1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir.h"
#include "nir_builder.h"
/**
* \file nir_opt_intrinsics.c
*/
static nir_ssa_def *
ballot_type_to_uint(nir_builder *b, nir_ssa_def *value, unsigned bit_size)
{
/* We only use this on uvec4 types */
assert(value->num_components == 4 && value->bit_size == 32);
if (bit_size == 32) {
return nir_channel(b, value, 0);
} else {
assert(bit_size == 64);
return nir_pack_64_2x32_split(b, nir_channel(b, value, 0),
nir_channel(b, value, 1));
}
}
/* Converts a uint32_t or uint64_t value to uint64_t or uvec4 */
static nir_ssa_def *
uint_to_ballot_type(nir_builder *b, nir_ssa_def *value,
unsigned num_components, unsigned bit_size)
{
assert(value->num_components == 1);
assert(value->bit_size == 32 || value->bit_size == 64);
nir_ssa_def *zero = nir_imm_int(b, 0);
if (num_components > 1) {
/* SPIR-V uses a uvec4 for ballot values */
assert(num_components == 4);
assert(bit_size == 32);
if (value->bit_size == 32) {
return nir_vec4(b, value, zero, zero, zero);
} else {
assert(value->bit_size == 64);
return nir_vec4(b, nir_unpack_64_2x32_split_x(b, value),
nir_unpack_64_2x32_split_y(b, value),
zero, zero);
}
} else {
/* GLSL uses a uint64_t for ballot values */
assert(num_components == 1);
assert(bit_size == 64);
if (value->bit_size == 32) {
return nir_pack_64_2x32_split(b, value, zero);
} else {
assert(value->bit_size == 64);
return value;
}
}
}
static nir_ssa_def *
lower_subgroup_op_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin)
{
/* This is safe to call on scalar things but it would be silly */
assert(intrin->dest.ssa.num_components > 1);
nir_ssa_def *value = nir_ssa_for_src(b, intrin->src[0],
intrin->num_components);
nir_ssa_def *reads[4];
for (unsigned i = 0; i < intrin->num_components; i++) {
nir_intrinsic_instr *chan_intrin =
nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest,
1, intrin->dest.ssa.bit_size, NULL);
chan_intrin->num_components = 1;
/* value */
chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
/* invocation */
if (nir_intrinsic_infos[intrin->intrinsic].num_srcs > 1) {
assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2);
nir_src_copy(&chan_intrin->src[1], &intrin->src[1], chan_intrin);
}
chan_intrin->const_index[0] = intrin->const_index[0];
chan_intrin->const_index[1] = intrin->const_index[1];
nir_builder_instr_insert(b, &chan_intrin->instr);
reads[i] = &chan_intrin->dest.ssa;
}
return nir_vec(b, reads, intrin->num_components);
}
static nir_ssa_def *
lower_vote_eq_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin)
{
assert(intrin->src[0].is_ssa);
nir_ssa_def *value = intrin->src[0].ssa;
nir_ssa_def *result = NULL;
for (unsigned i = 0; i < intrin->num_components; i++) {
nir_intrinsic_instr *chan_intrin =
nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest,
1, intrin->dest.ssa.bit_size, NULL);
chan_intrin->num_components = 1;
chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
nir_builder_instr_insert(b, &chan_intrin->instr);
if (result) {
result = nir_iand(b, result, &chan_intrin->dest.ssa);
} else {
result = &chan_intrin->dest.ssa;
}
}
return result;
}
static nir_ssa_def *
lower_vote_eq_to_ballot(nir_builder *b, nir_intrinsic_instr *intrin,
const nir_lower_subgroups_options *options)
{
assert(intrin->src[0].is_ssa);
nir_ssa_def *value = intrin->src[0].ssa;
/* We have to implicitly lower to scalar */
nir_ssa_def *all_eq = NULL;
for (unsigned i = 0; i < intrin->num_components; i++) {
nir_intrinsic_instr *rfi =
nir_intrinsic_instr_create(b->shader,
nir_intrinsic_read_first_invocation);
nir_ssa_dest_init(&rfi->instr, &rfi->dest,
1, value->bit_size, NULL);
rfi->num_components = 1;
rfi->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
nir_builder_instr_insert(b, &rfi->instr);
nir_ssa_def *is_eq;
if (intrin->intrinsic == nir_intrinsic_vote_feq) {
is_eq = nir_feq(b, &rfi->dest.ssa, nir_channel(b, value, i));
} else {
is_eq = nir_ieq(b, &rfi->dest.ssa, nir_channel(b, value, i));
}
if (all_eq == NULL) {
all_eq = is_eq;
} else {
all_eq = nir_iand(b, all_eq, is_eq);
}
}
nir_intrinsic_instr *ballot =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_ballot);
nir_ssa_dest_init(&ballot->instr, &ballot->dest,
1, options->ballot_bit_size, NULL);
ballot->num_components = 1;
ballot->src[0] = nir_src_for_ssa(nir_inot(b, all_eq));
nir_builder_instr_insert(b, &ballot->instr);
return nir_ieq(b, &ballot->dest.ssa,
nir_imm_intN_t(b, 0, options->ballot_bit_size));
}
static nir_ssa_def *
lower_shuffle(nir_builder *b, nir_intrinsic_instr *intrin,
bool lower_to_scalar)
{
nir_ssa_def *index = nir_load_subgroup_invocation(b);
switch (intrin->intrinsic) {
case nir_intrinsic_shuffle_xor:
assert(intrin->src[1].is_ssa);
index = nir_ixor(b, index, intrin->src[1].ssa);
break;
case nir_intrinsic_shuffle_up:
assert(intrin->src[1].is_ssa);
index = nir_isub(b, index, intrin->src[1].ssa);
break;
case nir_intrinsic_shuffle_down:
assert(intrin->src[1].is_ssa);
index = nir_iadd(b, index, intrin->src[1].ssa);
break;
case nir_intrinsic_quad_broadcast:
assert(intrin->src[1].is_ssa);
index = nir_ior(b, nir_iand(b, index, nir_imm_int(b, ~0x3)),
intrin->src[1].ssa);
break;
case nir_intrinsic_quad_swap_horizontal:
/* For Quad operations, subgroups are divided into quads where
* (invocation % 4) is the index to a square arranged as follows:
*
* +---+---+
* | 0 | 1 |
* +---+---+
* | 2 | 3 |
* +---+---+
*/
index = nir_ixor(b, index, nir_imm_int(b, 0x1));
break;
case nir_intrinsic_quad_swap_vertical:
index = nir_ixor(b, index, nir_imm_int(b, 0x2));
break;
case nir_intrinsic_quad_swap_diagonal:
index = nir_ixor(b, index, nir_imm_int(b, 0x3));
break;
default:
unreachable("Invalid intrinsic");
}
nir_intrinsic_instr *shuffle =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_shuffle);
shuffle->num_components = intrin->num_components;
nir_src_copy(&shuffle->src[0], &intrin->src[0], shuffle);
shuffle->src[1] = nir_src_for_ssa(index);
nir_ssa_dest_init(&shuffle->instr, &shuffle->dest,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size, NULL);
if (lower_to_scalar && shuffle->num_components > 1) {
return lower_subgroup_op_to_scalar(b, shuffle);
} else {
nir_builder_instr_insert(b, &shuffle->instr);
return &shuffle->dest.ssa;
}
}
static nir_ssa_def *
lower_subgroups_intrin(nir_builder *b, nir_intrinsic_instr *intrin,
const nir_lower_subgroups_options *options)
{
switch (intrin->intrinsic) {
case nir_intrinsic_vote_any:
case nir_intrinsic_vote_all:
if (options->lower_vote_trivial)
return nir_ssa_for_src(b, intrin->src[0], 1);
break;
case nir_intrinsic_vote_feq:
case nir_intrinsic_vote_ieq:
if (options->lower_vote_trivial)
return nir_imm_int(b, NIR_TRUE);
if (options->lower_vote_eq_to_ballot)
return lower_vote_eq_to_ballot(b, intrin, options);
if (options->lower_to_scalar && intrin->num_components > 1)
return lower_vote_eq_to_scalar(b, intrin);
break;
case nir_intrinsic_load_subgroup_size:
if (options->subgroup_size)
return nir_imm_int(b, options->subgroup_size);
break;
case nir_intrinsic_read_invocation:
case nir_intrinsic_read_first_invocation:
if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin);
break;
case nir_intrinsic_load_subgroup_eq_mask:
case nir_intrinsic_load_subgroup_ge_mask:
case nir_intrinsic_load_subgroup_gt_mask:
case nir_intrinsic_load_subgroup_le_mask:
case nir_intrinsic_load_subgroup_lt_mask: {
if (!options->lower_subgroup_masks)
return NULL;
/* If either the result or the requested bit size is 64-bits then we
* know that we have 64-bit types and using them will probably be more
* efficient than messing around with 32-bit shifts and packing.
*/
const unsigned bit_size = MAX2(options->ballot_bit_size,
intrin->dest.ssa.bit_size);
assert(options->subgroup_size <= 64);
uint64_t group_mask = ~0ull >> (64 - options->subgroup_size);
nir_ssa_def *count = nir_load_subgroup_invocation(b);
nir_ssa_def *val;
switch (intrin->intrinsic) {
case nir_intrinsic_load_subgroup_eq_mask:
val = nir_ishl(b, nir_imm_intN_t(b, 1ull, bit_size), count);
break;
case nir_intrinsic_load_subgroup_ge_mask:
val = nir_iand(b, nir_ishl(b, nir_imm_intN_t(b, ~0ull, bit_size), count),
nir_imm_intN_t(b, group_mask, bit_size));
break;
case nir_intrinsic_load_subgroup_gt_mask:
val = nir_iand(b, nir_ishl(b, nir_imm_intN_t(b, ~1ull, bit_size), count),
nir_imm_intN_t(b, group_mask, bit_size));
break;
case nir_intrinsic_load_subgroup_le_mask:
val = nir_inot(b, nir_ishl(b, nir_imm_intN_t(b, ~1ull, bit_size), count));
break;
case nir_intrinsic_load_subgroup_lt_mask:
val = nir_inot(b, nir_ishl(b, nir_imm_intN_t(b, ~0ull, bit_size), count));
break;
default:
unreachable("you seriously can't tell this is unreachable?");
}
return uint_to_ballot_type(b, val,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size);
}
case nir_intrinsic_ballot: {
if (intrin->dest.ssa.num_components == 1 &&
intrin->dest.ssa.bit_size == options->ballot_bit_size)
return NULL;
nir_intrinsic_instr *ballot =
nir_intrinsic_instr_create(b->shader, nir_intrinsic_ballot);
ballot->num_components = 1;
nir_ssa_dest_init(&ballot->instr, &ballot->dest,
1, options->ballot_bit_size, NULL);
nir_src_copy(&ballot->src[0], &intrin->src[0], ballot);
nir_builder_instr_insert(b, &ballot->instr);
return uint_to_ballot_type(b, &ballot->dest.ssa,
intrin->dest.ssa.num_components,
intrin->dest.ssa.bit_size);
}
case nir_intrinsic_ballot_bitfield_extract:
case nir_intrinsic_ballot_bit_count_reduce:
case nir_intrinsic_ballot_find_lsb:
case nir_intrinsic_ballot_find_msb: {
assert(intrin->src[0].is_ssa);
nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
options->ballot_bit_size);
switch (intrin->intrinsic) {
case nir_intrinsic_ballot_bitfield_extract:
assert(intrin->src[1].is_ssa);
return nir_i2b(b, nir_iand(b, nir_ushr(b, int_val,
intrin->src[1].ssa),
nir_imm_intN_t(b, 1, options->ballot_bit_size)));
case nir_intrinsic_ballot_bit_count_reduce:
return nir_bit_count(b, int_val);
case nir_intrinsic_ballot_find_lsb:
return nir_find_lsb(b, int_val);
case nir_intrinsic_ballot_find_msb:
return nir_ufind_msb(b, int_val);
default:
unreachable("you seriously can't tell this is unreachable?");
}
}
case nir_intrinsic_ballot_bit_count_exclusive:
case nir_intrinsic_ballot_bit_count_inclusive: {
nir_ssa_def *count = nir_load_subgroup_invocation(b);
nir_ssa_def *mask = nir_imm_intN_t(b, ~0ull, options->ballot_bit_size);
if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_inclusive) {
const unsigned bits = options->ballot_bit_size;
mask = nir_ushr(b, mask, nir_isub(b, nir_imm_int(b, bits - 1), count));
} else {
mask = nir_inot(b, nir_ishl(b, mask, count));
}
assert(intrin->src[0].is_ssa);
nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
options->ballot_bit_size);
return nir_bit_count(b, nir_iand(b, int_val, mask));
}
case nir_intrinsic_elect: {
nir_intrinsic_instr *first =
nir_intrinsic_instr_create(b->shader,
nir_intrinsic_first_invocation);
nir_ssa_dest_init(&first->instr, &first->dest, 1, 32, NULL);
nir_builder_instr_insert(b, &first->instr);
return nir_ieq(b, nir_load_subgroup_invocation(b), &first->dest.ssa);
}
case nir_intrinsic_shuffle:
if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin);
break;
case nir_intrinsic_shuffle_xor:
case nir_intrinsic_shuffle_up:
case nir_intrinsic_shuffle_down:
if (options->lower_shuffle)
return lower_shuffle(b, intrin, options->lower_to_scalar);
else if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin);
break;
case nir_intrinsic_quad_broadcast:
case nir_intrinsic_quad_swap_horizontal:
case nir_intrinsic_quad_swap_vertical:
case nir_intrinsic_quad_swap_diagonal:
if (options->lower_quad)
return lower_shuffle(b, intrin, options->lower_to_scalar);
else if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin);
break;
case nir_intrinsic_reduce:
case nir_intrinsic_inclusive_scan:
case nir_intrinsic_exclusive_scan:
if (options->lower_to_scalar && intrin->num_components > 1)
return lower_subgroup_op_to_scalar(b, intrin);
break;
default:
break;
}
return NULL;
}
static bool
lower_subgroups_impl(nir_function_impl *impl,
const nir_lower_subgroups_options *options)
{
nir_builder b;
nir_builder_init(&b, impl);
bool progress = false;
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
b.cursor = nir_before_instr(instr);
nir_ssa_def *lower = lower_subgroups_intrin(&b, intrin, options);
if (!lower)
continue;
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, nir_src_for_ssa(lower));
nir_instr_remove(instr);
progress = true;
}
}
return progress;
}
bool
nir_lower_subgroups(nir_shader *shader,
const nir_lower_subgroups_options *options)
{
bool progress = false;
nir_foreach_function(function, shader) {
if (!function->impl)
continue;
if (lower_subgroups_impl(function->impl, options)) {
progress = true;
nir_metadata_preserve(function->impl, nir_metadata_block_index |
nir_metadata_dominance);
}
}
return progress;
}
|