convert(name, out_type, in_type, const_expr):
opcode(name, 0, out_type, [0], [in_type], False, "", const_expr)
def unop(name, ty, const_expr):
opcode(name, 0, ty, [0], [ty], False, "", const_expr)
def unop_horiz(name, output_size, output_type, input_size, input_type,
const_expr):
opcode(name, output_size, output_type, [input_size], [input_type],
False, "", const_expr)
def unop_reduce(name, output_size, output_type, input_type, prereduce_expr,
reduce_expr, final_expr):
def prereduce(src):
return "(" + prereduce_expr.format(src=src) + ")"
def final(src):
return final_expr.format(src="(" + src + ")")
def reduce_(src0, src1):
return reduce_expr.format(src0=src0, src1=src1)
src0 = prereduce("src0.x")
src1 = prereduce("src0.y")
src2 = prereduce("src0.z")
src3 = prereduce("src0.w")
unop_horiz(name + "2", output_size, output_type, 2, input_type,
final(reduce_(src0, src1)))
unop_horiz(name + "3", output_size, output_type, 3, input_type,
final(reduce_(reduce_(src0, src1), src2)))
unop_horiz(name + "4", output_size, output_type, 4, input_type,
final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
def unop_numeric_convert(name, out_type, in_type, const_expr):
opcode(name, 0, out_type, [0], [in_type], True, "", const_expr)
unop("mov", tuint, "src0")
unop("ineg", tint, "-src0")
unop("fneg", tfloat, "-src0")
unop("inot", tint, "~src0") # invert every bit of the integer
unop("fsign", tfloat, ("bit_size == 64 ? " +
"((src0 == 0.0) ? 0.0 : ((src0 > 0.0) ? 1.0 : -1.0)) : " +
"((src0 == 0.0f) ? 0.0f : ((src0 > 0.0f) ? 1.0f : -1.0f))"))
unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)")
unop("iabs", tint, "(src0 < 0) ? -src0 : src0")
unop("fabs", tfloat, "fabs(src0)")
unop("fsat", tfloat, ("bit_size == 64 ? " +
"((src0 > 1.0) ? 1.0 : ((src0 <= 0.0) ? 0.0 : src0)) : " +
"((src0 > 1.0f) ? 1.0f : ((src0 <= 0.0f) ? 0.0f : src0))"))
unop("frcp", tfloat, "bit_size == 64 ? 1.0 / src0 : 1.0f / src0")
unop("frsq", tfloat, "bit_size == 64 ? 1.0 / sqrt(src0) : 1.0f / sqrtf(src0)")
unop("fsqrt", tfloat, "bit_size == 64 ? sqrt(src0) : sqrtf(src0)")
unop("fexp2", tfloat, "exp2f(src0)")
unop("flog2", tfloat, "log2f(src0)")
# Generate all of the numeric conversion opcodes
for src_t in [tint, tuint, tfloat, tbool]:
if src_t == tbool:
dst_types = [tfloat, tint]
elif src_t == tint:
dst_types = [tfloat, tint, tbool]
elif src_t == tuint:
dst_types = [tfloat, tuint]
elif src_t == tfloat:
dst_types = [tint, tuint, tfloat, tbool]
for dst_t in dst_types:
for bit_size in type_sizes(dst_t):
if bit_size == 16 and dst_t == tfloat and src_t == tfloat:
rnd_modes = ['_rtne', '_rtz', '']
for rnd_mode in rnd_modes:
unop_numeric_convert("{0}2{1}{2}{3}".format(src_t[0], dst_t[0],
bit_size, rnd_mode),
dst_t + str(bit_size), src_t, "src0")
else:
conv_expr = "src0 != 0" if dst_t == tbool else "src0"
unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0], bit_size),
dst_t + str(bit_size), src_t, conv_expr)
# Unary floating-point rounding operations.
unop("ftrunc", tfloat, "bit_size == 64 ? trunc(src0) : truncf(src0)")
unop("fceil", tfloat, "bit_size == 64 ? ceil(src0) : ceilf(src0)")
unop("ffloor", tfloat, "bit_size == 64 ? floor(src0) : floorf(src0)")
unop("ffract", tfloat, "src0 - (bit_size == 64 ? floor(src0) : floorf(src0))")
unop("fround_even", tfloat, "bit_size == 64 ? _mesa_roundeven(src0) : _mesa_roundevenf(src0)")
unop("fquantize2f16", tfloat, "(fabs(src0) < ldexpf(1.0, -14)) ? copysignf(0.0f, src0) : _mesa_half_to_float(_mesa_float_to_half(src0))")
# Trigonometric operations.
unop("fsin", tfloat, "bit_size == 64 ? sin(src0) : sinf(src0)")
unop("fcos", tfloat, "bit_size == 64 ? cos(src0) : cosf(src0)")
# dfrexp
unop_convert("frexp_exp", tint32, tfloat, "frexp(src0, &dst);")
unop_convert("frexp_sig", tfloat, tfloat, "int n; dst = frexp(src0, &n);")
# Partial derivatives.
unop("fddx", tfloat, "0.0") # the derivative of a constant is 0.
unop("fddy", tfloat, "0.0")
unop("fddx_fine", tfloat, "0.0")
unop("fddy_fine", tfloat, "0.0")
unop("fddx_coarse", tfloat, "0.0")
unop("fddy_coarse", tfloat, "0.0")
# Floating point pack and unpack operations.
def pack_2x16(fmt):
unop_horiz("pack_" + fmt + "_2x16", 1, tuint32, 2, tfloat32, """
dst.x = (uint32_t) pack_fmt_1x16(src0.x);
dst.x |= ((uint32_t) pack_fmt_1x16(src0.y)) << 16;
""".replace("fmt", fmt))
def pack_4x8(fmt):
unop_horiz("pack_" + fmt + "_4x8", 1, tuint32, 4, tfloat32, """
dst.x = (uint32_t) pack_fmt_1x8(src0.x);
dst.x |= ((uint32_t) pack_fmt_1x8(src0.y)) << 8;
dst.x |= ((uint32_t) pack_fmt_1x8(src0.z)) << 16;
dst.x |= ((uint32_t) pack_fmt_1x8(src0.w)) << 24;
""".replace("fmt", fmt))
def unpack_2x16(fmt):
unop_horiz("unpack_" + fmt + "_2x16", 2, tfloat32, 1, tuint32, """
dst.x = unpack_fmt_1x16((uint16_t)(src0.x & 0xffff));
dst.y = unpack_fmt_1x16((uint16_t)(src0.x << 16));
""".replace("fmt", fmt))
def unpack_4x8(fmt):
unop_horiz("unpack_" + fmt + "_4x8", 4, tfloat32, 1, tuint32, """
dst.x = unpack_fmt_1x8((uint8_t)(src0.x & 0xff));
dst.y = unpack_fmt_1x8((uint8_t)((src0.x >> 8) & 0xff));
dst.z = unpack_fmt_1x8((uint8_t)((src0.x >> 16) & 0xff));
dst.w = unpack_fmt_1x8((uint8_t)(src0.x >> 24));
""".replace("fmt", fmt))
pack_2x16("snorm")
pack_4x8("snorm")
pack_2x16("unorm")
pack_4x8("unorm")
pack_2x16("half")
unpack_2x16("snorm")
unpack_4x8("snorm")
unpack_2x16("unorm")
unpack_4x8("unorm")
unpack_2x16("half")
unop_horiz("pack_uvec2_to_uint", 1, tuint32, 2, tuint32, """
dst.x = (src0.x & 0xffff) | (src0.y << 16);
""")
unop_horiz("pack_uvec4_to_uint", 1, tuint32, 4, tuint32, """
dst.x = (src0.x << 0) |
(src0.y << 8) |
(src0.z << 16) |
(src0.w << 24);
""")
unop_horiz("pack_32_2x16", 1, tuint32, 2, tuint16,
"dst.x = src0.x | ((uint32_t)src0.y << 16);")
unop_horiz("pack_64_2x32", 1, tuint64, 2, tuint32,
"dst.x = src0.x | ((uint64_t)src0.y << 32);")
unop_horiz("pack_64_4x16", 1, tuint64, 4, tuint16,
"dst.x = src0.x | ((uint64_t)src0.y << 16) | ((uint64_t)src0.z << 32) | ((uint64_t)src0.w << 48);")
unop_horiz("unpack_64_2x32", 2, tuint32, 1, tuint64,
"dst.x = src0.x; dst.y = src0.x >> 32;")
unop_horiz("unpack_64_4x16", 4, tuint16, 1, tuint64,
"dst.x = src0.x; dst.y = src0.x >> 16; dst.z = src0.x >> 32; dst.w = src0.w >> 48;")
unop_horiz("unpack_32_2x16", 2, tuint16, 1, tuint32,
"dst.x = src0.x; dst.y = src0.x >> 16;")
# Lowered floating point unpacking operations.
unop_convert("unpack_half_2x16_split_x", tfloat32, tuint32,
"unpack_half_1x16((uint16_t)(src0 & 0xffff))")
unop_convert("unpack_half_2x16_split_y", tfloat32, tuint32,
"unpack_half_1x16((uint16_t)(src0 >> 16))")
unop_convert("unpack_32_2x16_split_x", tuint16, tuint32, "src0")
unop_convert("unpack_32_2x16_split_y", tuint16, tuint32, "src0 >> 16")
unop_convert("unpack_64_2x32_split_x", tuint32, tuint64, "src0")
unop_convert("unpack_64_2x32_split_y", tuint32, tuint64, "src0 >> 32")
# Bit operations, part of ARB_gpu_shader5.
unop("bitfield_reverse", tuint32, """
/* we're not winning any awards for speed here, but that's ok */
dst = 0;
for (unsigned bit = 0; bit < 32; bit++)
dst |= ((src0 >> bit) & 1) << (31 - bit);
""")
unop_convert("bit_count", tuint32, tuint, """
dst = 0;
for (unsigned bit = 0; bit < bit_size; bit++) {
if ((src0 >> bit) & 1)
dst++;
}
""")
unop_convert("ufind_msb", tint32, tuint, """
dst = -1;
for (int bit = bit_size - 1; bit >= 0; bit--) {
if ((src0 >> bit) & 1) {
dst = bit;
break;
}
}
""")
unop("ifind_msb", tint32, """
dst = -1;
for (int bit = 31; bit >= 0; bit--) {
/* If src0 < 0, we're looking for the first 0 bit.
* if src0 >= 0, we're looking for the first 1 bit.
*/
if ((((src0 >> bit) & 1) && (src0 >= 0)) ||
(!((src0 >> bit) & 1) && (src0 < 0))) {
dst = bit;
break;
}
}
""")
unop_convert("find_lsb", tint32, tint, """
dst = -1;
for (unsigned bit = 0; bit < bit_size; bit++) {
if ((src0 >> bit) & 1) {
dst = bit;
break;
}
}
""")
for i in range(1, 5):
for j in range(1, 5):
unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat, "0.0f")
# AMD_gcn_shader extended instructions
unop_horiz("cube_face_coord", 2, tfloat32, 3, tfloat32, """
dst.x = dst.y = 0.0;
float absX = fabs(src0.x);
float absY = fabs(src0.y);
float absZ = fabs(src0.z);
float ma = 0.0;
if (absX >= absY && absX >= absZ) { ma = 2 * src0.x; }
if (absY >= absX && absY >= absZ) { ma = 2 * src0.y; }
if (absZ >= absX && absZ >= absY) { ma = 2 * src0.z; }
if (src0.x >= 0 && absX >= absY && absX >= absZ) { dst.x = -src0.z; dst.y = -src0.y; }
if (src0.x < 0 && absX >= absY && absX >= absZ) { dst.x = src0.z; dst.y = -src0.y; }
if (src0.y >= 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = src0.z; }
if (src0.y < 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = -src0.z; }
if (src0.z >= 0 && absZ >= absX && absZ >= absY) { dst.x = src0.x; dst.y = -src0.y; }
if (src0.z < 0 && absZ >= absX && absZ >= absY) { dst.x = -src0.x; dst.y = -src0.y; }
dst.x = dst.x / ma + 0.5;
dst.y = dst.y / ma + 0.5;
""")
unop_horiz("cube_face_index", 1, tfloat32, 3, tfloat32, """
float absX = fabs(src0.x);
float absY = fabs(src0.y);
float absZ = fabs(src0.z);
if (src0.x >= 0 && absX >= absY && absX >= absZ) dst.x = 0;
if (src0.x < 0 && absX >= absY && absX >= absZ) dst.x = 1;
if (src0.y >= 0 && absY >= absX && absY >= absZ) dst.x = 2;
if (src0.y < 0 && absY >= absX && absY >= absZ) dst.x = 3;
if (src0.z >= 0 && absZ >= absX && absZ >= absY) dst.x = 4;
if (src0.z < 0 && absZ >= absX && absZ >= absY) dst.x = 5;
""")
# Sum of vector components
unop_reduce("fsum", 1, tfloat, tfloat, "{src}", "{src0} + {src1}", "{src}")
def binop_convert(name, out_type, in_type, alg_props, const_expr):
opcode(name, 0, out_type, [0, 0], [in_type, in_type],
False, alg_props, const_expr)
def binop(name, ty, alg_props, const_expr):
binop_convert(name, ty, ty, alg_props, const_expr)
def binop_compare(name, ty, alg_props, const_expr):
binop_convert(name, tbool1, ty, alg_props, const_expr)
def binop_compare32(name, ty, alg_props, const_expr):
binop_convert(name, tbool32, ty, alg_props, const_expr)
def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size,
src2_type, const_expr):
opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type],
False, "", const_expr)
def binop_reduce(name, output_size, output_type, src_type, prereduce_expr,
reduce_expr, final_expr):
def final(src):
return final_expr.format(src= "(" + src + ")")
def reduce_(src0, src1):
return reduce_expr.format(src0=src0, src1=src1)
def prereduce(src0, src1):
return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")"
src0 = prereduce("src0.x", "src1.x")
src1 = prereduce("src0.y", "src1.y")
src2 = prereduce("src0.z", "src1.z")
src3 = prereduce("src0.w", "src1.w")
opcode(name + "2", output_size, output_type,
[2, 2], [src_type, src_type], False, _2src_commutative,
final(reduce_(src0, src1)))
opcode(name + "3", output_size, output_type,
[3, 3], [src_type, src_type], False, _2src_commutative,
final(reduce_(reduce_(src0, src1), src2)))
opcode(name + "4", output_size, output_type,
[4, 4], [src_type, src_type], False, _2src_commutative,
final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
binop("fadd", tfloat, _2src_commutative + associative, "src0 + src1")
binop("iadd", tint, _2src_commutative + associative, "src0 + src1")
binop("iadd_sat", tint, _2src_commutative, """
src1 > 0 ?
(src0 + src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 + src1) :
(src0 < src0 + src1 ? (1ull << (bit_size - 1)) : src0 + src1)
""")
binop("uadd_sat", tuint, _2src_commutative,
"(src0 + src1) < src0 ? MAX_UINT_FOR_SIZE(sizeof(src0) * 8) : (src0 + src1)")
binop("isub_sat", tint, "", """
src1 < 0 ?
(src0 - src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 - src1) :
(src0 < src0 - src1 ? (1ull << (bit_size - 1)) : src0 - src1)
""")
binop("usub_sat", tuint, "", "src0 < src1 ? 0 : src0 - src1")
binop("fsub", tfloat, "", "src0 - src1")
binop("isub", tint, "", "src0 - src1")
binop("fmul", tfloat, _2src_commutative + associative, "src0 * src1")
# low 32-bits of signed/unsigned integer multiply
binop("imul", tint, _2src_commutative + associative, "src0 * src1")
# Generate 64 bit result from 2 32 bits quantity
binop_convert("imul_2x32_64", tint64, tint32, _2src_commutative,
"(int64_t)src0 * (int64_t)src1")
binop_convert("umul_2x32_64", tuint64, tuint32, _2src_commutative,
"(uint64_t)src0 * (uint64_t)src1")
# high 32-bits of signed integer multiply
binop("imul_high", tint, _2src_commutative, """
if (bit_size == 64) {
/* We need to do a full 128-bit x 128-bit multiply in order for the sign
* extension to work properly. The casts are kind-of annoying but needed
* to prevent compiler warnings.
*/
uint32_t src0_u32[4] = {
src0,
(int64_t)src0 >> 32,
(int64_t)src0 >> 63,
(int64_t)src0 >> 63,
};
uint32_t src1_u32[4] = {
src1,
(int64_t)src1 >> 32,
(int64_t)src1 >> 63,
(int64_t)src1 >> 63,
};
uint32_t prod_u32[4];
ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
} else {
dst = ((int64_t)src0 * (int64_t)src1) >> bit_size;
}
""")
# high 32-bits of unsigned integer multiply
binop("umul_high", tuint, _2src_commutative, """
if (bit_size == 64) {
/* The casts are kind-of annoying but needed to prevent compiler warnings. */
uint32_t src0_u32[2] = { src0, (uint64_t)src0 >> 32 };
uint32_t src1_u32[2] = { src1, (uint64_t)src1 >> 32 };
uint32_t prod_u32[4];
ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
} else {
dst = ((uint64_t)src0 * (uint64_t)src1) >> bit_size;
}
""")
# low 32-bits of unsigned integer multiply
binop("umul_low", tuint32, _2src_commutative, """
uint64_t mask = (1 << (bit_size / 2)) - 1;
dst = ((uint64_t)src0 & mask) * ((uint64_t)src1 & mask);
""")
binop("fdiv", tfloat, "", "src0 / src1")
binop("idiv", tint, "", "src1 == 0 ? 0 : (src0 / src1)")
binop("udiv", tuint, "", "src1 == 0 ? 0 : (src0 / src1)")
# returns a boolean representing the carry resulting from the addition of
# the two unsigned arguments.
binop_convert("uadd_carry", tuint, tuint, _2src_commutative, "src0 + src1 < src0")
# returns a boolean representing the borrow resulting from the subtraction
# of the two unsigned arguments.
binop_convert("usub_borrow", tuint, tuint, "", "src0 < src1")
# hadd: (a + b) >> 1 (without overflow)
# x + y = x - (x & ~y) + (x & ~y) + y - (~x & y) + (~x & y)
# = (x & y) + (x & ~y) + (x & y) + (~x & y)
# = 2 * (x & y) + (x & ~y) + (~x & y)
# = ((x & y) << 1) + (x ^ y)
#
# Since we know that the bottom bit of (x & y) << 1 is zero,
#
# (x + y) >> 1 = (((x & y) << 1) + (x ^ y)) >> 1
# = (x & y) + ((x ^ y) >> 1)
binop("ihadd", tint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
binop("uhadd", tuint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
# rhadd: (a + b + 1) >> 1 (without overflow)
# x + y + 1 = x + (~x & y) - (~x & y) + y + (x & ~y) - (x & ~y) + 1
# = (x | y) - (~x & y) + (x | y) - (x & ~y) + 1
# = 2 * (x | y) - ((~x & y) + (x & ~y)) + 1
# = ((x | y) << 1) - (x ^ y) + 1
#
# Since we know that the bottom bit of (x & y) << 1 is zero,
#
# (x + y + 1) >> 1 = (x | y) + (-(x ^ y) + 1) >> 1)
# = (x | y) - ((x ^ y) >> 1)
binop("irhadd", tint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)")
binop("urhadd", tuint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)")
binop("umod", tuint, "", "src1 == 0 ? 0 : src0 % src1")
# For signed integers, there are several different possible definitions of
# "modulus" or "remainder". We follow the conventions used by LLVM and
# SPIR-V. The irem opcode implements the standard C/C++ signed "%"
# operation while the imod opcode implements the more mathematical
# "modulus" operation. For details on the difference, see
#
# http://mathforum.org/library/drmath/view/52343.html
binop("irem", tint, "", "src1 == 0 ? 0 : src0 % src1")
binop("imod", tint, "",
"src1 == 0 ? 0 : ((src0 % src1 == 0 || (src0 >= 0) == (src1 >= 0)) ?"
" src0 % src1 : src0 % src1 + src1)")
binop("fmod", tfloat, "", "src0 - src1 * floorf(src0 / src1)")
binop("frem", tfloat, "", "src0 - src1 * truncf(src0 / src1)")
#
# Comparisons
#
# these integer-aware comparisons return a boolean (0 or ~0)
binop_compare("flt", tfloat, "", "src0 < src1")
binop_compare("fge", tfloat, "", "src0 >= src1")
binop_compare("feq", tfloat, _2src_commutative, "src0 == src1")
binop_compare("fne", tfloat, _2src_commutative, "src0 != src1")
binop_compare("ilt", tint, "", "src0 < src1")
binop_compare("ige", tint, "", "src0 >= src1")
binop_compare("ieq", tint, _2src_commutative, "src0 == src1")
binop_compare("ine", tint, _2src_commutative, "src0 != src1")
binop_compare("ult", tuint, "", "src0 < src1")
binop_compare("uge", tuint, "", "src0 >= src1")
binop_compare32("flt32", tfloat, "", "src0 < src1")
binop_compare32("fge32", tfloat, "", "src0 >= src1")
binop_compare32("feq32", tfloat, _2src_commutative, "src0 == src1")
binop_compare32("fne32", tfloat, _2src_commutative, "src0 != src1")
binop_compare32("ilt32", tint, "", "src0 < src1")
binop_compare32("ige32", tint, "", "src0 >= src1")
binop_compare32("ieq32", tint, _2src_commutative, "src0 == src1")
binop_compare32("ine32", tint, _2src_commutative, "src0 != src1")
binop_compare32("ult32", tuint, "", "src0 < src1")
binop_compare32("uge32", tuint, "", "src0 >= src1")
# integer-aware GLSL-style comparisons that compare floats and ints
binop_reduce("ball_fequal", 1, tbool1, tfloat, "{src0} == {src1}",
"{src0} && {src1}", "{src}")
binop_reduce("bany_fnequal", 1, tbool1, tfloat, "{src0} != {src1}",
"{src0} || {src1}", "{src}")
binop_reduce("ball_iequal", 1, tbool1, tint, "{src0} == {src1}",
"{src0} && {src1}", "{src}")
binop_reduce("bany_inequal", 1, tbool1, tint, "{src0} != {src1}",
"{src0} || {src1}", "{src}")
binop_reduce("b32all_fequal", 1, tbool32, tfloat, "{src0} == {src1}",
"{src0} && {src1}", "{src}")
binop_reduce("b32any_fnequal", 1, tbool32, tfloat, "{src0} != {src1}",
"{src0} || {src1}", "{src}")
binop_reduce("b32all_iequal", 1, tbool32, tint, "{src0} == {src1}",
"{src0} && {src1}", "{src}")
binop_reduce("b32any_inequal", 1, tbool32, tint, "{src0} != {src1}",
"{src0} || {src1}", "{src}")
# non-integer-aware GLSL-style comparisons that return 0.0 or 1.0
binop_reduce("fall_equal", 1, tfloat32, tfloat32, "{src0} == {src1}",
"{src0} && {src1}", "{src} ? 1.0f : 0.0f")
binop_reduce("fany_nequal", 1, tfloat32, tfloat32, "{src0} != {src1}",
"{src0} || {src1}", "{src} ? 1.0f : 0.0f")
# These comparisons for integer-less hardware return 1.0 and 0.0 for true
# and false respectively
binop("slt", tfloat32, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than
binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal
binop("seq", tfloat32, _2src_commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal
binop("sne", tfloat32, _2src_commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal
# SPIRV shifts are undefined for shift-operands >= bitsize,
# but SM5 shifts are defined to use the least significant bits, only
# The NIR definition is according to the SM5 specification.
opcode("ishl", 0, tint, [0, 0], [tint, tuint32], False, "",
"src0 << (src1 & (sizeof(src0) * 8 - 1))")
opcode("ishr", 0, tint, [0, 0], [tint, tuint32], False, "",
"src0 >> (src1 & (sizeof(src0) * 8 - 1))")
opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], False, "",
"src0 >> (src1 & (sizeof(src0) * 8 - 1))")
opcode("urol", 0, tuint, [0, 0], [tuint, tuint32], False, "", """
uint32_t rotate_mask = sizeof(src0) * 8 - 1;
dst = (src0 << (src1 & rotate_mask)) |
(src0 >> (-src1 & rotate_mask));
""")
opcode("uror", 0, tuint, [0, 0], [tuint, tuint32], False, "", """
uint32_t rotate_mask = sizeof(src0) * 8 - 1;
dst = (src0 >> (src1 & rotate_mask)) |
(src0 << (-src1 & rotate_mask));
""")
# bitwise logic operators
#
# These are also used as boolean and, or, xor for hardware supporting
# integers.
binop("iand", tuint, _2src_commutative + associative, "src0 & src1")
binop("ior", tuint, _2src_commutative + associative, "src0 | src1")
binop("ixor", tuint, _2src_commutative + associative, "src0 ^ src1")
binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}",
"{src}")
binop_reduce("fdot_replicated", 4, tfloat, tfloat,
"{src0} * {src1}", "{src0} + {src1}", "{src}")
opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], False, "",
"src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
opcode("fdph_replicated", 4, tfloat, [3, 4], [tfloat, tfloat], False, "",
"src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
binop("fmin", tfloat, "", "fminf(src0, src1)")
binop("imin", tint, _2src_commutative + associative, "src1 > src0 ? src0 : src1")
binop("umin", tuint, _2src_commutative + associative, "src1 > src0 ? src0 : src1")
binop("fmax", tfloat, "", "fmaxf(src0, src1)")
binop("imax", tint, _2src_commutative + associative, "src1 > src0 ? src1 : src0")
binop("umax", tuint, _2src_commutative + associative, "src1 > src0 ? src1 : src0")
# Saturated vector add for 4 8bit ints.
binop("usadd_4x8", tint32, _2src_commutative + associative, """
dst = 0;
for (int i = 0; i < 32; i += 8) {
dst |= MIN2(((src0 >> i) & 0xff) + ((src1 >> i) & 0xff), 0xff) << i;
}
""")
# Saturated vector subtract for 4 8bit ints.
binop("ussub_4x8", tint32, "", """
dst = 0;
for (int i = 0; i < 32; i += 8) {
int src0_chan = (src0 >> i) & 0xff;
int src1_chan = (src1 >> i) & 0xff;
if (src0_chan > src1_chan)
dst |= (src0_chan - src1_chan) << i;
}
""")
# vector min for 4 8bit ints.
binop("umin_4x8", tint32, _2src_commutative + associative, """
dst = 0;
for (int i = 0; i < 32; i += 8) {
dst |= MIN2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
}
""")
# vector max for 4 8bit ints.
binop("umax_4x8", tint32, _2src_commutative + associative, """
dst = 0;
for (int i = 0; i < 32; i += 8) {
dst |= MAX2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
}
""")
# unorm multiply: (a * b) / 255.
binop("umul_unorm_4x8", tint32, _2src_commutative + associative, """
dst = 0;
for (int i = 0; i < 32; i += 8) {
int src0_chan = (src0 >> i) & 0xff;
int src1_chan = (src1 >> i) & 0xff;
dst |= ((src0_chan * src1_chan) / 255) << i;
}
""")
binop("fpow", tfloat, "", "bit_size == 64 ? powf(src0, src1) : pow(src0, src1)")
binop_horiz("pack_half_2x16_split", 1, tuint32, 1, tfloat32, 1, tfloat32,
"pack_half_1x16(src0.x) | (pack_half_1x16(src1.x) << 16)")
binop_convert("pack_64_2x32_split", tuint64, tuint32, "",
"src0 | ((uint64_t)src1 << 32)")
binop_convert("pack_32_2x16_split", tuint32, tuint16, "",
"src0 | ((uint32_t)src1 << 16)")
# bfm implements the behavior of the first operation of the SM5 "bfi" assembly
# and that of the "bfi1" i965 instruction. That is, the bits and offset values
# are from the low five bits of src0 and src1, respectively.
binop_convert("bfm", tuint32, tint32, "", """
int bits = src0 & 0x1F;
int offset = src1 & 0x1F;
dst = ((1u << bits) - 1) << offset;
""")
opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], False, "", """
dst = (bit_size == 64) ? ldexp(src0, src1) : ldexpf(src0, src1);
/* flush denormals to zero. */
if (!isnormal(dst))
dst = copysignf(0.0f, src0);
""")
# Combines the first component of each input to make a 2-component vector.
binop_horiz("vec2", 2, tuint, 1, tuint, 1, tuint, """
dst.x = src0.x;
dst.y = src1.x;
""")
# Byte extraction
binop("extract_u8", tuint, "", "(uint8_t)(src0 >> (src1 * 8))")
binop("extract_i8", tint, "", "(int8_t)(src0 >> (src1 * 8))")
# Word extraction
binop("extract_u16", tuint, "", "(uint16_t)(src0 >> (src1 * 16))")
binop("extract_i16", tint, "", "(int16_t)(src0 >> (src1 * 16))")
def triop(name, ty, alg_props, const_expr):
opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], False, alg_props, const_expr)
def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr):
opcode(name, output_size, tuint,
[src1_size, src2_size, src3_size],
[tuint, tuint, tuint], False, "", const_expr)
triop("ffma", tfloat, _2src_commutative, "src0 * src1 + src2")
triop("flrp", tfloat, "", "src0 * (1 - src2) + src1 * src2")
# Conditional Select
#
# A vector conditional select instruction (like ?:, but operating per-
# component on vectors). There are two versions, one for floating point
# bools (0.0 vs 1.0) and one for integer bools (0 vs ~0).
triop("fcsel", tfloat32, "", "(src0 != 0.0f) ? src1 : src2")
# 3 way min/max/med
triop("fmin3", tfloat, "", "fminf(src0, fminf(src1, src2))")
triop("imin3", tint, "", "MIN2(src0, MIN2(src1, src2))")
triop("umin3", tuint, "", "MIN2(src0, MIN2(src1, src2))")
triop("fmax3", tfloat, "", "fmaxf(src0, fmaxf(src1, src2))")
triop("imax3", tint, "", "MAX2(src0, MAX2(src1, src2))")
triop("umax3", tuint, "", "MAX2(src0, MAX2(src1, src2))")
triop("fmed3", tfloat, "", "fmaxf(fminf(fmaxf(src0, src1), src2), fminf(src0, src1))")
triop("imed3", tint, "", "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))")
triop("umed3", tuint, "", "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))")
opcode("bcsel", 0, tuint, [0, 0, 0],
[tbool1, tuint, tuint], False, "", "src0 ? src1 : src2")
opcode("b32csel", 0, tuint, [0, 0, 0],
[tbool32, tuint, tuint], False, "", "src0 ? src1 : src2")
# SM5 bfi assembly
triop("bfi", tuint32, "", """
unsigned mask = src0, insert = src1, base = src2;
if (mask == 0) {
dst = base;
} else {
unsigned tmp = mask;
while (!(tmp & 1)) {
tmp >>= 1;
insert <<= 1;
}
dst = (base & ~mask) | (insert & mask);
}
""")
triop("bitfield_select", tuint, "", "(src0 & src1) | (~src0 & src2)")
# SM5 ubfe/ibfe assembly: only the 5 least significant bits of offset and bits are used.
opcode("ubfe", 0, tuint32,
[0, 0, 0], [tuint32, tuint32, tuint32], False, "", """
unsigned base = src0;
unsigned offset = src1 & 0x1F;
unsigned bits = src2 & 0x1F;
if (bits == 0) {
dst = 0;
} else if (offset + bits < 32) {
dst = (base << (32 - bits - offset)) >> (32 - bits);
} else {
dst = base >> offset;
}
""")
opcode("ibfe", 0, tint32,
[0, 0, 0], [tint32, tuint32, tuint32], False, "", """
int base = src0;
unsigned offset = src1 & 0x1F;
unsigned bits = src2 & 0x1F;
if (bits == 0) {
dst = 0;
} else if (offset + bits < 32) {
dst = (base << (32 - bits - offset)) >> (32 - bits);
} else {
dst = base >> offset;
}
""")
# GLSL bitfieldExtract()
opcode("ubitfield_extract", 0, tuint32,
[0, 0, 0], [tuint32, tint32, tint32], False, "", """
unsigned base = src0;
int offset = src1, bits = src2;
if (bits == 0) {
dst = 0;
} else if (bits < 0 || offset < 0 || offset + bits > 32) {
dst = 0; /* undefined per the spec */
} else {
dst = (base >> offset) & ((1ull << bits) - 1);
}
""")
opcode("ibitfield_extract", 0, tint32,
[0, 0, 0], [tint32, tint32, tint32], False, "", """
int base = src0;
int offset = src1, bits = src2;
if (bits == 0) {
dst = 0;
} else if (offset < 0 || bits < 0 || offset + bits > 32) {
dst = 0;
} else {
dst = (base << (32 - offset - bits)) >> offset; /* use sign-extending shift */
}
""")
# Combines the first component of each input to make a 3-component vector.
triop_horiz("vec3", 3, 1, 1, 1, """
dst.x = src0.x;
dst.y = src1.x;
dst.z = src2.x;
""")
def quadop_horiz(name, output_size, src1_size, src2_size, src3_size,
src4_size, const_expr):
opcode(name, output_size, tuint,
[src1_size, src2_size, src3_size, src4_size],
[tuint, tuint, tuint, tuint],
False, "", const_expr)
opcode("bitfield_insert", 0, tuint32, [0, 0, 0, 0],
[tuint32, tuint32, tint32, tint32], False, "", """
unsigned base = src0, insert = src1;
int offset = src2, bits = src3;
if (bits == 0) {
dst = base;
} else if (offset < 0 || bits < 0 || bits + offset > 32) {
dst = 0;
} else {
unsigned mask = ((1ull << bits) - 1) << offset;
dst = (base & ~mask) | ((insert << offset) & mask);
}
""")
quadop_horiz("vec4", 4, 1, 1, 1, 1, """
dst.x = src0.x;
dst.y = src1.x;
dst.z = src2.x;
dst.w = src3.x;
""")
# ir3-specific instruction that maps directly to mul-add shift high mix,
# (IMADSH_MIX16 i.e. ah * bl << 16 + c). It is used for lowering integer
# multiplication (imul) on Freedreno backend..
opcode("imadsh_mix16", 1, tint32,
[1, 1, 1], [tint32, tint32, tint32], False, "", """
dst.x = ((((src0.x & 0xffff0000) >> 16) * (src1.x & 0x0000ffff)) << 16) + src2.x;
""")
|