summaryrefslogtreecommitdiffstats
path: root/src/compiler/nir/nir_from_ssa.c
blob: fdfbf98e3741c003d7a9ef07d24a223292791236 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Jason Ekstrand (jason@jlekstrand.net)
 *
 */

#include "nir.h"
#include "nir_builder.h"
#include "nir_vla.h"

/*
 * This file implements an out-of-SSA pass as described in "Revisiting
 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
 * Boissinot et. al.
 */

struct from_ssa_state {
   nir_builder builder;
   void *dead_ctx;
   bool phi_webs_only;
   struct hash_table *merge_node_table;
   nir_instr *instr;
};

/* Returns true if a dominates b */
static bool
ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
{
   if (a->live_index == 0) {
      /* SSA undefs always dominate */
      return true;
   } else if (b->live_index < a->live_index) {
      return false;
   } else if (a->parent_instr->block == b->parent_instr->block) {
      return a->live_index <= b->live_index;
   } else {
      return nir_block_dominates(a->parent_instr->block,
                                 b->parent_instr->block);
   }
}


/* The following data structure, which I have named merge_set is a way of
 * representing a set registers of non-interfering registers.  This is
 * based on the concept of a "dominance forest" presented in "Fast Copy
 * Coalescing and Live-Range Identification" by Budimlic et. al. but the
 * implementation concept is taken from  "Revisiting Out-of-SSA Translation
 * for Correctness, Code Quality, and Efficiency" by Boissinot et. al..
 *
 * Each SSA definition is associated with a merge_node and the association
 * is represented by a combination of a hash table and the "def" parameter
 * in the merge_node structure.  The merge_set stores a linked list of
 * merge_nodes in dominance order of the ssa definitions.  (Since the
 * liveness analysis pass indexes the SSA values in dominance order for us,
 * this is an easy thing to keep up.)  It is assumed that no pair of the
 * nodes in a given set interfere.  Merging two sets or checking for
 * interference can be done in a single linear-time merge-sort walk of the
 * two lists of nodes.
 */
struct merge_set;

typedef struct {
   struct exec_node node;
   struct merge_set *set;
   nir_ssa_def *def;
} merge_node;

typedef struct merge_set {
   struct exec_list nodes;
   unsigned size;
   nir_register *reg;
} merge_set;

#if 0
static void
merge_set_dump(merge_set *set, FILE *fp)
{
   nir_ssa_def *dom[set->size];
   int dom_idx = -1;

   foreach_list_typed(merge_node, node, node, &set->nodes) {
      while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
         dom_idx--;

      for (int i = 0; i <= dom_idx; i++)
         fprintf(fp, "  ");

      if (node->def->name)
         fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
      else
         fprintf(fp, "ssa_%d\n", node->def->index);

      dom[++dom_idx] = node->def;
   }
}
#endif

static merge_node *
get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
{
   struct hash_entry *entry =
      _mesa_hash_table_search(state->merge_node_table, def);
   if (entry)
      return entry->data;

   merge_set *set = ralloc(state->dead_ctx, merge_set);
   exec_list_make_empty(&set->nodes);
   set->size = 1;
   set->reg = NULL;

   merge_node *node = ralloc(state->dead_ctx, merge_node);
   node->set = set;
   node->def = def;
   exec_list_push_head(&set->nodes, &node->node);

   _mesa_hash_table_insert(state->merge_node_table, def, node);

   return node;
}

static bool
merge_nodes_interfere(merge_node *a, merge_node *b)
{
   return nir_ssa_defs_interfere(a->def, b->def);
}

/* Merges b into a */
static merge_set *
merge_merge_sets(merge_set *a, merge_set *b)
{
   struct exec_node *an = exec_list_get_head(&a->nodes);
   struct exec_node *bn = exec_list_get_head(&b->nodes);
   while (!exec_node_is_tail_sentinel(bn)) {
      merge_node *a_node = exec_node_data(merge_node, an, node);
      merge_node *b_node = exec_node_data(merge_node, bn, node);

      if (exec_node_is_tail_sentinel(an) ||
          a_node->def->live_index > b_node->def->live_index) {
         struct exec_node *next = bn->next;
         exec_node_remove(bn);
         exec_node_insert_node_before(an, bn);
         exec_node_data(merge_node, bn, node)->set = a;
         bn = next;
      } else {
         an = an->next;
      }
   }

   a->size += b->size;
   b->size = 0;

   return a;
}

/* Checks for any interference between two merge sets
 *
 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
 * Translation for Correctness, Code Quality, and Efficiency" by
 * Boissinot et. al.
 */
static bool
merge_sets_interfere(merge_set *a, merge_set *b)
{
   NIR_VLA(merge_node *, dom, a->size + b->size);
   int dom_idx = -1;

   struct exec_node *an = exec_list_get_head(&a->nodes);
   struct exec_node *bn = exec_list_get_head(&b->nodes);
   while (!exec_node_is_tail_sentinel(an) ||
          !exec_node_is_tail_sentinel(bn)) {

      merge_node *current;
      if (exec_node_is_tail_sentinel(an)) {
         current = exec_node_data(merge_node, bn, node);
         bn = bn->next;
      } else if (exec_node_is_tail_sentinel(bn)) {
         current = exec_node_data(merge_node, an, node);
         an = an->next;
      } else {
         merge_node *a_node = exec_node_data(merge_node, an, node);
         merge_node *b_node = exec_node_data(merge_node, bn, node);

         if (a_node->def->live_index <= b_node->def->live_index) {
            current = a_node;
            an = an->next;
         } else {
            current = b_node;
            bn = bn->next;
         }
      }

      while (dom_idx >= 0 &&
             !ssa_def_dominates(dom[dom_idx]->def, current->def))
         dom_idx--;

      if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
         return true;

      dom[++dom_idx] = current;
   }

   return false;
}

static bool
add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx)
{

   bool need_end_copy = false;
   if (block->successors[0]) {
      nir_instr *instr = nir_block_first_instr(block->successors[0]);
      if (instr && instr->type == nir_instr_type_phi)
         need_end_copy = true;
   }

   if (block->successors[1]) {
      nir_instr *instr = nir_block_first_instr(block->successors[1]);
      if (instr && instr->type == nir_instr_type_phi)
         need_end_copy = true;
   }

   if (need_end_copy) {
      /* If one of our successors has at least one phi node, we need to
       * create a parallel copy at the end of the block but before the jump
       * (if there is one).
       */
      nir_parallel_copy_instr *pcopy =
         nir_parallel_copy_instr_create(dead_ctx);

      nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
   }

   return true;
}

static nir_parallel_copy_instr *
get_parallel_copy_at_end_of_block(nir_block *block)
{
   nir_instr *last_instr = nir_block_last_instr(block);
   if (last_instr == NULL)
      return NULL;

   /* The last instruction may be a jump in which case the parallel copy is
    * right before it.
    */
   if (last_instr->type == nir_instr_type_jump)
      last_instr = nir_instr_prev(last_instr);

   if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
      return nir_instr_as_parallel_copy(last_instr);
   else
      return NULL;
}

/** Isolate phi nodes with parallel copies
 *
 * In order to solve the dependency problems with the sources and
 * destinations of phi nodes, we first isolate them by adding parallel
 * copies to the beginnings and ends of basic blocks.  For every block with
 * phi nodes, we add a parallel copy immediately following the last phi
 * node that copies the destinations of all of the phi nodes to new SSA
 * values.  We also add a parallel copy to the end of every block that has
 * a successor with phi nodes that, for each phi node in each successor,
 * copies the corresponding sorce of the phi node and adjust the phi to
 * used the destination of the parallel copy.
 *
 * In SSA form, each value has exactly one definition.  What this does is
 * ensure that each value used in a phi also has exactly one use.  The
 * destinations of phis are only used by the parallel copy immediately
 * following the phi nodes and.  Thanks to the parallel copy at the end of
 * the predecessor block, the sources of phi nodes are are the only use of
 * that value.  This allows us to immediately assign all the sources and
 * destinations of any given phi node to the same register without worrying
 * about interference at all.  We do coalescing to get rid of the parallel
 * copies where possible.
 *
 * Before this pass can be run, we have to iterate over the blocks with
 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
 * the ends of blocks exist.  We can create the ones at the beginnings as
 * we go, but the ones at the ends of blocks need to be created ahead of
 * time because of potential back-edges in the CFG.
 */
static bool
isolate_phi_nodes_block(nir_block *block, void *dead_ctx)
{
   nir_instr *last_phi_instr = NULL;
   nir_foreach_instr(instr, block) {
      /* Phi nodes only ever come at the start of a block */
      if (instr->type != nir_instr_type_phi)
         break;

      last_phi_instr = instr;
   }

   /* If we don't have any phis, then there's nothing for us to do. */
   if (last_phi_instr == NULL)
      return true;

   /* If we have phi nodes, we need to create a parallel copy at the
    * start of this block but after the phi nodes.
    */
   nir_parallel_copy_instr *block_pcopy =
      nir_parallel_copy_instr_create(dead_ctx);
   nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);

   nir_foreach_instr(instr, block) {
      /* Phi nodes only ever come at the start of a block */
      if (instr->type != nir_instr_type_phi)
         break;

      nir_phi_instr *phi = nir_instr_as_phi(instr);
      assert(phi->dest.is_ssa);
      nir_foreach_phi_src(src, phi) {
         nir_parallel_copy_instr *pcopy =
            get_parallel_copy_at_end_of_block(src->pred);
         assert(pcopy);

         nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
                                                  nir_parallel_copy_entry);
         nir_ssa_dest_init(&pcopy->instr, &entry->dest,
                           phi->dest.ssa.num_components,
                           phi->dest.ssa.bit_size, src->src.ssa->name);
         exec_list_push_tail(&pcopy->entries, &entry->node);

         assert(src->src.is_ssa);
         nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);

         nir_instr_rewrite_src(&phi->instr, &src->src,
                               nir_src_for_ssa(&entry->dest.ssa));
      }

      nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
                                               nir_parallel_copy_entry);
      nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
                        phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
                        phi->dest.ssa.name);
      exec_list_push_tail(&block_pcopy->entries, &entry->node);

      nir_ssa_def_rewrite_uses(&phi->dest.ssa,
                               nir_src_for_ssa(&entry->dest.ssa));

      nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
                            nir_src_for_ssa(&phi->dest.ssa));
   }

   return true;
}

static bool
coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
{
   nir_foreach_instr(instr, block) {
      /* Phi nodes only ever come at the start of a block */
      if (instr->type != nir_instr_type_phi)
         break;

      nir_phi_instr *phi = nir_instr_as_phi(instr);

      assert(phi->dest.is_ssa);
      merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);

      nir_foreach_phi_src(src, phi) {
         assert(src->src.is_ssa);
         merge_node *src_node = get_merge_node(src->src.ssa, state);
         if (src_node->set != dest_node->set)
            merge_merge_sets(dest_node->set, src_node->set);
      }
   }

   return true;
}

static void
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
                                 struct from_ssa_state *state)
{
   nir_foreach_parallel_copy_entry(entry, pcopy) {
      if (!entry->src.is_ssa)
         continue;

      /* Since load_const instructions are SSA only, we can't replace their
       * destinations with registers and, therefore, can't coalesce them.
       */
      if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
         continue;

      /* Don't try and coalesce these */
      if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
         continue;

      merge_node *src_node = get_merge_node(entry->src.ssa, state);
      merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);

      if (src_node->set == dest_node->set)
         continue;

      if (!merge_sets_interfere(src_node->set, dest_node->set))
         merge_merge_sets(src_node->set, dest_node->set);
   }
}

static bool
aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
{
   nir_parallel_copy_instr *start_pcopy = NULL;
   nir_foreach_instr(instr, block) {
      /* Phi nodes only ever come at the start of a block */
      if (instr->type != nir_instr_type_phi) {
         if (instr->type != nir_instr_type_parallel_copy)
            break; /* The parallel copy must be right after the phis */

         start_pcopy = nir_instr_as_parallel_copy(instr);

         aggressive_coalesce_parallel_copy(start_pcopy, state);

         break;
      }
   }

   nir_parallel_copy_instr *end_pcopy =
      get_parallel_copy_at_end_of_block(block);

   if (end_pcopy && end_pcopy != start_pcopy)
      aggressive_coalesce_parallel_copy(end_pcopy, state);

   return true;
}

static nir_register *
create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl)
{
   nir_register *reg = nir_local_reg_create(impl);

   reg->name = def->name;
   reg->num_components = def->num_components;
   reg->bit_size = def->bit_size;
   reg->num_array_elems = 0;

   return reg;
}

static bool
rewrite_ssa_def(nir_ssa_def *def, void *void_state)
{
   struct from_ssa_state *state = void_state;
   nir_register *reg;

   struct hash_entry *entry =
      _mesa_hash_table_search(state->merge_node_table, def);
   if (entry) {
      /* In this case, we're part of a phi web.  Use the web's register. */
      merge_node *node = (merge_node *)entry->data;

      /* If it doesn't have a register yet, create one.  Note that all of
       * the things in the merge set should be the same so it doesn't
       * matter which node's definition we use.
       */
      if (node->set->reg == NULL)
         node->set->reg = create_reg_for_ssa_def(def, state->builder.impl);

      reg = node->set->reg;
   } else {
      if (state->phi_webs_only)
         return true;

      /* We leave load_const SSA values alone.  They act as immediates to
       * the backend.  If it got coalesced into a phi, that's ok.
       */
      if (def->parent_instr->type == nir_instr_type_load_const)
         return true;

      reg = create_reg_for_ssa_def(def, state->builder.impl);
   }

   nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg));
   assert(list_empty(&def->uses) && list_empty(&def->if_uses));

   if (def->parent_instr->type == nir_instr_type_ssa_undef) {
      /* If it's an ssa_undef instruction, remove it since we know we just got
       * rid of all its uses.
       */
      nir_instr *parent_instr = def->parent_instr;
      nir_instr_remove(parent_instr);
      ralloc_steal(state->dead_ctx, parent_instr);
      return true;
   }

   assert(def->parent_instr->type != nir_instr_type_load_const);

   /* At this point we know a priori that this SSA def is part of a
    * nir_dest.  We can use exec_node_data to get the dest pointer.
    */
   nir_dest *dest = exec_node_data(nir_dest, def, ssa);

   nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));

   return true;
}

/* Resolves ssa definitions to registers.  While we're at it, we also
 * remove phi nodes.
 */
static bool
resolve_registers_block(nir_block *block, struct from_ssa_state *state)
{
   nir_foreach_instr_safe(instr, block) {
      state->instr = instr;
      nir_foreach_ssa_def(instr, rewrite_ssa_def, state);

      if (instr->type == nir_instr_type_phi) {
         nir_instr_remove(instr);
         ralloc_steal(state->dead_ctx, instr);
      }
   }
   state->instr = NULL;

   return true;
}

static void
emit_copy(nir_builder *b, nir_src src, nir_src dest_src)
{
   assert(!dest_src.is_ssa &&
          dest_src.reg.indirect == NULL &&
          dest_src.reg.base_offset == 0);

   if (src.is_ssa)
      assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
   else
      assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);

   nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_imov);
   nir_src_copy(&mov->src[0].src, &src, mov);
   mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
   mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;

   nir_builder_instr_insert(b, &mov->instr);
}

/* Resolves a single parallel copy operation into a sequence of movs
 *
 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
 * Correctness, Code Quality, and Efficiency" by Boissinot et. al..
 * However, I never got the algorithm to work as written, so this version
 * is slightly modified.
 *
 * The algorithm works by playing this little shell game with the values.
 * We start by recording where every source value is and which source value
 * each destination value should receive.  We then grab any copy whose
 * destination is "empty", i.e. not used as a source, and do the following:
 *  - Find where its source value currently lives
 *  - Emit the move instruction
 *  - Set the location of the source value to the destination
 *  - Mark the location containing the source value
 *  - Mark the destination as no longer needing to be copied
 *
 * When we run out of "empty" destinations, we have a cycle and so we
 * create a temporary register, copy to that register, and mark the value
 * we copied as living in that temporary.  Now, the cycle is broken, so we
 * can continue with the above steps.
 */
static void
resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
                      struct from_ssa_state *state)
{
   unsigned num_copies = 0;
   nir_foreach_parallel_copy_entry(entry, pcopy) {
      /* Sources may be SSA */
      if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
         continue;

      num_copies++;
   }

   if (num_copies == 0) {
      /* Hooray, we don't need any copies! */
      nir_instr_remove(&pcopy->instr);
      return;
   }

   /* The register/source corresponding to the given index */
   NIR_VLA_ZERO(nir_src, values, num_copies * 2);

   /* The current location of a given piece of data.  We will use -1 for "null" */
   NIR_VLA_FILL(int, loc, num_copies * 2, -1);

   /* The piece of data that the given piece of data is to be copied from.  We will use -1 for "null" */
   NIR_VLA_FILL(int, pred, num_copies * 2, -1);

   /* The destinations we have yet to properly fill */
   NIR_VLA(int, to_do, num_copies * 2);
   int to_do_idx = -1;

   state->builder.cursor = nir_before_instr(&pcopy->instr);

   /* Now we set everything up:
    *  - All values get assigned a temporary index
    *  - Current locations are set from sources
    *  - Predicessors are recorded from sources and destinations
    */
   int num_vals = 0;
   nir_foreach_parallel_copy_entry(entry, pcopy) {
      /* Sources may be SSA */
      if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
         continue;

      int src_idx = -1;
      for (int i = 0; i < num_vals; ++i) {
         if (nir_srcs_equal(values[i], entry->src))
            src_idx = i;
      }
      if (src_idx < 0) {
         src_idx = num_vals++;
         values[src_idx] = entry->src;
      }

      nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);

      int dest_idx = -1;
      for (int i = 0; i < num_vals; ++i) {
         if (nir_srcs_equal(values[i], dest_src)) {
            /* Each destination of a parallel copy instruction should be
             * unique.  A destination may get used as a source, so we still
             * have to walk the list.  However, the predecessor should not,
             * at this point, be set yet, so we should have -1 here.
             */
            assert(pred[i] == -1);
            dest_idx = i;
         }
      }
      if (dest_idx < 0) {
         dest_idx = num_vals++;
         values[dest_idx] = dest_src;
      }

      loc[src_idx] = src_idx;
      pred[dest_idx] = src_idx;

      to_do[++to_do_idx] = dest_idx;
   }

   /* Currently empty destinations we can go ahead and fill */
   NIR_VLA(int, ready, num_copies * 2);
   int ready_idx = -1;

   /* Mark the ones that are ready for copying.  We know an index is a
    * destination if it has a predecessor and it's ready for copying if
    * it's not marked as containing data.
    */
   for (int i = 0; i < num_vals; i++) {
      if (pred[i] != -1 && loc[i] == -1)
         ready[++ready_idx] = i;
   }

   while (to_do_idx >= 0) {
      while (ready_idx >= 0) {
         int b = ready[ready_idx--];
         int a = pred[b];
         emit_copy(&state->builder, values[loc[a]], values[b]);

         /* If any other copies want a they can find it at b */
         loc[a] = b;

         /* b has been filled, mark it as not needing to be copied */
         pred[b] = -1;

         /* If a needs to be filled, it's ready for copying now */
         if (pred[a] != -1)
            ready[++ready_idx] = a;
      }
      int b = to_do[to_do_idx--];
      if (pred[b] == -1)
         continue;

      /* If we got here, then we don't have any more trivial copies that we
       * can do.  We have to break a cycle, so we create a new temporary
       * register for that purpose.  Normally, if going out of SSA after
       * register allocation, you would want to avoid creating temporary
       * registers.  However, we are going out of SSA before register
       * allocation, so we would rather not create extra register
       * dependencies for the backend to deal with.  If it wants, the
       * backend can coalesce the (possibly multiple) temporaries.
       */
      assert(num_vals < num_copies * 2);
      nir_register *reg = nir_local_reg_create(state->builder.impl);
      reg->name = "copy_temp";
      reg->num_array_elems = 0;
      if (values[b].is_ssa)
         reg->num_components = values[b].ssa->num_components;
      else
         reg->num_components = values[b].reg.reg->num_components;
      values[num_vals].is_ssa = false;
      values[num_vals].reg.reg = reg;

      emit_copy(&state->builder, values[b], values[num_vals]);
      loc[b] = num_vals;
      ready[++ready_idx] = b;
      num_vals++;
   }

   nir_instr_remove(&pcopy->instr);
}

/* Resolves the parallel copies in a block.  Each block can have at most
 * two:  One at the beginning, right after all the phi noces, and one at
 * the end (or right before the final jump if it exists).
 */
static bool
resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
{
   /* At this point, we have removed all of the phi nodes.  If a parallel
    * copy existed right after the phi nodes in this block, it is now the
    * first instruction.
    */
   nir_instr *first_instr = nir_block_first_instr(block);
   if (first_instr == NULL)
      return true; /* Empty, nothing to do. */

   if (first_instr->type == nir_instr_type_parallel_copy) {
      nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);

      resolve_parallel_copy(pcopy, state);
   }

   /* It's possible that the above code already cleaned up the end parallel
    * copy.  However, doing so removed it form the instructions list so we
    * won't find it here.  Therefore, it's safe to go ahead and just look
    * for one and clean it up if it exists.
    */
   nir_parallel_copy_instr *end_pcopy =
      get_parallel_copy_at_end_of_block(block);
   if (end_pcopy)
      resolve_parallel_copy(end_pcopy, state);

   return true;
}

static void
nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
{
   struct from_ssa_state state;

   nir_builder_init(&state.builder, impl);
   state.dead_ctx = ralloc_context(NULL);
   state.phi_webs_only = phi_webs_only;
   state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
                                                    _mesa_key_pointer_equal);

   nir_foreach_block(block, impl) {
      add_parallel_copy_to_end_of_block(block, state.dead_ctx);
   }

   nir_foreach_block(block, impl) {
      isolate_phi_nodes_block(block, state.dead_ctx);
   }

   /* Mark metadata as dirty before we ask for liveness analysis */
   nir_metadata_preserve(impl, nir_metadata_block_index |
                               nir_metadata_dominance);

   nir_metadata_require(impl, nir_metadata_live_ssa_defs |
                              nir_metadata_dominance);

   nir_foreach_block(block, impl) {
      coalesce_phi_nodes_block(block, &state);
   }

   nir_foreach_block(block, impl) {
      aggressive_coalesce_block(block, &state);
   }

   nir_foreach_block(block, impl) {
      resolve_registers_block(block, &state);
   }

   nir_foreach_block(block, impl) {
      resolve_parallel_copies_block(block, &state);
   }

   nir_metadata_preserve(impl, nir_metadata_block_index |
                               nir_metadata_dominance);

   /* Clean up dead instructions and the hash tables */
   _mesa_hash_table_destroy(state.merge_node_table, NULL);
   ralloc_free(state.dead_ctx);
}

void
nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
{
   nir_foreach_function(function, shader) {
      if (function->impl)
         nir_convert_from_ssa_impl(function->impl, phi_webs_only);
   }
}


static void
place_phi_read(nir_shader *shader, nir_register *reg,
               nir_ssa_def *def, nir_block *block)
{
   if (block != def->parent_instr->block) {
      /* Try to go up the single-successor tree */
      bool all_single_successors = true;
      struct set_entry *entry;
      set_foreach(block->predecessors, entry) {
         nir_block *pred = (nir_block *)entry->key;
         if (pred->successors[0] && pred->successors[1]) {
            all_single_successors = false;
            break;
         }
      }

      if (all_single_successors) {
         /* All predecessors of this block have exactly one successor and it
          * is this block so they must eventually lead here without
          * intersecting each other.  Place the reads in the predecessors
          * instead of this block.
          */
         set_foreach(block->predecessors, entry)
            place_phi_read(shader, reg, def, (nir_block *)entry->key);
         return;
      }
   }

   nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
   mov->src[0].src = nir_src_for_ssa(def);
   mov->dest.dest = nir_dest_for_reg(reg);
   mov->dest.write_mask = (1 << reg->num_components) - 1;
   nir_instr_insert(nir_after_block_before_jump(block), &mov->instr);
}

/** Lower all of the phi nodes in a block to imovs to and from a register
 *
 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
 * single block to convert all of its phis to a register and some imovs.
 * The code that is generated, while not optimal for actual codegen in a
 * back-end, is easy to generate, correct, and will turn into the same set of
 * phis after you call regs_to_ssa and do some copy propagation.
 *
 * The one intelligent thing this pass does is that it places the moves from
 * the phi sources as high up the predecessor tree as possible instead of in
 * the exact predecessor.  This means that, in particular, it will crawl into
 * the deepest nesting of any if-ladders.  In order to ensure that doing so is
 * safe, it stops as soon as one of the predecessors has multiple successors.
 */
bool
nir_lower_phis_to_regs_block(nir_block *block)
{
   nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
   nir_shader *shader = impl->function->shader;

   bool progress = false;
   nir_foreach_instr_safe(instr, block) {
      if (instr->type != nir_instr_type_phi)
         break;

      nir_phi_instr *phi = nir_instr_as_phi(instr);
      assert(phi->dest.is_ssa);

      nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, impl);

      nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
      mov->src[0].src = nir_src_for_reg(reg);
      mov->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
      nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
                        phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
                        phi->dest.ssa.name);
      nir_instr_insert(nir_after_instr(&phi->instr), &mov->instr);

      nir_ssa_def_rewrite_uses(&phi->dest.ssa,
                               nir_src_for_ssa(&mov->dest.dest.ssa));

      nir_foreach_phi_src(src, phi) {
         assert(src->src.is_ssa);
         place_phi_read(shader, reg, src->src.ssa, src->pred);
      }

      nir_instr_remove(&phi->instr);

      progress = true;
   }

   return progress;
}

struct ssa_def_to_reg_state {
   nir_function_impl *impl;
   bool progress;
};

static bool
dest_replace_ssa_with_reg(nir_dest *dest, void *void_state)
{
   struct ssa_def_to_reg_state *state = void_state;

   if (!dest->is_ssa)
      return true;

   nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl);

   nir_ssa_def_rewrite_uses(&dest->ssa, nir_src_for_reg(reg));

   nir_instr *instr = dest->ssa.parent_instr;
   *dest = nir_dest_for_reg(reg);
   dest->reg.parent_instr = instr;
   list_addtail(&dest->reg.def_link, &reg->defs);

   state->progress = true;

   return true;
}

/** Lower all of the SSA defs in a block to registers
 *
 * This performs the very simple operation of blindly replacing all of the SSA
 * defs in the given block with registers.  If not used carefully, this may
 * result in phi nodes with register sources which is technically invalid.
 * Fortunately, the register-based into-SSA pass handles them anyway.
 */
bool
nir_lower_ssa_defs_to_regs_block(nir_block *block)
{
   nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
   nir_shader *shader = impl->function->shader;

   struct ssa_def_to_reg_state state = {
      .impl = impl,
      .progress = false,
   };

   nir_foreach_instr(instr, block) {
      if (instr->type == nir_instr_type_ssa_undef) {
         /* Undefs are just a read of something never written. */
         nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
         nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl);
         nir_ssa_def_rewrite_uses(&undef->def, nir_src_for_reg(reg));
      } else if (instr->type == nir_instr_type_load_const) {
         /* Constant loads are SSA-only, we need to insert a move */
         nir_load_const_instr *load = nir_instr_as_load_const(instr);
         nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl);
         nir_ssa_def_rewrite_uses(&load->def, nir_src_for_reg(reg));

         nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
         mov->src[0].src = nir_src_for_ssa(&load->def);
         mov->dest.dest = nir_dest_for_reg(reg);
         mov->dest.write_mask = (1 << reg->num_components) - 1;
         nir_instr_insert(nir_after_instr(&load->instr), &mov->instr);
      } else {
         nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state);
      }
   }

   return state.progress;
}