1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
|
#
# Copyright (C) 2014 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
# Authors:
# Jason Ekstrand (jason@jlekstrand.net)
from __future__ import print_function
import ast
from collections import defaultdict
import itertools
import struct
import sys
import mako.template
import re
import traceback
from nir_opcodes import opcodes, type_sizes
# These opcodes are only employed by nir_search. This provides a mapping from
# opcode to destination type.
conv_opcode_types = {
'i2f' : 'float',
'u2f' : 'float',
'f2f' : 'float',
'f2u' : 'uint',
'f2i' : 'int',
'u2u' : 'uint',
'i2i' : 'int',
'b2f' : 'float',
'b2i' : 'int',
'i2b' : 'bool',
'f2b' : 'bool',
}
def get_c_opcode(op):
if op in conv_opcode_types:
return 'nir_search_op_' + op
else:
return 'nir_op_' + op
if sys.version_info < (3, 0):
integer_types = (int, long)
string_type = unicode
else:
integer_types = (int, )
string_type = str
_type_re = re.compile(r"(?P<type>int|uint|bool|float)?(?P<bits>\d+)?")
def type_bits(type_str):
m = _type_re.match(type_str)
assert m.group('type')
if m.group('bits') is None:
return 0
else:
return int(m.group('bits'))
# Represents a set of variables, each with a unique id
class VarSet(object):
def __init__(self):
self.names = {}
self.ids = itertools.count()
self.immutable = False;
def __getitem__(self, name):
if name not in self.names:
assert not self.immutable, "Unknown replacement variable: " + name
self.names[name] = next(self.ids)
return self.names[name]
def lock(self):
self.immutable = True
class Value(object):
@staticmethod
def create(val, name_base, varset):
if isinstance(val, bytes):
val = val.decode('utf-8')
if isinstance(val, tuple):
return Expression(val, name_base, varset)
elif isinstance(val, Expression):
return val
elif isinstance(val, string_type):
return Variable(val, name_base, varset)
elif isinstance(val, (bool, float) + integer_types):
return Constant(val, name_base)
def __init__(self, val, name, type_str):
self.in_val = str(val)
self.name = name
self.type_str = type_str
def __str__(self):
return self.in_val
def get_bit_size(self):
"""Get the physical bit-size that has been chosen for this value, or if
there is none, the canonical value which currently represents this
bit-size class. Variables will be preferred, i.e. if there are any
variables in the equivalence class, the canonical value will be a
variable. We do this since we'll need to know which variable each value
is equivalent to when constructing the replacement expression. This is
the "find" part of the union-find algorithm.
"""
bit_size = self
while isinstance(bit_size, Value):
if bit_size._bit_size is None:
break
bit_size = bit_size._bit_size
if bit_size is not self:
self._bit_size = bit_size
return bit_size
def set_bit_size(self, other):
"""Make self.get_bit_size() return what other.get_bit_size() return
before calling this, or just "other" if it's a concrete bit-size. This is
the "union" part of the union-find algorithm.
"""
self_bit_size = self.get_bit_size()
other_bit_size = other if isinstance(other, int) else other.get_bit_size()
if self_bit_size == other_bit_size:
return
self_bit_size._bit_size = other_bit_size
@property
def type_enum(self):
return "nir_search_value_" + self.type_str
@property
def c_type(self):
return "nir_search_" + self.type_str
def __c_name(self, cache):
if cache is not None and self.name in cache:
return cache[self.name]
else:
return self.name
def c_value_ptr(self, cache):
return "&{0}.value".format(self.__c_name(cache))
def c_ptr(self, cache):
return "&{0}".format(self.__c_name(cache))
@property
def c_bit_size(self):
bit_size = self.get_bit_size()
if isinstance(bit_size, int):
return bit_size
elif isinstance(bit_size, Variable):
return -bit_size.index - 1
else:
# If the bit-size class is neither a variable, nor an actual bit-size, then
# - If it's in the search expression, we don't need to check anything
# - If it's in the replace expression, either it's ambiguous (in which
# case we'd reject it), or it equals the bit-size of the search value
# We represent these cases with a 0 bit-size.
return 0
__template = mako.template.Template("""{
{ ${val.type_enum}, ${val.c_bit_size} },
% if isinstance(val, Constant):
${val.type()}, { ${val.hex()} /* ${val.value} */ },
% elif isinstance(val, Variable):
${val.index}, /* ${val.var_name} */
${'true' if val.is_constant else 'false'},
${val.type() or 'nir_type_invalid' },
${val.cond if val.cond else 'NULL'},
% elif isinstance(val, Expression):
${'true' if val.inexact else 'false'},
${val.comm_expr_idx}, ${val.comm_exprs},
${val.c_opcode()},
{ ${', '.join(src.c_value_ptr(cache) for src in val.sources)} },
${val.cond if val.cond else 'NULL'},
% endif
};""")
def render(self, cache):
struct_init = self.__template.render(val=self, cache=cache,
Constant=Constant,
Variable=Variable,
Expression=Expression)
if cache is not None and struct_init in cache:
# If it's in the cache, register a name remap in the cache and render
# only a comment saying it's been remapped
cache[self.name] = cache[struct_init]
return "/* {} -> {} in the cache */\n".format(self.name,
cache[struct_init])
else:
if cache is not None:
cache[struct_init] = self.name
return "static const {} {} = {}\n".format(self.c_type, self.name,
struct_init)
_constant_re = re.compile(r"(?P<value>[^@\(]+)(?:@(?P<bits>\d+))?")
class Constant(Value):
def __init__(self, val, name):
Value.__init__(self, val, name, "constant")
if isinstance(val, (str)):
m = _constant_re.match(val)
self.value = ast.literal_eval(m.group('value'))
self._bit_size = int(m.group('bits')) if m.group('bits') else None
else:
self.value = val
self._bit_size = None
if isinstance(self.value, bool):
assert self._bit_size is None or self._bit_size == 1
self._bit_size = 1
def hex(self):
if isinstance(self.value, (bool)):
return 'NIR_TRUE' if self.value else 'NIR_FALSE'
if isinstance(self.value, integer_types):
return hex(self.value)
elif isinstance(self.value, float):
i = struct.unpack('Q', struct.pack('d', self.value))[0]
h = hex(i)
# On Python 2 this 'L' suffix is automatically added, but not on Python 3
# Adding it explicitly makes the generated file identical, regardless
# of the Python version running this script.
if h[-1] != 'L' and i > sys.maxsize:
h += 'L'
return h
else:
assert False
def type(self):
if isinstance(self.value, (bool)):
return "nir_type_bool"
elif isinstance(self.value, integer_types):
return "nir_type_int"
elif isinstance(self.value, float):
return "nir_type_float"
_var_name_re = re.compile(r"(?P<const>#)?(?P<name>\w+)"
r"(?:@(?P<type>int|uint|bool|float)?(?P<bits>\d+)?)?"
r"(?P<cond>\([^\)]+\))?")
class Variable(Value):
def __init__(self, val, name, varset):
Value.__init__(self, val, name, "variable")
m = _var_name_re.match(val)
assert m and m.group('name') is not None
self.var_name = m.group('name')
# Prevent common cases where someone puts quotes around a literal
# constant. If we want to support names that have numeric or
# punctuation characters, we can me the first assertion more flexible.
assert self.var_name.isalpha()
assert self.var_name is not 'True'
assert self.var_name is not 'False'
self.is_constant = m.group('const') is not None
self.cond = m.group('cond')
self.required_type = m.group('type')
self._bit_size = int(m.group('bits')) if m.group('bits') else None
if self.required_type == 'bool':
if self._bit_size is not None:
assert self._bit_size in type_sizes(self.required_type)
else:
self._bit_size = 1
if self.required_type is not None:
assert self.required_type in ('float', 'bool', 'int', 'uint')
self.index = varset[self.var_name]
def type(self):
if self.required_type == 'bool':
return "nir_type_bool"
elif self.required_type in ('int', 'uint'):
return "nir_type_int"
elif self.required_type == 'float':
return "nir_type_float"
_opcode_re = re.compile(r"(?P<inexact>~)?(?P<opcode>\w+)(?:@(?P<bits>\d+))?"
r"(?P<cond>\([^\)]+\))?")
class Expression(Value):
def __init__(self, expr, name_base, varset):
Value.__init__(self, expr, name_base, "expression")
assert isinstance(expr, tuple)
m = _opcode_re.match(expr[0])
assert m and m.group('opcode') is not None
self.opcode = m.group('opcode')
self._bit_size = int(m.group('bits')) if m.group('bits') else None
self.inexact = m.group('inexact') is not None
self.cond = m.group('cond')
self.sources = [ Value.create(src, "{0}_{1}".format(name_base, i), varset)
for (i, src) in enumerate(expr[1:]) ]
if self.opcode in conv_opcode_types:
assert self._bit_size is None, \
'Expression cannot use an unsized conversion opcode with ' \
'an explicit size; that\'s silly.'
self.__index_comm_exprs(0)
def __index_comm_exprs(self, base_idx):
"""Recursively count and index commutative expressions
"""
self.comm_exprs = 0
if self.opcode not in conv_opcode_types and \
"2src_commutative" in opcodes[self.opcode].algebraic_properties:
self.comm_expr_idx = base_idx
self.comm_exprs += 1
else:
self.comm_expr_idx = -1
for s in self.sources:
if isinstance(s, Expression):
s.__index_comm_exprs(base_idx + self.comm_exprs)
self.comm_exprs += s.comm_exprs
return self.comm_exprs
def c_opcode(self):
return get_c_opcode(self.opcode)
def render(self, cache):
srcs = "\n".join(src.render(cache) for src in self.sources)
return srcs + super(Expression, self).render(cache)
class BitSizeValidator(object):
"""A class for validating bit sizes of expressions.
NIR supports multiple bit-sizes on expressions in order to handle things
such as fp64. The source and destination of every ALU operation is
assigned a type and that type may or may not specify a bit size. Sources
and destinations whose type does not specify a bit size are considered
"unsized" and automatically take on the bit size of the corresponding
register or SSA value. NIR has two simple rules for bit sizes that are
validated by nir_validator:
1) A given SSA def or register has a single bit size that is respected by
everything that reads from it or writes to it.
2) The bit sizes of all unsized inputs/outputs on any given ALU
instruction must match. They need not match the sized inputs or
outputs but they must match each other.
In order to keep nir_algebraic relatively simple and easy-to-use,
nir_search supports a type of bit-size inference based on the two rules
above. This is similar to type inference in many common programming
languages. If, for instance, you are constructing an add operation and you
know the second source is 16-bit, then you know that the other source and
the destination must also be 16-bit. There are, however, cases where this
inference can be ambiguous or contradictory. Consider, for instance, the
following transformation:
(('usub_borrow', a, b), ('b2i@32', ('ult', a, b)))
This transformation can potentially cause a problem because usub_borrow is
well-defined for any bit-size of integer. However, b2i always generates a
32-bit result so it could end up replacing a 64-bit expression with one
that takes two 64-bit values and produces a 32-bit value. As another
example, consider this expression:
(('bcsel', a, b, 0), ('iand', a, b))
In this case, in the search expression a must be 32-bit but b can
potentially have any bit size. If we had a 64-bit b value, we would end up
trying to and a 32-bit value with a 64-bit value which would be invalid
This class solves that problem by providing a validation layer that proves
that a given search-and-replace operation is 100% well-defined before we
generate any code. This ensures that bugs are caught at compile time
rather than at run time.
Each value maintains a "bit-size class", which is either an actual bit size
or an equivalence class with other values that must have the same bit size.
The validator works by combining bit-size classes with each other according
to the NIR rules outlined above, checking that there are no inconsistencies.
When doing this for the replacement expression, we make sure to never change
the equivalence class of any of the search values. We could make the example
transforms above work by doing some extra run-time checking of the search
expression, but we make the user specify those constraints themselves, to
avoid any surprises. Since the replacement bitsizes can only be connected to
the source bitsize via variables (variables must have the same bitsize in
the source and replacment expressions) or the roots of the expression (the
replacement expression must produce the same bit size as the search
expression), we prevent merging a variable with anything when processing the
replacement expression, or specializing the search bitsize
with anything. The former prevents
(('bcsel', a, b, 0), ('iand', a, b))
from being allowed, since we'd have to merge the bitsizes for a and b due to
the 'iand', while the latter prevents
(('usub_borrow', a, b), ('b2i@32', ('ult', a, b)))
from being allowed, since the search expression has the bit size of a and b,
which can't be specialized to 32 which is the bitsize of the replace
expression. It also prevents something like:
(('b2i', ('i2b', a)), ('ineq', a, 0))
since the bitsize of 'b2i', which can be anything, can't be specialized to
the bitsize of a.
After doing all this, we check that every subexpression of the replacement
was assigned a constant bitsize, the bitsize of a variable, or the bitsize
of the search expresssion, since those are the things that are known when
constructing the replacement expresssion. Finally, we record the bitsize
needed in nir_search_value so that we know what to do when building the
replacement expression.
"""
def __init__(self, varset):
self._var_classes = [None] * len(varset.names)
def compare_bitsizes(self, a, b):
"""Determines which bitsize class is a specialization of the other, or
whether neither is. When we merge two different bitsizes, the
less-specialized bitsize always points to the more-specialized one, so
that calling get_bit_size() always gets you the most specialized bitsize.
The specialization partial order is given by:
- Physical bitsizes are always the most specialized, and a different
bitsize can never specialize another.
- In the search expression, variables can always be specialized to each
other and to physical bitsizes. In the replace expression, we disallow
this to avoid adding extra constraints to the search expression that
the user didn't specify.
- Expressions and constants without a bitsize can always be specialized to
each other and variables, but not the other way around.
We return -1 if a <= b (b can be specialized to a), 0 if a = b, 1 if a >= b,
and None if they are not comparable (neither a <= b nor b <= a).
"""
if isinstance(a, int):
if isinstance(b, int):
return 0 if a == b else None
elif isinstance(b, Variable):
return -1 if self.is_search else None
else:
return -1
elif isinstance(a, Variable):
if isinstance(b, int):
return 1 if self.is_search else None
elif isinstance(b, Variable):
return 0 if self.is_search or a.index == b.index else None
else:
return -1
else:
if isinstance(b, int):
return 1
elif isinstance(b, Variable):
return 1
else:
return 0
def unify_bit_size(self, a, b, error_msg):
"""Record that a must have the same bit-size as b. If both
have been assigned conflicting physical bit-sizes, call "error_msg" with
the bit-sizes of self and other to get a message and raise an error.
In the replace expression, disallow merging variables with other
variables and physical bit-sizes as well.
"""
a_bit_size = a.get_bit_size()
b_bit_size = b if isinstance(b, int) else b.get_bit_size()
cmp_result = self.compare_bitsizes(a_bit_size, b_bit_size)
assert cmp_result is not None, \
error_msg(a_bit_size, b_bit_size)
if cmp_result < 0:
b_bit_size.set_bit_size(a)
elif not isinstance(a_bit_size, int):
a_bit_size.set_bit_size(b)
def merge_variables(self, val):
"""Perform the first part of type inference by merging all the different
uses of the same variable. We always do this as if we're in the search
expression, even if we're actually not, since otherwise we'd get errors
if the search expression specified some constraint but the replace
expression didn't, because we'd be merging a variable and a constant.
"""
if isinstance(val, Variable):
if self._var_classes[val.index] is None:
self._var_classes[val.index] = val
else:
other = self._var_classes[val.index]
self.unify_bit_size(other, val,
lambda other_bit_size, bit_size:
'Variable {} has conflicting bit size requirements: ' \
'it must have bit size {} and {}'.format(
val.var_name, other_bit_size, bit_size))
elif isinstance(val, Expression):
for src in val.sources:
self.merge_variables(src)
def validate_value(self, val):
"""Validate the an expression by performing classic Hindley-Milner
type inference on bitsizes. This will detect if there are any conflicting
requirements, and unify variables so that we know which variables must
have the same bitsize. If we're operating on the replace expression, we
will refuse to merge different variables together or merge a variable
with a constant, in order to prevent surprises due to rules unexpectedly
not matching at runtime.
"""
if not isinstance(val, Expression):
return
# Generic conversion ops are special in that they have a single unsized
# source and an unsized destination and the two don't have to match.
# This means there's no validation or unioning to do here besides the
# len(val.sources) check.
if val.opcode in conv_opcode_types:
assert len(val.sources) == 1, \
"Expression {} has {} sources, expected 1".format(
val, len(val.sources))
self.validate_value(val.sources[0])
return
nir_op = opcodes[val.opcode]
assert len(val.sources) == nir_op.num_inputs, \
"Expression {} has {} sources, expected {}".format(
val, len(val.sources), nir_op.num_inputs)
for src in val.sources:
self.validate_value(src)
dst_type_bits = type_bits(nir_op.output_type)
# First, unify all the sources. That way, an error coming up because two
# sources have an incompatible bit-size won't produce an error message
# involving the destination.
first_unsized_src = None
for src_type, src in zip(nir_op.input_types, val.sources):
src_type_bits = type_bits(src_type)
if src_type_bits == 0:
if first_unsized_src is None:
first_unsized_src = src
continue
if self.is_search:
self.unify_bit_size(first_unsized_src, src,
lambda first_unsized_src_bit_size, src_bit_size:
'Source {} of {} must have bit size {}, while source {} ' \
'must have incompatible bit size {}'.format(
first_unsized_src, val, first_unsized_src_bit_size,
src, src_bit_size))
else:
self.unify_bit_size(first_unsized_src, src,
lambda first_unsized_src_bit_size, src_bit_size:
'Sources {} (bit size of {}) and {} (bit size of {}) ' \
'of {} may not have the same bit size when building the ' \
'replacement expression.'.format(
first_unsized_src, first_unsized_src_bit_size, src,
src_bit_size, val))
else:
if self.is_search:
self.unify_bit_size(src, src_type_bits,
lambda src_bit_size, unused:
'{} must have {} bits, but as a source of nir_op_{} '\
'it must have {} bits'.format(
src, src_bit_size, nir_op.name, src_type_bits))
else:
self.unify_bit_size(src, src_type_bits,
lambda src_bit_size, unused:
'{} has the bit size of {}, but as a source of ' \
'nir_op_{} it must have {} bits, which may not be the ' \
'same'.format(
src, src_bit_size, nir_op.name, src_type_bits))
if dst_type_bits == 0:
if first_unsized_src is not None:
if self.is_search:
self.unify_bit_size(val, first_unsized_src,
lambda val_bit_size, src_bit_size:
'{} must have the bit size of {}, while its source {} ' \
'must have incompatible bit size {}'.format(
val, val_bit_size, first_unsized_src, src_bit_size))
else:
self.unify_bit_size(val, first_unsized_src,
lambda val_bit_size, src_bit_size:
'{} must have {} bits, but its source {} ' \
'(bit size of {}) may not have that bit size ' \
'when building the replacement.'.format(
val, val_bit_size, first_unsized_src, src_bit_size))
else:
self.unify_bit_size(val, dst_type_bits,
lambda dst_bit_size, unused:
'{} must have {} bits, but as a destination of nir_op_{} ' \
'it must have {} bits'.format(
val, dst_bit_size, nir_op.name, dst_type_bits))
def validate_replace(self, val, search):
bit_size = val.get_bit_size()
assert isinstance(bit_size, int) or isinstance(bit_size, Variable) or \
bit_size == search.get_bit_size(), \
'Ambiguous bit size for replacement value {}: ' \
'it cannot be deduced from a variable, a fixed bit size ' \
'somewhere, or the search expression.'.format(val)
if isinstance(val, Expression):
for src in val.sources:
self.validate_replace(src, search)
def validate(self, search, replace):
self.is_search = True
self.merge_variables(search)
self.merge_variables(replace)
self.validate_value(search)
self.is_search = False
self.validate_value(replace)
# Check that search is always more specialized than replace. Note that
# we're doing this in replace mode, disallowing merging variables.
search_bit_size = search.get_bit_size()
replace_bit_size = replace.get_bit_size()
cmp_result = self.compare_bitsizes(search_bit_size, replace_bit_size)
assert cmp_result is not None and cmp_result <= 0, \
'The search expression bit size {} and replace expression ' \
'bit size {} may not be the same'.format(
search_bit_size, replace_bit_size)
replace.set_bit_size(search)
self.validate_replace(replace, search)
_optimization_ids = itertools.count()
condition_list = ['true']
class SearchAndReplace(object):
def __init__(self, transform):
self.id = next(_optimization_ids)
search = transform[0]
replace = transform[1]
if len(transform) > 2:
self.condition = transform[2]
else:
self.condition = 'true'
if self.condition not in condition_list:
condition_list.append(self.condition)
self.condition_index = condition_list.index(self.condition)
varset = VarSet()
if isinstance(search, Expression):
self.search = search
else:
self.search = Expression(search, "search{0}".format(self.id), varset)
varset.lock()
if isinstance(replace, Value):
self.replace = replace
else:
self.replace = Value.create(replace, "replace{0}".format(self.id), varset)
BitSizeValidator(varset).validate(self.search, self.replace)
class TreeAutomaton(object):
"""This class calculates a bottom-up tree automaton to quickly search for
the left-hand sides of tranforms. Tree automatons are a generalization of
classical NFA's and DFA's, where the transition function determines the
state of the parent node based on the state of its children. We construct a
deterministic automaton to match patterns, using a similar algorithm to the
classical NFA to DFA construction. At the moment, it only matches opcodes
and constants (without checking the actual value), leaving more detailed
checking to the search function which actually checks the leaves. The
automaton acts as a quick filter for the search function, requiring only n
+ 1 table lookups for each n-source operation. The implementation is based
on the theory described in "Tree Automatons: Two Taxonomies and a Toolkit."
In the language of that reference, this is a frontier-to-root deterministic
automaton using only symbol filtering. The filtering is crucial to reduce
both the time taken to generate the tables and the size of the tables.
"""
def __init__(self, transforms):
self.patterns = [t.search for t in transforms]
self._compute_items()
self._build_table()
#print('num items: {}'.format(len(set(self.items.values()))))
#print('num states: {}'.format(len(self.states)))
#for state, patterns in zip(self.states, self.patterns):
# print('{}: num patterns: {}'.format(state, len(patterns)))
class IndexMap(object):
"""An indexed list of objects, where one can either lookup an object by
index or find the index associated to an object quickly using a hash
table. Compared to a list, it has a constant time index(). Compared to a
set, it provides a stable iteration order.
"""
def __init__(self, iterable=()):
self.objects = []
self.map = {}
for obj in iterable:
self.add(obj)
def __getitem__(self, i):
return self.objects[i]
def __contains__(self, obj):
return obj in self.map
def __len__(self):
return len(self.objects)
def __iter__(self):
return iter(self.objects)
def clear(self):
self.objects = []
self.map.clear()
def index(self, obj):
return self.map[obj]
def add(self, obj):
if obj in self.map:
return self.map[obj]
else:
index = len(self.objects)
self.objects.append(obj)
self.map[obj] = index
return index
def __repr__(self):
return 'IndexMap([' + ', '.join(repr(e) for e in self.objects) + '])'
class Item(object):
"""This represents an "item" in the language of "Tree Automatons." This
is just a subtree of some pattern, which represents a potential partial
match at runtime. We deduplicate them, so that identical subtrees of
different patterns share the same object, and store some extra
information needed for the main algorithm as well.
"""
def __init__(self, opcode, children):
self.opcode = opcode
self.children = children
# These are the indices of patterns for which this item is the root node.
self.patterns = []
# This the set of opcodes for parents of this item. Used to speed up
# filtering.
self.parent_ops = set()
def __str__(self):
return '(' + ', '.join([self.opcode] + [str(c) for c in self.children]) + ')'
def __repr__(self):
return str(self)
def _compute_items(self):
"""Build a set of all possible items, deduplicating them."""
# This is a map from (opcode, sources) to item.
self.items = {}
# The set of all opcodes used by the patterns. Used later to avoid
# building and emitting all the tables for opcodes that aren't used.
self.opcodes = self.IndexMap()
def get_item(opcode, children, pattern=None):
commutative = len(children) >= 2 \
and "2src_commutative" in opcodes[opcode].algebraic_properties
item = self.items.setdefault((opcode, children),
self.Item(opcode, children))
if commutative:
self.items[opcode, (children[1], children[0]) + children[2:]] = item
if pattern is not None:
item.patterns.append(pattern)
return item
self.wildcard = get_item("__wildcard", ())
self.const = get_item("__const", ())
def process_subpattern(src, pattern=None):
if isinstance(src, Constant):
# Note: we throw away the actual constant value!
return self.const
elif isinstance(src, Variable):
if src.is_constant:
return self.const
else:
# Note: we throw away which variable it is here! This special
# item is equivalent to nu in "Tree Automatons."
return self.wildcard
else:
assert isinstance(src, Expression)
opcode = src.opcode
stripped = opcode.rstrip('0123456789')
if stripped in conv_opcode_types:
# Matches that use conversion opcodes with a specific type,
# like f2b1, are tricky. Either we construct the automaton to
# match specific NIR opcodes like nir_op_f2b1, in which case we
# need to create separate items for each possible NIR opcode
# for patterns that have a generic opcode like f2b, or we
# construct it to match the search opcode, in which case we
# need to map f2b1 to f2b when constructing the automaton. Here
# we do the latter.
opcode = stripped
self.opcodes.add(opcode)
children = tuple(process_subpattern(c) for c in src.sources)
item = get_item(opcode, children, pattern)
for i, child in enumerate(children):
child.parent_ops.add(opcode)
return item
for i, pattern in enumerate(self.patterns):
process_subpattern(pattern, i)
def _build_table(self):
"""This is the core algorithm which builds up the transition table. It
is based off of Algorithm 5.7.38 "Reachability-based tabulation of Cl .
Comp_a and Filt_{a,i} using integers to identify match sets." It
simultaneously builds up a list of all possible "match sets" or
"states", where each match set represents the set of Item's that match a
given instruction, and builds up the transition table between states.
"""
# Map from opcode + filtered state indices to transitioned state.
self.table = defaultdict(dict)
# Bijection from state to index. q in the original algorithm is
# len(self.states)
self.states = self.IndexMap()
# List of pattern matches for each state index.
self.state_patterns = []
# Map from state index to filtered state index for each opcode.
self.filter = defaultdict(list)
# Bijections from filtered state to filtered state index for each
# opcode, called the "representor sets" in the original algorithm.
# q_{a,j} in the original algorithm is len(self.rep[op]).
self.rep = defaultdict(self.IndexMap)
# Everything in self.states with a index at least worklist_index is part
# of the worklist of newly created states. There is also a worklist of
# newly fitered states for each opcode, for which worklist_indices
# serves a similar purpose. worklist_index corresponds to p in the
# original algorithm, while worklist_indices is p_{a,j} (although since
# we only filter by opcode/symbol, it's really just p_a).
self.worklist_index = 0
worklist_indices = defaultdict(lambda: 0)
# This is the set of opcodes for which the filtered worklist is non-empty.
# It's used to avoid scanning opcodes for which there is nothing to
# process when building the transition table. It corresponds to new_a in
# the original algorithm.
new_opcodes = self.IndexMap()
# Process states on the global worklist, filtering them for each opcode,
# updating the filter tables, and updating the filtered worklists if any
# new filtered states are found. Similar to ComputeRepresenterSets() in
# the original algorithm, although that only processes a single state.
def process_new_states():
while self.worklist_index < len(self.states):
state = self.states[self.worklist_index]
# Calculate pattern matches for this state. Each pattern is
# assigned to a unique item, so we don't have to worry about
# deduplicating them here. However, we do have to sort them so
# that they're visited at runtime in the order they're specified
# in the source.
patterns = list(sorted(p for item in state for p in item.patterns))
assert len(self.state_patterns) == self.worklist_index
self.state_patterns.append(patterns)
# calculate filter table for this state, and update filtered
# worklists.
for op in self.opcodes:
filt = self.filter[op]
rep = self.rep[op]
filtered = frozenset(item for item in state if \
op in item.parent_ops)
if filtered in rep:
rep_index = rep.index(filtered)
else:
rep_index = rep.add(filtered)
new_opcodes.add(op)
assert len(filt) == self.worklist_index
filt.append(rep_index)
self.worklist_index += 1
# There are two start states: one which can only match as a wildcard,
# and one which can match as a wildcard or constant. These will be the
# states of intrinsics/other instructions and load_const instructions,
# respectively. The indices of these must match the definitions of
# WILDCARD_STATE and CONST_STATE below, so that the runtime C code can
# initialize things correctly.
self.states.add(frozenset((self.wildcard,)))
self.states.add(frozenset((self.const,self.wildcard)))
process_new_states()
while len(new_opcodes) > 0:
for op in new_opcodes:
rep = self.rep[op]
table = self.table[op]
op_worklist_index = worklist_indices[op]
if op in conv_opcode_types:
num_srcs = 1
else:
num_srcs = opcodes[op].num_inputs
# Iterate over all possible source combinations where at least one
# is on the worklist.
for src_indices in itertools.product(range(len(rep)), repeat=num_srcs):
if all(src_idx < op_worklist_index for src_idx in src_indices):
continue
srcs = tuple(rep[src_idx] for src_idx in src_indices)
# Try all possible pairings of source items and add the
# corresponding parent items. This is Comp_a from the paper.
parent = set(self.items[op, item_srcs] for item_srcs in
itertools.product(*srcs) if (op, item_srcs) in self.items)
# We could always start matching something else with a
# wildcard. This is Cl from the paper.
parent.add(self.wildcard)
table[src_indices] = self.states.add(frozenset(parent))
worklist_indices[op] = len(rep)
new_opcodes.clear()
process_new_states()
_algebraic_pass_template = mako.template.Template("""
#include "nir.h"
#include "nir_builder.h"
#include "nir_search.h"
#include "nir_search_helpers.h"
#ifndef NIR_OPT_ALGEBRAIC_STRUCT_DEFS
#define NIR_OPT_ALGEBRAIC_STRUCT_DEFS
struct transform {
const nir_search_expression *search;
const nir_search_value *replace;
unsigned condition_offset;
};
struct per_op_table {
const uint16_t *filter;
unsigned num_filtered_states;
const uint16_t *table;
};
/* Note: these must match the start states created in
* TreeAutomaton._build_table()
*/
/* WILDCARD_STATE = 0 is set by zeroing the state array */
static const uint16_t CONST_STATE = 1;
#endif
<% cache = {} %>
% for xform in xforms:
${xform.search.render(cache)}
${xform.replace.render(cache)}
% endfor
% for state_id, state_xforms in enumerate(automaton.state_patterns):
% if state_xforms: # avoid emitting a 0-length array for MSVC
static const struct transform ${pass_name}_state${state_id}_xforms[] = {
% for i in state_xforms:
{ ${xforms[i].search.c_ptr(cache)}, ${xforms[i].replace.c_value_ptr(cache)}, ${xforms[i].condition_index} },
% endfor
};
% endif
% endfor
static const struct per_op_table ${pass_name}_table[nir_num_search_ops] = {
% for op in automaton.opcodes:
[${get_c_opcode(op)}] = {
.filter = (uint16_t []) {
% for e in automaton.filter[op]:
${e},
% endfor
},
<%
num_filtered = len(automaton.rep[op])
%>
.num_filtered_states = ${num_filtered},
.table = (uint16_t []) {
<%
num_srcs = len(next(iter(automaton.table[op])))
%>
% for indices in itertools.product(range(num_filtered), repeat=num_srcs):
${automaton.table[op][indices]},
% endfor
},
},
% endfor
};
static void
${pass_name}_pre_block(nir_block *block, uint16_t *states)
{
nir_foreach_instr(instr, block) {
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu = nir_instr_as_alu(instr);
nir_op op = alu->op;
uint16_t search_op = nir_search_op_for_nir_op(op);
const struct per_op_table *tbl = &${pass_name}_table[search_op];
if (tbl->num_filtered_states == 0)
continue;
/* Calculate the index into the transition table. Note the index
* calculated must match the iteration order of Python's
* itertools.product(), which was used to emit the transition
* table.
*/
uint16_t index = 0;
for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
index *= tbl->num_filtered_states;
index += tbl->filter[states[alu->src[i].src.ssa->index]];
}
states[alu->dest.dest.ssa.index] = tbl->table[index];
break;
}
case nir_instr_type_load_const: {
nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
states[load_const->def.index] = CONST_STATE;
break;
}
default:
break;
}
}
}
static bool
${pass_name}_block(nir_builder *build, nir_block *block,
const uint16_t *states, const bool *condition_flags)
{
bool progress = false;
nir_foreach_instr_reverse_safe(instr, block) {
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *alu = nir_instr_as_alu(instr);
if (!alu->dest.dest.is_ssa)
continue;
switch (states[alu->dest.dest.ssa.index]) {
% for i in range(len(automaton.state_patterns)):
case ${i}:
% if automaton.state_patterns[i]:
for (unsigned i = 0; i < ARRAY_SIZE(${pass_name}_state${i}_xforms); i++) {
const struct transform *xform = &${pass_name}_state${i}_xforms[i];
if (condition_flags[xform->condition_offset] &&
nir_replace_instr(build, alu, xform->search, xform->replace)) {
progress = true;
break;
}
}
% endif
break;
% endfor
default: assert(0);
}
}
return progress;
}
static bool
${pass_name}_impl(nir_function_impl *impl, const bool *condition_flags)
{
bool progress = false;
nir_builder build;
nir_builder_init(&build, impl);
/* Note: it's important here that we're allocating a zeroed array, since
* state 0 is the default state, which means we don't have to visit
* anything other than constants and ALU instructions.
*/
uint16_t *states = calloc(impl->ssa_alloc, sizeof(*states));
nir_foreach_block(block, impl) {
${pass_name}_pre_block(block, states);
}
nir_foreach_block_reverse(block, impl) {
progress |= ${pass_name}_block(&build, block, states, condition_flags);
}
free(states);
if (progress) {
nir_metadata_preserve(impl, nir_metadata_block_index |
nir_metadata_dominance);
} else {
#ifndef NDEBUG
impl->valid_metadata &= ~nir_metadata_not_properly_reset;
#endif
}
return progress;
}
bool
${pass_name}(nir_shader *shader)
{
bool progress = false;
bool condition_flags[${len(condition_list)}];
const nir_shader_compiler_options *options = shader->options;
const shader_info *info = &shader->info;
(void) options;
(void) info;
% for index, condition in enumerate(condition_list):
condition_flags[${index}] = ${condition};
% endfor
nir_foreach_function(function, shader) {
if (function->impl)
progress |= ${pass_name}_impl(function->impl, condition_flags);
}
return progress;
}
""")
class AlgebraicPass(object):
def __init__(self, pass_name, transforms):
self.xforms = []
self.opcode_xforms = defaultdict(lambda : [])
self.pass_name = pass_name
error = False
for xform in transforms:
if not isinstance(xform, SearchAndReplace):
try:
xform = SearchAndReplace(xform)
except:
print("Failed to parse transformation:", file=sys.stderr)
print(" " + str(xform), file=sys.stderr)
traceback.print_exc(file=sys.stderr)
print('', file=sys.stderr)
error = True
continue
self.xforms.append(xform)
if xform.search.opcode in conv_opcode_types:
dst_type = conv_opcode_types[xform.search.opcode]
for size in type_sizes(dst_type):
sized_opcode = xform.search.opcode + str(size)
self.opcode_xforms[sized_opcode].append(xform)
else:
self.opcode_xforms[xform.search.opcode].append(xform)
self.automaton = TreeAutomaton(self.xforms)
if error:
sys.exit(1)
def render(self):
return _algebraic_pass_template.render(pass_name=self.pass_name,
xforms=self.xforms,
opcode_xforms=self.opcode_xforms,
condition_list=condition_list,
automaton=self.automaton,
get_c_opcode=get_c_opcode,
itertools=itertools)
|