1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
|
#
# Copyright (C) 2018 Red Hat
# Copyright (C) 2014 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# This file defines all the available intrinsics in one place.
#
# The Intrinsic class corresponds one-to-one with nir_intrinsic_info
# structure.
class Intrinsic(object):
"""Class that represents all the information about an intrinsic opcode.
NOTE: this must be kept in sync with nir_intrinsic_info.
"""
def __init__(self, name, src_components, dest_components,
indices, flags, sysval, bit_sizes):
"""Parameters:
- name: the intrinsic name
- src_components: list of the number of components per src, 0 means
vectorized instruction with number of components given in the
num_components field in nir_intrinsic_instr.
- dest_components: number of destination components, -1 means no
dest, 0 means number of components given in num_components field
in nir_intrinsic_instr.
- indices: list of constant indicies
- flags: list of semantic flags
- sysval: is this a system-value intrinsic
- bit_sizes: allowed dest bit_sizes
"""
assert isinstance(name, str)
assert isinstance(src_components, list)
if src_components:
assert isinstance(src_components[0], int)
assert isinstance(dest_components, int)
assert isinstance(indices, list)
if indices:
assert isinstance(indices[0], str)
assert isinstance(flags, list)
if flags:
assert isinstance(flags[0], str)
assert isinstance(sysval, bool)
if bit_sizes:
assert isinstance(bit_sizes[0], int)
self.name = name
self.num_srcs = len(src_components)
self.src_components = src_components
self.has_dest = (dest_components >= 0)
self.dest_components = dest_components
self.num_indices = len(indices)
self.indices = indices
self.flags = flags
self.sysval = sysval
self.bit_sizes = bit_sizes
#
# Possible indices:
#
# A constant 'base' value that is added to an offset src:
BASE = "NIR_INTRINSIC_BASE"
# For store instructions, a writemask:
WRMASK = "NIR_INTRINSIC_WRMASK"
# The stream-id for GS emit_vertex/end_primitive intrinsics:
STREAM_ID = "NIR_INTRINSIC_STREAM_ID"
# The clip-plane id for load_user_clip_plane intrinsics:
UCP_ID = "NIR_INTRINSIC_UCP_ID"
# The amount of data, starting from BASE, that this instruction
# may access. This is used to provide bounds if the offset is
# not constant.
RANGE = "NIR_INTRINSIC_RANGE"
# The vulkan descriptor set binding for vulkan_resource_index
# intrinsic
DESC_SET = "NIR_INTRINSIC_DESC_SET"
# The vulkan descriptor set binding for vulkan_resource_index
# intrinsic
BINDING = "NIR_INTRINSIC_BINDING"
# Component offset
COMPONENT = "NIR_INTRINSIC_COMPONENT"
# Interpolation mode (only meaningful for FS inputs)
INTERP_MODE = "NIR_INTRINSIC_INTERP_MODE"
# A binary nir_op to use when performing a reduction or scan operation
REDUCTION_OP = "NIR_INTRINSIC_REDUCTION_OP"
# Cluster size for reduction operations
CLUSTER_SIZE = "NIR_INTRINSIC_CLUSTER_SIZE"
# Parameter index for a load_param intrinsic
PARAM_IDX = "NIR_INTRINSIC_PARAM_IDX"
# Image dimensionality for image intrinsics
IMAGE_DIM = "NIR_INTRINSIC_IMAGE_DIM"
# Non-zero if we are accessing an array image
IMAGE_ARRAY = "NIR_INTRINSIC_IMAGE_ARRAY"
# Access qualifiers for image and memory access intrinsics
ACCESS = "NIR_INTRINSIC_ACCESS"
DST_ACCESS = "NIR_INTRINSIC_DST_ACCESS"
SRC_ACCESS = "NIR_INTRINSIC_SRC_ACCESS"
# Image format for image intrinsics
FORMAT = "NIR_INTRINSIC_FORMAT"
# Offset or address alignment
ALIGN_MUL = "NIR_INTRINSIC_ALIGN_MUL"
ALIGN_OFFSET = "NIR_INTRINSIC_ALIGN_OFFSET"
# The vulkan descriptor type for vulkan_resource_index
DESC_TYPE = "NIR_INTRINSIC_DESC_TYPE"
# The nir_alu_type of a uniform/input/output
TYPE = "NIR_INTRINSIC_TYPE"
# The swizzle mask for quad_swizzle_amd & masked_swizzle_amd
SWIZZLE_MASK = "NIR_INTRINSIC_SWIZZLE_MASK"
# Driver location of attribute
DRIVER_LOCATION = "NIR_INTRINSIC_DRIVER_LOCATION"
# Ordering and visibility of a memory operation
MEMORY_SEMANTICS = "NIR_INTRINSIC_MEMORY_SEMANTICS"
# Modes affected by a memory operation
MEMORY_MODES = "NIR_INTRINSIC_MEMORY_MODES"
# Scope of a memory operation
MEMORY_SCOPE = "NIR_INTRINSIC_MEMORY_SCOPE"
#
# Possible flags:
#
CAN_ELIMINATE = "NIR_INTRINSIC_CAN_ELIMINATE"
CAN_REORDER = "NIR_INTRINSIC_CAN_REORDER"
INTR_OPCODES = {}
# Defines a new NIR intrinsic. By default, the intrinsic will have no sources
# and no destination.
#
# You can set dest_comp=n to enable a destination for the intrinsic, in which
# case it will have that many components, or =0 for "as many components as the
# NIR destination value."
#
# Set src_comp=n to enable sources for the intruction. It can be an array of
# component counts, or (for convenience) a scalar component count if there's
# only one source. If a component count is 0, it will be as many components as
# the intrinsic has based on the dest_comp.
def intrinsic(name, src_comp=[], dest_comp=-1, indices=[],
flags=[], sysval=False, bit_sizes=[]):
assert name not in INTR_OPCODES
INTR_OPCODES[name] = Intrinsic(name, src_comp, dest_comp,
indices, flags, sysval, bit_sizes)
intrinsic("nop", flags=[CAN_ELIMINATE])
intrinsic("load_param", dest_comp=0, indices=[PARAM_IDX], flags=[CAN_ELIMINATE])
intrinsic("load_deref", dest_comp=0, src_comp=[-1],
indices=[ACCESS], flags=[CAN_ELIMINATE])
intrinsic("store_deref", src_comp=[-1, 0], indices=[WRMASK, ACCESS])
intrinsic("copy_deref", src_comp=[-1, -1], indices=[DST_ACCESS, SRC_ACCESS])
# Interpolation of input. The interp_deref_at* intrinsics are similar to the
# load_var intrinsic acting on a shader input except that they interpolate the
# input differently. The at_sample, at_offset and at_vertex intrinsics take an
# additional source that is an integer sample id, a vec2 position offset, or a
# vertex ID respectively.
intrinsic("interp_deref_at_centroid", dest_comp=0, src_comp=[1],
flags=[ CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_sample", src_comp=[1, 1], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_offset", src_comp=[1, 2], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("interp_deref_at_vertex", src_comp=[1, 1], dest_comp=0,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Gets the length of an unsized array at the end of a buffer
intrinsic("deref_buffer_array_length", src_comp=[-1], dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Ask the driver for the size of a given buffer. It takes the buffer index
# as source.
intrinsic("get_buffer_size", src_comp=[-1], dest_comp=1,
flags=[CAN_ELIMINATE, CAN_REORDER])
# a barrier is an intrinsic with no inputs/outputs but which can't be moved
# around/optimized in general
def barrier(name):
intrinsic(name)
barrier("discard")
# Demote fragment shader invocation to a helper invocation. Any stores to
# memory after this instruction are suppressed and the fragment does not write
# outputs to the framebuffer. Unlike discard, demote needs to ensure that
# derivatives will still work for invocations that were not demoted.
#
# As specified by SPV_EXT_demote_to_helper_invocation.
barrier("demote")
intrinsic("is_helper_invocation", dest_comp=1, flags=[CAN_ELIMINATE])
# A workgroup-level control barrier. Any thread which hits this barrier will
# pause until all threads within the current workgroup have also hit the
# barrier. For compute shaders, the workgroup is defined as the local group.
# For tessellation control shaders, the workgroup is defined as the current
# patch. This intrinsic does not imply any sort of memory barrier.
barrier("control_barrier")
# Memory barrier with semantics analogous to the memoryBarrier() GLSL
# intrinsic.
barrier("memory_barrier")
# Memory barrier with explicit scope. Follows the semantics of SPIR-V
# OpMemoryBarrier, used to implement Vulkan Memory Model. Storage that the
# barrierr applies is represented using NIR variable modes.
intrinsic("scoped_memory_barrier",
indices=[MEMORY_SEMANTICS, MEMORY_MODES, MEMORY_SCOPE])
# Shader clock intrinsic with semantics analogous to the clock2x32ARB()
# GLSL intrinsic.
# The latter can be used as code motion barrier, which is currently not
# feasible with NIR.
intrinsic("shader_clock", dest_comp=2, flags=[CAN_ELIMINATE],
indices=[MEMORY_SCOPE])
# Shader ballot intrinsics with semantics analogous to the
#
# ballotARB()
# readInvocationARB()
# readFirstInvocationARB()
#
# GLSL functions from ARB_shader_ballot.
intrinsic("ballot", src_comp=[1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("read_invocation", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("read_first_invocation", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
# Additional SPIR-V ballot intrinsics
#
# These correspond to the SPIR-V opcodes
#
# OpGroupUniformElect
# OpSubgroupFirstInvocationKHR
intrinsic("elect", dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("first_invocation", dest_comp=1, flags=[CAN_ELIMINATE])
# Memory barrier with semantics analogous to the compute shader
# groupMemoryBarrier(), memoryBarrierAtomicCounter(), memoryBarrierBuffer(),
# memoryBarrierImage() and memoryBarrierShared() GLSL intrinsics.
barrier("group_memory_barrier")
barrier("memory_barrier_atomic_counter")
barrier("memory_barrier_buffer")
barrier("memory_barrier_image")
barrier("memory_barrier_shared")
barrier("begin_invocation_interlock")
barrier("end_invocation_interlock")
# Memory barrier for synchronizing TCS patch outputs
barrier("memory_barrier_tcs_patch")
# A conditional discard/demote, with a single boolean source.
intrinsic("discard_if", src_comp=[1])
intrinsic("demote_if", src_comp=[1])
# ARB_shader_group_vote intrinsics
intrinsic("vote_any", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_all", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_feq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("vote_ieq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE])
# Ballot ALU operations from SPIR-V.
#
# These operations work like their ALU counterparts except that the operate
# on a uvec4 which is treated as a 128bit integer. Also, they are, in
# general, free to ignore any bits which are above the subgroup size.
intrinsic("ballot_bitfield_extract", src_comp=[4, 1], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_reduce", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_inclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_bit_count_exclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_find_lsb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
intrinsic("ballot_find_msb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
# Shuffle operations from SPIR-V.
intrinsic("shuffle", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_xor", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_up", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("shuffle_down", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
# Quad operations from SPIR-V.
intrinsic("quad_broadcast", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_horizontal", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_vertical", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("quad_swap_diagonal", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("reduce", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP, CLUSTER_SIZE],
flags=[CAN_ELIMINATE])
intrinsic("inclusive_scan", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP],
flags=[CAN_ELIMINATE])
intrinsic("exclusive_scan", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP],
flags=[CAN_ELIMINATE])
# AMD shader ballot operations
intrinsic("quad_swizzle_amd", src_comp=[0], dest_comp=0, indices=[SWIZZLE_MASK],
flags=[CAN_ELIMINATE])
intrinsic("masked_swizzle_amd", src_comp=[0], dest_comp=0, indices=[SWIZZLE_MASK],
flags=[CAN_ELIMINATE])
intrinsic("write_invocation_amd", src_comp=[0, 0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
intrinsic("mbcnt_amd", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
# Basic Geometry Shader intrinsics.
#
# emit_vertex implements GLSL's EmitStreamVertex() built-in. It takes a single
# index, which is the stream ID to write to.
#
# end_primitive implements GLSL's EndPrimitive() built-in.
intrinsic("emit_vertex", indices=[STREAM_ID])
intrinsic("end_primitive", indices=[STREAM_ID])
# Geometry Shader intrinsics with a vertex count.
#
# Alternatively, drivers may implement these intrinsics, and use
# nir_lower_gs_intrinsics() to convert from the basic intrinsics.
#
# These maintain a count of the number of vertices emitted, as an additional
# unsigned integer source.
intrinsic("emit_vertex_with_counter", src_comp=[1], indices=[STREAM_ID])
intrinsic("end_primitive_with_counter", src_comp=[1], indices=[STREAM_ID])
intrinsic("set_vertex_count", src_comp=[1])
# Atomic counters
#
# The *_var variants take an atomic_uint nir_variable, while the other,
# lowered, variants take a constant buffer index and register offset.
def atomic(name, flags=[]):
intrinsic(name + "_deref", src_comp=[-1], dest_comp=1, flags=flags)
intrinsic(name, src_comp=[1], dest_comp=1, indices=[BASE], flags=flags)
def atomic2(name):
intrinsic(name + "_deref", src_comp=[-1, 1], dest_comp=1)
intrinsic(name, src_comp=[1, 1], dest_comp=1, indices=[BASE])
def atomic3(name):
intrinsic(name + "_deref", src_comp=[-1, 1, 1], dest_comp=1)
intrinsic(name, src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
atomic("atomic_counter_inc")
atomic("atomic_counter_pre_dec")
atomic("atomic_counter_post_dec")
atomic("atomic_counter_read", flags=[CAN_ELIMINATE])
atomic2("atomic_counter_add")
atomic2("atomic_counter_min")
atomic2("atomic_counter_max")
atomic2("atomic_counter_and")
atomic2("atomic_counter_or")
atomic2("atomic_counter_xor")
atomic2("atomic_counter_exchange")
atomic3("atomic_counter_comp_swap")
# Image load, store and atomic intrinsics.
#
# All image intrinsics come in three versions. One which take an image target
# passed as a deref chain as the first source, one which takes an index as the
# first source, and one which takes a bindless handle as the first source.
# In the first version, the image variable contains the memory and layout
# qualifiers that influence the semantics of the intrinsic. In the second and
# third, the image format and access qualifiers are provided as constant
# indices.
#
# All image intrinsics take a four-coordinate vector and a sample index as
# 2nd and 3rd sources, determining the location within the image that will be
# accessed by the intrinsic. Components not applicable to the image target
# in use are undefined. Image store takes an additional four-component
# argument with the value to be written, and image atomic operations take
# either one or two additional scalar arguments with the same meaning as in
# the ARB_shader_image_load_store specification.
def image(name, src_comp=[], **kwargs):
intrinsic("image_deref_" + name, src_comp=[1] + src_comp,
indices=[ACCESS], **kwargs)
intrinsic("image_" + name, src_comp=[1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS], **kwargs)
intrinsic("bindless_image_" + name, src_comp=[1] + src_comp,
indices=[IMAGE_DIM, IMAGE_ARRAY, FORMAT, ACCESS], **kwargs)
image("load", src_comp=[4, 1, 1], dest_comp=0, flags=[CAN_ELIMINATE])
image("store", src_comp=[4, 1, 0, 1])
image("atomic_add", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_imin", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_umin", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_imax", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_umax", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_and", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_or", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_xor", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_exchange", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_comp_swap", src_comp=[4, 1, 1, 1], dest_comp=1)
image("atomic_fadd", src_comp=[4, 1, 1], dest_comp=1)
image("size", dest_comp=0, flags=[CAN_ELIMINATE, CAN_REORDER])
image("samples", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
image("atomic_inc_wrap", src_comp=[4, 1, 1], dest_comp=1)
image("atomic_dec_wrap", src_comp=[4, 1, 1], dest_comp=1)
# Intel-specific query for loading from the brw_image_param struct passed
# into the shader as a uniform. The variable is a deref to the image
# variable. The const index specifies which of the six parameters to load.
intrinsic("image_deref_load_param_intel", src_comp=[1], dest_comp=0,
indices=[BASE], flags=[CAN_ELIMINATE, CAN_REORDER])
image("load_raw_intel", src_comp=[1], dest_comp=0,
flags=[CAN_ELIMINATE])
image("store_raw_intel", src_comp=[1, 0])
# Vulkan descriptor set intrinsics
#
# The Vulkan API uses a different binding model from GL. In the Vulkan
# API, all external resources are represented by a tuple:
#
# (descriptor set, binding, array index)
#
# where the array index is the only thing allowed to be indirect. The
# vulkan_surface_index intrinsic takes the descriptor set and binding as
# its first two indices and the array index as its source. The third
# index is a nir_variable_mode in case that's useful to the backend.
#
# The intended usage is that the shader will call vulkan_surface_index to
# get an index and then pass that as the buffer index ubo/ssbo calls.
#
# The vulkan_resource_reindex intrinsic takes a resource index in src0
# (the result of a vulkan_resource_index or vulkan_resource_reindex) which
# corresponds to the tuple (set, binding, index) and computes an index
# corresponding to tuple (set, binding, idx + src1).
intrinsic("vulkan_resource_index", src_comp=[1], dest_comp=0,
indices=[DESC_SET, BINDING, DESC_TYPE],
flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("vulkan_resource_reindex", src_comp=[0, 1], dest_comp=0,
indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER])
intrinsic("load_vulkan_descriptor", src_comp=[-1], dest_comp=0,
indices=[DESC_TYPE], flags=[CAN_ELIMINATE, CAN_REORDER])
# variable atomic intrinsics
#
# All of these variable atomic memory operations read a value from memory,
# compute a new value using one of the operations below, write the new value
# to memory, and return the original value read.
#
# All operations take 2 sources except CompSwap that takes 3. These sources
# represent:
#
# 0: A deref to the memory on which to perform the atomic
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
intrinsic("deref_atomic_add", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_imin", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_umin", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_imax", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_umax", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_and", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_or", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_xor", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_exchange", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_comp_swap", src_comp=[-1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_fadd", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_fmin", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_fmax", src_comp=[-1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("deref_atomic_fcomp_swap", src_comp=[-1, 1, 1], dest_comp=1, indices=[ACCESS])
# SSBO atomic intrinsics
#
# All of the SSBO atomic memory operations read a value from memory,
# compute a new value using one of the operations below, write the new
# value to memory, and return the original value read.
#
# All operations take 3 sources except CompSwap that takes 4. These
# sources represent:
#
# 0: The SSBO buffer index.
# 1: The offset into the SSBO buffer of the variable that the atomic
# operation will operate on.
# 2: The data parameter to the atomic function (i.e. the value to add
# in ssbo_atomic_add, etc).
# 3: For CompSwap only: the second data parameter.
intrinsic("ssbo_atomic_add", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_imin", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_umin", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_imax", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_umax", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_and", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_or", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_xor", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_exchange", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_comp_swap", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_fadd", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_fmin", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_fmax", src_comp=[1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_fcomp_swap", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
# CS shared variable atomic intrinsics
#
# All of the shared variable atomic memory operations read a value from
# memory, compute a new value using one of the operations below, write the
# new value to memory, and return the original value read.
#
# All operations take 2 sources except CompSwap that takes 3. These
# sources represent:
#
# 0: The offset into the shared variable storage region that the atomic
# operation will operate on.
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
intrinsic("shared_atomic_add", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_imin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_umin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_imax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_umax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_and", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_or", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_xor", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_exchange", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_comp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_fadd", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_fmin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_fmax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("shared_atomic_fcomp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
# Global atomic intrinsics
#
# All of the shared variable atomic memory operations read a value from
# memory, compute a new value using one of the operations below, write the
# new value to memory, and return the original value read.
#
# All operations take 2 sources except CompSwap that takes 3. These
# sources represent:
#
# 0: The memory address that the atomic operation will operate on.
# 1: The data parameter to the atomic function (i.e. the value to add
# in shared_atomic_add, etc).
# 2: For CompSwap only: the second data parameter.
intrinsic("global_atomic_add", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_imin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_umin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_imax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_umax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_and", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_or", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_xor", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_exchange", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_comp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_fadd", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_fmin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_fmax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
intrinsic("global_atomic_fcomp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
def system_value(name, dest_comp, indices=[], bit_sizes=[32]):
intrinsic("load_" + name, [], dest_comp, indices,
flags=[CAN_ELIMINATE, CAN_REORDER], sysval=True,
bit_sizes=bit_sizes)
system_value("frag_coord", 4)
system_value("point_coord", 2)
system_value("front_face", 1, bit_sizes=[1, 32])
system_value("vertex_id", 1)
system_value("vertex_id_zero_base", 1)
system_value("first_vertex", 1)
system_value("is_indexed_draw", 1)
system_value("base_vertex", 1)
system_value("instance_id", 1)
system_value("base_instance", 1)
system_value("draw_id", 1)
system_value("sample_id", 1)
# sample_id_no_per_sample is like sample_id but does not imply per-
# sample shading. See the lower_helper_invocation option.
system_value("sample_id_no_per_sample", 1)
system_value("sample_pos", 2)
system_value("sample_mask_in", 1)
system_value("primitive_id", 1)
system_value("invocation_id", 1)
system_value("tess_coord", 3)
system_value("tess_level_outer", 4)
system_value("tess_level_inner", 2)
system_value("tess_level_outer_default", 4)
system_value("tess_level_inner_default", 2)
system_value("patch_vertices_in", 1)
system_value("local_invocation_id", 3)
system_value("local_invocation_index", 1)
system_value("work_group_id", 3)
system_value("user_clip_plane", 4, indices=[UCP_ID])
system_value("num_work_groups", 3)
system_value("helper_invocation", 1, bit_sizes=[1, 32])
system_value("alpha_ref_float", 1)
system_value("layer_id", 1)
system_value("view_index", 1)
system_value("subgroup_size", 1)
system_value("subgroup_invocation", 1)
system_value("subgroup_eq_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_ge_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_gt_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_le_mask", 0, bit_sizes=[32, 64])
system_value("subgroup_lt_mask", 0, bit_sizes=[32, 64])
system_value("num_subgroups", 1)
system_value("subgroup_id", 1)
system_value("local_group_size", 3)
system_value("global_invocation_id", 3, bit_sizes=[32, 64])
system_value("global_invocation_index", 1, bit_sizes=[32, 64])
system_value("work_dim", 1)
# Driver-specific viewport scale/offset parameters.
#
# VC4 and V3D need to emit a scaled version of the position in the vertex
# shaders for binning, and having system values lets us move the math for that
# into NIR.
#
# Panfrost needs to implement all coordinate transformation in the
# vertex shader; system values allow us to share this routine in NIR.
system_value("viewport_x_scale", 1)
system_value("viewport_y_scale", 1)
system_value("viewport_z_scale", 1)
system_value("viewport_z_offset", 1)
system_value("viewport_scale", 3)
system_value("viewport_offset", 3)
# Blend constant color values. Float values are clamped. Vectored versions are
# provided as well for driver convenience
system_value("blend_const_color_r_float", 1)
system_value("blend_const_color_g_float", 1)
system_value("blend_const_color_b_float", 1)
system_value("blend_const_color_a_float", 1)
system_value("blend_const_color_rgba", 4)
system_value("blend_const_color_rgba8888_unorm", 1)
system_value("blend_const_color_aaaa8888_unorm", 1)
# System values for gl_Color, for radeonsi which interpolates these in the
# shader prolog to handle two-sided color without recompiles and therefore
# doesn't handle these in the main shader part like normal varyings.
system_value("color0", 4)
system_value("color1", 4)
# System value for internal compute shaders in radeonsi.
system_value("user_data_amd", 4)
# Number of data items being operated on for a SIMD program.
system_value("simd_width_intel", 1)
# Barycentric coordinate intrinsics.
#
# These set up the barycentric coordinates for a particular interpolation.
# The first four are for the simple cases: pixel, centroid, per-sample
# (at gl_SampleID), or pull model (1/W, 1/I, 1/J) at the pixel center. The next
# three two handle interpolating at a specified sample location, or
# interpolating with a vec2 offset,
#
# The interp_mode index should be either the INTERP_MODE_SMOOTH or
# INTERP_MODE_NOPERSPECTIVE enum values.
#
# The vec2 value produced by these intrinsics is intended for use as the
# barycoord source of a load_interpolated_input intrinsic.
def barycentric(name, dst_comp, src_comp=[]):
intrinsic("load_barycentric_" + name, src_comp=src_comp, dest_comp=dst_comp,
indices=[INTERP_MODE], flags=[CAN_ELIMINATE, CAN_REORDER])
# no sources.
barycentric("pixel", 2)
barycentric("centroid", 2)
barycentric("sample", 2)
barycentric("model", 3)
# src[] = { sample_id }.
barycentric("at_sample", 2, [1])
# src[] = { offset.xy }.
barycentric("at_offset", 2, [2])
# Load sample position:
#
# Takes a sample # and returns a sample position. Used for lowering
# interpolateAtSample() to interpolateAtOffset()
intrinsic("load_sample_pos_from_id", src_comp=[1], dest_comp=2,
flags=[CAN_ELIMINATE, CAN_REORDER])
# Loads what I believe is the primitive size, for scaling ij to pixel size:
intrinsic("load_size_ir3", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
# Fragment shader input interpolation delta intrinsic.
#
# For hw where fragment shader input interpolation is handled in shader, the
# load_fs_input_interp deltas intrinsics can be used to load the input deltas
# used for interpolation as follows:
#
# vec3 iid = load_fs_input_interp_deltas(varying_slot)
# vec2 bary = load_barycentric_*(...)
# float result = iid.x + iid.y * bary.y + iid.z * bary.x
intrinsic("load_fs_input_interp_deltas", src_comp=[1], dest_comp=3,
indices=[BASE, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER])
# Load operations pull data from some piece of GPU memory. All load
# operations operate in terms of offsets into some piece of theoretical
# memory. Loads from externally visible memory (UBO and SSBO) simply take a
# byte offset as a source. Loads from opaque memory (uniforms, inputs, etc.)
# take a base+offset pair where the nir_intrinsic_base() gives the location
# of the start of the variable being loaded and and the offset source is a
# offset into that variable.
#
# Uniform load operations have a nir_intrinsic_range() index that specifies the
# range (starting at base) of the data from which we are loading. If
# range == 0, then the range is unknown.
#
# Some load operations such as UBO/SSBO load and per_vertex loads take an
# additional source to specify which UBO/SSBO/vertex to load from.
#
# The exact address type depends on the lowering pass that generates the
# load/store intrinsics. Typically, this is vec4 units for things such as
# varying slots and float units for fragment shader inputs. UBO and SSBO
# offsets are always in bytes.
def load(name, num_srcs, indices=[], flags=[]):
intrinsic("load_" + name, [1] * num_srcs, dest_comp=0, indices=indices,
flags=flags)
# src[] = { offset }.
load("uniform", 1, [BASE, RANGE, TYPE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset }.
load("ubo", 2, [ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("input", 1, [BASE, COMPONENT, TYPE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { vertex_id, offset }.
load("input_vertex", 2, [BASE, COMPONENT, TYPE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { vertex, offset }.
load("per_vertex_input", 2, [BASE, COMPONENT], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { barycoord, offset }.
intrinsic("load_interpolated_input", src_comp=[2, 1], dest_comp=0,
indices=[BASE, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER])
# src[] = { buffer_index, offset }.
load("ssbo", 2, [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { buffer_index }
load("ssbo_address", 1, [], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("output", 1, [BASE, COMPONENT], flags=[CAN_ELIMINATE])
# src[] = { vertex, offset }.
load("per_vertex_output", 2, [BASE, COMPONENT], [CAN_ELIMINATE])
# src[] = { offset }.
load("shared", 1, [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { offset }.
load("push_constant", 1, [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("constant", 1, [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET],
[CAN_ELIMINATE, CAN_REORDER])
# src[] = { address }.
load("global", 1, [ACCESS, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# src[] = { address }.
load("kernel_input", 1, [BASE, RANGE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE, CAN_REORDER])
# src[] = { offset }.
load("scratch", 1, [ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# Stores work the same way as loads, except now the first source is the value
# to store and the second (and possibly third) source specify where to store
# the value. SSBO and shared memory stores also have a
# nir_intrinsic_write_mask()
def store(name, num_srcs, indices=[], flags=[]):
intrinsic("store_" + name, [0] + ([1] * (num_srcs - 1)), indices=indices, flags=flags)
# src[] = { value, offset }.
store("output", 2, [BASE, WRMASK, COMPONENT, TYPE])
# src[] = { value, vertex, offset }.
store("per_vertex_output", 3, [BASE, WRMASK, COMPONENT])
# src[] = { value, block_index, offset }
store("ssbo", 3, [WRMASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("shared", 2, [BASE, WRMASK, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, address }.
store("global", 2, [WRMASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { value, offset }.
store("scratch", 2, [ALIGN_MUL, ALIGN_OFFSET, WRMASK])
# IR3-specific version of most SSBO intrinsics. The only different
# compare to the originals is that they add an extra source to hold
# the dword-offset, which is needed by the backend code apart from
# the byte-offset already provided by NIR in one of the sources.
#
# NIR lowering pass 'ir3_nir_lower_io_offset' will replace the
# original SSBO intrinsics by these, placing the computed
# dword-offset always in the last source.
#
# The float versions are not handled because those are not supported
# by the backend.
intrinsic("store_ssbo_ir3", src_comp=[0, 1, 1, 1],
indices=[WRMASK, ACCESS, ALIGN_MUL, ALIGN_OFFSET])
intrinsic("load_ssbo_ir3", src_comp=[1, 1, 1], dest_comp=0,
indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
intrinsic("ssbo_atomic_add_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_imin_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_umin_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_imax_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_umax_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_and_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_or_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_xor_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_exchange_ir3", src_comp=[1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
intrinsic("ssbo_atomic_comp_swap_ir3", src_comp=[1, 1, 1, 1, 1], dest_comp=1, indices=[ACCESS])
# IR3-specific instruction for UBO loads using the ldc instruction. The second
# source is the indirect offset, in units of four dwords. The base is a
# component offset, in dword units.
intrinsic("load_ubo_ir3", src_comp=[1, 1], bit_sizes=[32], dest_comp=0, indices=[BASE],
flags=[CAN_REORDER, CAN_ELIMINATE])
# System values for freedreno geometry shaders.
system_value("vs_primitive_stride_ir3", 1)
system_value("vs_vertex_stride_ir3", 1)
system_value("gs_header_ir3", 1)
system_value("primitive_location_ir3", 1, indices=[DRIVER_LOCATION])
# System values for freedreno tessellation shaders.
system_value("hs_patch_stride_ir3", 1)
system_value("tess_factor_base_ir3", 2)
system_value("tess_param_base_ir3", 2)
system_value("tcs_header_ir3", 1)
# IR3-specific intrinsics for tessellation control shaders. cond_end_ir3 end
# the shader when src0 is false and is used to narrow down the TCS shader to
# just thread 0 before writing out tessellation levels.
intrinsic("cond_end_ir3", src_comp=[1])
# end_patch_ir3 is used just before thread 0 exist the TCS and presumably
# signals the TE that the patch is complete and can be tessellated.
intrinsic("end_patch_ir3")
# IR3-specific load/store intrinsics. These access a buffer used to pass data
# between geometry stages - perhaps it's explicit access to the vertex cache.
# src[] = { value, offset }.
store("shared_ir3", 2, [BASE, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { offset }.
load("shared_ir3", 1, [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
# IR3-specific load/store global intrinsics. They take a 64-bit base address
# and a 32-bit offset. The hardware will add the base and the offset, which
# saves us from doing 64-bit math on the base address.
# src[] = { value, address(vec2 of hi+lo uint32_t), offset }.
# const_index[] = { write_mask, align_mul, align_offset }
intrinsic("store_global_ir3", [0, 2, 1], indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET])
# src[] = { address(vec2 of hi+lo uint32_t), offset }.
# const_index[] = { access, align_mul, align_offset }
intrinsic("load_global_ir3", [2, 1], dest_comp=0, indices=[ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE])
# IR3-specific bindless handle specifier. Similar to vulkan_resource_index, but
# without the binding because the hardware expects a single flattened index
# rather than a (binding, index) pair. We may also want to use this with GL.
# Note that this doesn't actually turn into a HW instruction.
intrinsic("bindless_resource_ir3", [1], dest_comp=1, indices=[DESC_SET], flags=[CAN_ELIMINATE, CAN_REORDER])
# Intrinsics used by the Midgard/Bifrost blend pipeline. These are defined
# within a blend shader to read/write the raw value from the tile buffer,
# without applying any format conversion in the process. If the shader needs
# usable pixel values, it must apply format conversions itself.
#
# These definitions are generic, but they are explicitly vendored to prevent
# other drivers from using them, as their semantics is defined in terms of the
# Midgard/Bifrost hardware tile buffer and may not line up with anything sane.
# One notable divergence is sRGB, which is asymmetric: raw_input_pan requires
# an sRGB->linear conversion, but linear values should be written to
# raw_output_pan and the hardware handles linear->sRGB.
#
# We also have format-specific Midgard intrinsics. There are rather
# here-be-dragons. load_output_u8_as_fp16_pan does the equivalent of
# load_raw_out_pan on an RGBA8 UNORM framebuffer followed by u2u16 -> fp16 ->
# division by 255.
# src[] = { value }
store("raw_output_pan", 1, [])
store("zs_output_pan", 1, [COMPONENT])
load("raw_output_pan", 0, [], [CAN_ELIMINATE, CAN_REORDER])
load("output_u8_as_fp16_pan", 0, [], [CAN_ELIMINATE, CAN_REORDER])
# Loads the sampler paramaters <min_lod, max_lod, lod_bias>
# src[] = { sampler_index }
load("sampler_lod_parameters_pan", 1, [CAN_ELIMINATE, CAN_REORDER])
# R600 specific instrincs
#
# R600 can only fetch 16 byte aligned data from an UBO, and the actual offset
# is given in vec4 units, so we have to fetch the a vec4 and get the component
# later
# src[] = { buffer_index, offset }.
load("ubo_r600", 2, [ACCESS, ALIGN_MUL, ALIGN_OFFSET], flags=[CAN_ELIMINATE, CAN_REORDER])
# location where the tesselation data is stored in LDS
system_value("tcs_in_param_base_r600", 4)
system_value("tcs_out_param_base_r600", 4)
system_value("tcs_rel_patch_id_r600", 1)
system_value("tcs_tess_factor_base_r600", 1)
# load as many components as needed giving per-component addresses
intrinsic("load_local_shared_r600", src_comp=[0], dest_comp=0, indices = [COMPONENT], flags = [CAN_ELIMINATE, CAN_REORDER])
store("local_shared_r600", 2, [WRMASK])
store("tf_r600", 1)
# V3D-specific instrinc for tile buffer color reads.
#
# The hardware requires that we read the samples and components of a pixel
# in order, so we cannot eliminate or remove any loads in a sequence.
#
# src[] = { render_target }
# BASE = sample index
load("tlb_color_v3d", 1, [BASE, COMPONENT], [])
# V3D-specific instrinc for per-sample tile buffer color writes.
#
# The driver backend needs to identify per-sample color writes and emit
# specific code for them.
#
# src[] = { value, render_target }
# BASE = sample index
store("tlb_sample_color_v3d", 2, [BASE, COMPONENT, TYPE], [])
# V3D-specific intrinsic to load the number of layers attached to
# the target framebuffer
intrinsic("load_fb_layers_v3d", dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
|