1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file lower_int64.cpp
*
* Lower 64-bit operations to 32-bit operations. Each 64-bit value is lowered
* to a uvec2. For each operation that can be lowered, there is a function
* called __builtin_foo with the same number of parameters that takes uvec2
* sources and produces uvec2 results. An operation like
*
* uint64_t(x) * uint64_t(y)
*
* becomes
*
* packUint2x32(__builtin_umul64(unpackUint2x32(x), unpackUint2x32(y)));
*/
#include "main/macros.h"
#include "compiler/glsl_types.h"
#include "ir.h"
#include "ir_rvalue_visitor.h"
#include "ir_builder.h"
#include "ir_optimization.h"
#include "util/hash_table.h"
#include "builtin_functions.h"
typedef ir_function_signature *(*function_generator)(void *mem_ctx,
builtin_available_predicate avail);
using namespace ir_builder;
namespace lower_64bit {
void expand_source(ir_factory &, ir_rvalue *val, ir_variable **expanded_src);
ir_dereference_variable *compact_destination(ir_factory &,
const glsl_type *type,
ir_variable *result[4]);
ir_rvalue *lower_op_to_function_call(ir_instruction *base_ir,
ir_expression *ir,
ir_function_signature *callee);
};
using namespace lower_64bit;
namespace {
class lower_64bit_visitor : public ir_rvalue_visitor {
public:
lower_64bit_visitor(void *mem_ctx, exec_list *instructions, unsigned lower)
: progress(false), lower(lower), instructions(instructions),
function_list(), added_functions(&function_list, mem_ctx)
{
functions = _mesa_hash_table_create(mem_ctx,
_mesa_key_hash_string,
_mesa_key_string_equal);
foreach_in_list(ir_instruction, node, instructions) {
ir_function *const f = node->as_function();
if (f == NULL || strncmp(f->name, "__builtin_", 10) != 0)
continue;
add_function(f);
}
}
~lower_64bit_visitor()
{
_mesa_hash_table_destroy(functions, NULL);
}
void handle_rvalue(ir_rvalue **rvalue);
void add_function(ir_function *f)
{
_mesa_hash_table_insert(functions, f->name, f);
}
ir_function *find_function(const char *name)
{
struct hash_entry *const entry =
_mesa_hash_table_search(functions, name);
return entry != NULL ? (ir_function *) entry->data : NULL;
}
bool progress;
private:
unsigned lower; /** Bitfield of which operations to lower */
exec_list *instructions;
/** Hashtable containing all of the known functions in the IR */
struct hash_table *functions;
public:
exec_list function_list;
private:
ir_factory added_functions;
ir_rvalue *handle_op(ir_expression *ir, const char *function_name,
function_generator generator);
};
} /* anonymous namespace */
static bool
is_integer_64(const glsl_type *t)
{
return t->base_type == GLSL_TYPE_UINT64 || t->base_type == GLSL_TYPE_INT64;
}
/**
* Determine if a particular type of lowering should occur
*/
#define lowering(x) (this->lower & x)
bool
lower_64bit_integer_instructions(exec_list *instructions,
unsigned what_to_lower)
{
if (instructions->is_empty())
return false;
ir_instruction *first_inst = (ir_instruction *) instructions->get_head_raw();
void *const mem_ctx = ralloc_parent(first_inst);
lower_64bit_visitor v(mem_ctx, instructions, what_to_lower);
visit_list_elements(&v, instructions);
if (v.progress && !v.function_list.is_empty()) {
/* Move all of the nodes from function_list to the head if the incoming
* instruction list.
*/
exec_node *const after = &instructions->head_sentinel;
exec_node *const before = instructions->head_sentinel.next;
exec_node *const head = v.function_list.head_sentinel.next;
exec_node *const tail = v.function_list.tail_sentinel.prev;
before->next = head;
head->prev = before;
after->prev = tail;
tail->next = after;
}
return v.progress;
}
/**
* Expand individual 64-bit values to uvec2 values
*
* Each operation is in one of a few forms.
*
* vector op vector
* vector op scalar
* scalar op vector
* scalar op scalar
*
* In the 'vector op vector' case, the two vectors must have the same size.
* In a way, the 'scalar op scalar' form is special case of the 'vector op
* vector' form.
*
* This method generates a new set of uvec2 values for each element of a
* single operand. If the operand is a scalar, the uvec2 is replicated
* multiple times. A value like
*
* u64vec3(a) + u64vec3(b)
*
* becomes
*
* u64vec3 tmp0 = u64vec3(a) + u64vec3(b);
* uvec2 tmp1 = unpackUint2x32(tmp0.x);
* uvec2 tmp2 = unpackUint2x32(tmp0.y);
* uvec2 tmp3 = unpackUint2x32(tmp0.z);
*
* and the returned operands array contains ir_variable pointers to
*
* { tmp1, tmp2, tmp3, tmp1 }
*/
void
lower_64bit::expand_source(ir_factory &body,
ir_rvalue *val,
ir_variable **expanded_src)
{
assert(val->type->base_type == GLSL_TYPE_UINT64 ||
val->type->base_type == GLSL_TYPE_INT64);
ir_variable *const temp = body.make_temp(val->type, "tmp");
body.emit(assign(temp, val));
const ir_expression_operation unpack_opcode =
val->type->base_type == GLSL_TYPE_UINT64
? ir_unop_unpack_uint_2x32 : ir_unop_unpack_int_2x32;
const glsl_type *const type =
val->type->base_type == GLSL_TYPE_UINT64
? glsl_type::uvec2_type : glsl_type::ivec2_type;
unsigned i;
for (i = 0; i < val->type->vector_elements; i++) {
expanded_src[i] = body.make_temp(type, "expanded_64bit_source");
body.emit(assign(expanded_src[i],
expr(unpack_opcode, swizzle(temp, i, 1))));
}
for (/* empty */; i < 4; i++)
expanded_src[i] = expanded_src[0];
}
/**
* Convert a series of uvec2 results into a single 64-bit integer vector
*/
ir_dereference_variable *
lower_64bit::compact_destination(ir_factory &body,
const glsl_type *type,
ir_variable *result[4])
{
const ir_expression_operation pack_opcode =
type->base_type == GLSL_TYPE_UINT64
? ir_unop_pack_uint_2x32 : ir_unop_pack_int_2x32;
ir_variable *const compacted_result =
body.make_temp(type, "compacted_64bit_result");
for (unsigned i = 0; i < type->vector_elements; i++) {
body.emit(assign(compacted_result,
expr(pack_opcode, result[i]),
1U << i));
}
void *const mem_ctx = ralloc_parent(compacted_result);
return new(mem_ctx) ir_dereference_variable(compacted_result);
}
ir_rvalue *
lower_64bit::lower_op_to_function_call(ir_instruction *base_ir,
ir_expression *ir,
ir_function_signature *callee)
{
const unsigned num_operands = ir->get_num_operands();
ir_variable *src[4][4];
ir_variable *dst[4];
void *const mem_ctx = ralloc_parent(ir);
exec_list instructions;
unsigned source_components = 0;
const glsl_type *const result_type =
ir->type->base_type == GLSL_TYPE_UINT64
? glsl_type::uvec2_type : glsl_type::ivec2_type;
ir_factory body(&instructions, mem_ctx);
for (unsigned i = 0; i < num_operands; i++) {
expand_source(body, ir->operands[i], src[i]);
if (ir->operands[i]->type->vector_elements > source_components)
source_components = ir->operands[i]->type->vector_elements;
}
for (unsigned i = 0; i < source_components; i++) {
dst[i] = body.make_temp(result_type, "expanded_64bit_result");
exec_list parameters;
for (unsigned j = 0; j < num_operands; j++)
parameters.push_tail(new(mem_ctx) ir_dereference_variable(src[j][i]));
ir_dereference_variable *const return_deref =
new(mem_ctx) ir_dereference_variable(dst[i]);
ir_call *const c = new(mem_ctx) ir_call(callee,
return_deref,
¶meters);
body.emit(c);
}
ir_rvalue *const rv = compact_destination(body, ir->type, dst);
/* Move all of the nodes from instructions between base_ir and the
* instruction before it.
*/
exec_node *const after = base_ir;
exec_node *const before = after->prev;
exec_node *const head = instructions.head_sentinel.next;
exec_node *const tail = instructions.tail_sentinel.prev;
before->next = head;
head->prev = before;
after->prev = tail;
tail->next = after;
return rv;
}
ir_rvalue *
lower_64bit_visitor::handle_op(ir_expression *ir,
const char *function_name,
function_generator generator)
{
for (unsigned i = 0; i < ir->get_num_operands(); i++)
if (!is_integer_64(ir->operands[i]->type))
return ir;
/* Get a handle to the correct ir_function_signature for the core
* operation.
*/
ir_function_signature *callee = NULL;
ir_function *f = find_function(function_name);
if (f != NULL) {
callee = (ir_function_signature *) f->signatures.get_head();
assert(callee != NULL && callee->ir_type == ir_type_function_signature);
} else {
f = new(base_ir) ir_function(function_name);
callee = generator(base_ir, NULL);
f->add_signature(callee);
add_function(f);
}
return lower_op_to_function_call(this->base_ir, ir, callee);
}
void
lower_64bit_visitor::handle_rvalue(ir_rvalue **rvalue)
{
if (*rvalue == NULL || (*rvalue)->ir_type != ir_type_expression)
return;
ir_expression *const ir = (*rvalue)->as_expression();
assert(ir != NULL);
switch (ir->operation) {
case ir_unop_sign:
if (lowering(SIGN64)) {
*rvalue = handle_op(ir, "__builtin_sign64", generate_ir::sign64);
this->progress = true;
}
break;
case ir_binop_div:
if (lowering(DIV64)) {
if (ir->type->base_type == GLSL_TYPE_UINT64) {
*rvalue = handle_op(ir, "__builtin_udiv64", generate_ir::udiv64);
} else {
*rvalue = handle_op(ir, "__builtin_idiv64", generate_ir::idiv64);
}
this->progress = true;
}
break;
case ir_binop_mul:
if (lowering(MUL64)) {
*rvalue = handle_op(ir, "__builtin_umul64", generate_ir::umul64);
this->progress = true;
}
break;
default:
break;
}
}
|