1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/*
* Copyright © 2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_xfb_info.h"
#include <util/u_math.h>
static nir_xfb_info *
nir_gather_xfb_info_create(void *mem_ctx, uint16_t output_count, uint16_t varying_count)
{
nir_xfb_info *xfb = rzalloc_size(mem_ctx, sizeof(nir_xfb_info));
xfb->varyings = rzalloc_size(xfb, sizeof(nir_xfb_varying_info) * varying_count);
xfb->outputs = rzalloc_size(xfb, sizeof(nir_xfb_output_info) * output_count);
return xfb;
}
static void
add_var_xfb_outputs(nir_xfb_info *xfb,
nir_variable *var,
unsigned buffer,
unsigned *location,
unsigned *offset,
const struct glsl_type *type)
{
/* If this type contains a 64-bit value, align to 8 bytes */
if (glsl_type_contains_64bit(type))
*offset = ALIGN_POT(*offset, 8);
if (glsl_type_is_array_or_matrix(type) && !var->data.compact) {
unsigned length = glsl_get_length(type);
const struct glsl_type *child_type = glsl_get_array_element(type);
for (unsigned i = 0; i < length; i++)
add_var_xfb_outputs(xfb, var, buffer, location, offset, child_type);
} else if (glsl_type_is_struct_or_ifc(type)) {
unsigned length = glsl_get_length(type);
for (unsigned i = 0; i < length; i++) {
const struct glsl_type *child_type = glsl_get_struct_field(type, i);
add_var_xfb_outputs(xfb, var, buffer, location, offset, child_type);
}
} else {
assert(buffer < NIR_MAX_XFB_BUFFERS);
if (xfb->buffers_written & (1 << buffer)) {
assert(xfb->buffers[buffer].stride == var->data.xfb_stride);
assert(xfb->buffer_to_stream[buffer] == var->data.stream);
} else {
xfb->buffers_written |= (1 << buffer);
xfb->buffers[buffer].stride = var->data.xfb_stride;
xfb->buffer_to_stream[buffer] = var->data.stream;
}
assert(var->data.stream < NIR_MAX_XFB_STREAMS);
xfb->streams_written |= (1 << var->data.stream);
unsigned comp_slots;
if (var->data.compact) {
/* This only happens for clip/cull which are float arrays */
assert(glsl_without_array(type) == glsl_float_type());
assert(var->data.location == VARYING_SLOT_CLIP_DIST0 ||
var->data.location == VARYING_SLOT_CLIP_DIST1);
comp_slots = glsl_get_length(type);
} else {
comp_slots = glsl_get_component_slots(type);
UNUSED unsigned attrib_slots = DIV_ROUND_UP(comp_slots, 4);
assert(attrib_slots == glsl_count_attribute_slots(type, false));
/* Ensure that we don't have, for instance, a dvec2 with a
* location_frac of 2 which would make it crass a location boundary
* even though it fits in a single slot. However, you can have a
* dvec3 which crosses the slot boundary with a location_frac of 2.
*/
assert(DIV_ROUND_UP(var->data.location_frac + comp_slots, 4) ==
attrib_slots);
}
assert(var->data.location_frac + comp_slots <= 8);
uint8_t comp_mask = ((1 << comp_slots) - 1) << var->data.location_frac;
unsigned comp_offset = var->data.location_frac;
nir_xfb_varying_info *varying = &xfb->varyings[xfb->varying_count++];
varying->type = type;
varying->buffer = var->data.xfb_buffer;
varying->offset = *offset;
xfb->buffers[var->data.xfb_buffer].varying_count++;
while (comp_mask) {
nir_xfb_output_info *output = &xfb->outputs[xfb->output_count++];
output->buffer = buffer;
output->offset = *offset;
output->location = *location;
output->component_mask = comp_mask & 0xf;
output->component_offset = comp_offset;
*offset += util_bitcount(output->component_mask) * 4;
(*location)++;
comp_mask >>= 4;
comp_offset = 0;
}
}
}
static int
compare_xfb_output_offsets(const void *_a, const void *_b)
{
const nir_xfb_output_info *a = _a, *b = _b;
return a->offset - b->offset;
}
nir_xfb_info *
nir_gather_xfb_info(const nir_shader *shader, void *mem_ctx)
{
assert(shader->info.stage == MESA_SHADER_VERTEX ||
shader->info.stage == MESA_SHADER_TESS_EVAL ||
shader->info.stage == MESA_SHADER_GEOMETRY);
/* Compute the number of outputs we have. This is simply the number of
* cumulative locations consumed by all the variables. If a location is
* represented by multiple variables, then they each count separately in
* number of outputs. This is only an estimate as some variables may have
* an xfb_buffer but not an output so it may end up larger than we need but
* it should be good enough for allocation.
*/
unsigned num_outputs = 0;
unsigned num_varyings = 0;
nir_foreach_variable(var, &shader->outputs) {
if (var->data.explicit_xfb_buffer) {
num_outputs += glsl_count_attribute_slots(var->type, false);
num_varyings += glsl_varying_count(var->type);
}
}
if (num_outputs == 0 || num_varyings == 0)
return NULL;
nir_xfb_info *xfb = nir_gather_xfb_info_create(mem_ctx, num_outputs, num_varyings);
/* Walk the list of outputs and add them to the array */
nir_foreach_variable(var, &shader->outputs) {
if (!var->data.explicit_xfb_buffer)
continue;
unsigned location = var->data.location;
/* In order to know if we have a array of blocks can't be done just by
* checking if we have an interface type and is an array, because due
* splitting we could end on a case were we received a split struct
* that contains an array.
*/
bool is_array_block = var->interface_type != NULL &&
glsl_type_is_array(var->type) &&
glsl_without_array(var->type) == glsl_get_bare_type(var->interface_type);
if (var->data.explicit_offset && !is_array_block) {
unsigned offset = var->data.offset;
add_var_xfb_outputs(xfb, var, var->data.xfb_buffer,
&location, &offset, var->type);
} else if (is_array_block) {
assert(glsl_type_is_struct_or_ifc(var->interface_type));
unsigned aoa_size = glsl_get_aoa_size(var->type);
const struct glsl_type *itype = var->interface_type;
unsigned nfields = glsl_get_length(itype);
for (unsigned b = 0; b < aoa_size; b++) {
for (unsigned f = 0; f < nfields; f++) {
int foffset = glsl_get_struct_field_offset(itype, f);
const struct glsl_type *ftype = glsl_get_struct_field(itype, f);
if (foffset < 0) {
location += glsl_count_attribute_slots(ftype, false);
continue;
}
unsigned offset = foffset;
add_var_xfb_outputs(xfb, var, var->data.xfb_buffer + b,
&location, &offset, ftype);
}
}
}
}
/* Everything is easier in the state setup code if the list is sorted in
* order of output offset.
*/
qsort(xfb->outputs, xfb->output_count, sizeof(xfb->outputs[0]),
compare_xfb_output_offsets);
#ifndef NDEBUG
/* Finally, do a sanity check */
unsigned max_offset[NIR_MAX_XFB_BUFFERS] = {0};
for (unsigned i = 0; i < xfb->output_count; i++) {
assert(xfb->outputs[i].offset >= max_offset[xfb->outputs[i].buffer]);
assert(xfb->outputs[i].component_mask != 0);
unsigned slots = util_bitcount(xfb->outputs[i].component_mask);
max_offset[xfb->outputs[i].buffer] = xfb->outputs[i].offset + slots * 4;
}
#endif
return xfb;
}
|