summaryrefslogtreecommitdiffstats
path: root/src/compiler/glsl/ir_expression_operation.py
blob: c718faa9d87fbb2f43fa7bc4048abb0cf72b9dbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
#! /usr/bin/env python
#
# Copyright (C) 2015 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.

import mako.template
import sys

class type(object):
   def __init__(self, c_type, union_field, glsl_type):
      self.c_type = c_type
      self.union_field = union_field
      self.glsl_type = glsl_type


class type_signature_iter(object):
   """Basic iterator for a set of type signatures.  Various kinds of sequences of
   types come in, and an iteration of type_signature objects come out.

   """

   def __init__(self, source_types, num_operands):
      """Initialize an iterator from a sequence of input types and a number
      operands.  This is for signatures where all the operands have the same
      type and the result type of the operation is the same as the input type.

      """
      self.dest_type = None
      self.source_types = source_types
      self.num_operands = num_operands
      self.i = 0

   def __init__(self, dest_type, source_types, num_operands):
      """Initialize an iterator from a result tpye, a sequence of input types and a
      number operands.  This is for signatures where all the operands have the
      same type but the result type of the operation is different from the
      input type.

      """
      self.dest_type = dest_type
      self.source_types = source_types
      self.num_operands = num_operands
      self.i = 0

   def __iter__(self):
      return self

   def next(self):
      if self.i < len(self.source_types):
         i = self.i
         self.i += 1

         if self.dest_type is None:
            dest_type = self.source_types[i]
         else:
            dest_type = self.dest_type

         return (dest_type, self.num_operands * (self.source_types[i],))
      else:
         raise StopIteration()


uint_type = type("unsigned", "u", "GLSL_TYPE_UINT")
int_type = type("int", "i", "GLSL_TYPE_INT")
float_type = type("float", "f", "GLSL_TYPE_FLOAT")
double_type = type("double", "d", "GLSL_TYPE_DOUBLE")
bool_type = type("bool", "b", "GLSL_TYPE_BOOL")

all_types = (uint_type, int_type, float_type, double_type, bool_type)
numeric_types = (uint_type, int_type, float_type, double_type)
signed_numeric_types = (int_type, float_type, double_type)
integer_types = (uint_type, int_type)
real_types = (float_type, double_type)

# This template is for operations that can have operands of a several
# different types, and each type may or may not has a different C expression.
# This is used by most operations.
constant_template_common = mako.template.Template("""\
   case ${op.get_enum_name()}:
      for (unsigned c = 0; c < op[0]->type->components(); c++) {
         switch (op[0]->type->base_type) {
    % for dst_type, src_types in op.signatures():
         case ${src_types[0].glsl_type}:
            data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types)};
            break;
    % endfor
         default:
            assert(0);
         }
      }
      break;""")

# This template is for binary operations that can operate on some combination
# of scalar and vector operands.
constant_template_vector_scalar = mako.template.Template("""\
   case ${op.get_enum_name()}:
    % if "mixed" in op.flags:
        % for i in xrange(op.num_operands):
      assert(op[${i}]->type->base_type == ${op.source_types[0].glsl_type} ||
            % for src_type in op.source_types[1:-1]:
             op[${i}]->type->base_type == ${src_type.glsl_type} ||
            % endfor
             op[${i}]->type->base_type == ${op.source_types[-1].glsl_type});
        % endfor
    % else:
      assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
    % endif
      for (unsigned c = 0, c0 = 0, c1 = 0;
           c < components;
           c0 += c0_inc, c1 += c1_inc, c++) {

         switch (op[0]->type->base_type) {
    % for dst_type, src_types in op.signatures():
         case ${src_types[0].glsl_type}:
            data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c0", "c1", "c2"))};
            break;
    % endfor
         default:
            assert(0);
         }
      }
      break;""")

# This template is for multiplication.  It is unique because it has to support
# matrix * vector and matrix * matrix operations, and those are just different.
constant_template_mul = mako.template.Template("""\
   case ${op.get_enum_name()}:
      /* Check for equal types, or unequal types involving scalars */
      if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
          || op0_scalar || op1_scalar) {
         for (unsigned c = 0, c0 = 0, c1 = 0;
              c < components;
              c0 += c0_inc, c1 += c1_inc, c++) {

            switch (op[0]->type->base_type) {
    % for dst_type, src_types in op.signatures():
            case ${src_types[0].glsl_type}:
               data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c0", "c1", "c2"))};
               break;
    % endfor
            default:
               assert(0);
            }
         }
      } else {
         assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());

         /* Multiply an N-by-M matrix with an M-by-P matrix.  Since either
          * matrix can be a GLSL vector, either N or P can be 1.
          *
          * For vec*mat, the vector is treated as a row vector.  This
          * means the vector is a 1-row x M-column matrix.
          *
          * For mat*vec, the vector is treated as a column vector.  Since
          * matrix_columns is 1 for vectors, this just works.
          */
         const unsigned n = op[0]->type->is_vector()
            ? 1 : op[0]->type->vector_elements;
         const unsigned m = op[1]->type->vector_elements;
         const unsigned p = op[1]->type->matrix_columns;
         for (unsigned j = 0; j < p; j++) {
            for (unsigned i = 0; i < n; i++) {
               for (unsigned k = 0; k < m; k++) {
                  if (op[0]->type->base_type == GLSL_TYPE_DOUBLE)
                     data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j];
                  else
                     data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
               }
            }
         }
      }
      break;""")

# This template is for operations that are horizontal and either have only a
# single type or the implementation for all types is identical.  That is, the
# operation consumes a vector and produces a scalar.
constant_template_horizontal_single_implementation = mako.template.Template("""\
   case ${op.get_enum_name()}:
      data.${op.dest_type.union_field}[0] = ${op.c_expression['default']};
      break;""")

# This template is for operations that are horizontal and do not assign the
# result.  The various unpack operations are examples.
constant_template_horizontal_nonassignment = mako.template.Template("""\
   case ${op.get_enum_name()}:
      ${op.c_expression['default']};
      break;""")

# This template is for binary operations that are horizontal.  That is, the
# operation consumes a vector and produces a scalar.
constant_template_horizontal = mako.template.Template("""\
   case ${op.get_enum_name()}:
      switch (op[0]->type->base_type) {
    % for dst_type, src_types in op.signatures():
      case ${src_types[0].glsl_type}:
         data.${dst_type.union_field}[0] = ${op.get_c_expression(src_types)};
         break;
    % endfor
      default:
         assert(0);
      }
      break;""")

# This template is for ir_binop_vector_extract.
constant_template_vector_extract = mako.template.Template("""\
   case ${op.get_enum_name()}: {
      const int c = CLAMP(op[1]->value.i[0], 0,
                          (int) op[0]->type->vector_elements - 1);

      switch (op[0]->type->base_type) {
    % for dst_type, src_types in op.signatures():
      case ${src_types[0].glsl_type}:
         data.${dst_type.union_field}[0] = op[0]->value.${src_types[0].union_field}[c];
         break;
    % endfor
      default:
         assert(0);
      }
      break;
   }""")

# This template is for ir_triop_vector_insert.
constant_template_vector_insert = mako.template.Template("""\
   case ${op.get_enum_name()}: {
      const unsigned idx = op[2]->value.u[0];

      memcpy(&data, &op[0]->value, sizeof(data));

      switch (this->type->base_type) {
    % for dst_type, src_types in op.signatures():
      case ${src_types[0].glsl_type}:
         data.${dst_type.union_field}[idx] = op[1]->value.${src_types[0].union_field}[0];
         break;
    % endfor
      default:
         assert(!"Should not get here.");
         break;
      }
      break;
   }""")

# This template is for ir_quadop_vector.
constant_template_vector = mako.template.Template("""\
   case ${op.get_enum_name()}:
      for (unsigned c = 0; c < this->type->vector_elements; c++) {
         switch (this->type->base_type) {
    % for dst_type, src_types in op.signatures():
         case ${src_types[0].glsl_type}:
            data.${dst_type.union_field}[c] = op[c]->value.${src_types[0].union_field}[0];
            break;
    % endfor
         default:
            assert(0);
         }
      }
      break;""")

# This template is for ir_triop_lrp.
constant_template_lrp = mako.template.Template("""\
   case ${op.get_enum_name()}: {
      assert(op[0]->type->base_type == GLSL_TYPE_FLOAT ||
             op[0]->type->base_type == GLSL_TYPE_DOUBLE);
      assert(op[1]->type->base_type == GLSL_TYPE_FLOAT ||
             op[1]->type->base_type == GLSL_TYPE_DOUBLE);
      assert(op[2]->type->base_type == GLSL_TYPE_FLOAT ||
             op[2]->type->base_type == GLSL_TYPE_DOUBLE);

      unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
      for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
         switch (this->type->base_type) {
    % for dst_type, src_types in op.signatures():
         case ${src_types[0].glsl_type}:
            data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c", "c", "c2"))};
            break;
    % endfor
         default:
            assert(0);
         }
      }
      break;
   }""")

# This template is for ir_triop_csel.  This expression is really unique
# because not all of the operands are the same type, and the second operand
# determines the type of the expression (instead of the first).
constant_template_csel = mako.template.Template("""\
   case ${op.get_enum_name()}:
      for (unsigned c = 0; c < components; c++) {
         switch (this->type->base_type) {
    % for dst_type, src_types in op.signatures():
         case ${src_types[1].glsl_type}:
            data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types)};
            break;
    % endfor
         default:
            assert(0);
         }
      }
      break;""")


vector_scalar_operation = "vector-scalar"
horizontal_operation = "horizontal"
types_identical_operation = "identical"
non_assign_operation = "nonassign"
mixed_type_operation = "mixed"

class operation(object):
   def __init__(self, name, num_operands, printable_name = None, source_types = None, dest_type = None, c_expression = None, flags = None, all_signatures = None):
      self.name = name
      self.num_operands = num_operands

      if printable_name is None:
         self.printable_name = name
      else:
         self.printable_name = printable_name

      self.all_signatures = all_signatures

      if source_types is None:
         self.source_types = tuple()
      else:
         self.source_types = source_types

      self.dest_type = dest_type

      if c_expression is None:
         self.c_expression = None
      elif isinstance(c_expression, str):
         self.c_expression = {'default': c_expression}
      else:
         self.c_expression = c_expression

      if flags is None:
         self.flags = frozenset()
      elif isinstance(flags, str):
         self.flags = frozenset([flags])
      else:
         self.flags = frozenset(flags)


   def get_enum_name(self):
      return "ir_{}op_{}".format(("un", "bin", "tri", "quad")[self.num_operands-1], self.name)


   def get_template(self):
      if self.c_expression is None:
         return None

      if self.num_operands == 1:
         if horizontal_operation in self.flags and non_assign_operation in self.flags:
            return constant_template_horizontal_nonassignment.render(op=self)
         elif horizontal_operation in self.flags:
            return constant_template_horizontal_single_implementation.render(op=self)
      elif self.num_operands == 2:
         if self.name == "mul":
            return constant_template_mul.render(op=self)
         elif self.name == "vector_extract":
            return constant_template_vector_extract.render(op=self)
         elif vector_scalar_operation in self.flags:
            return constant_template_vector_scalar.render(op=self)
         elif horizontal_operation in self.flags and types_identical_operation in self.flags:
            return constant_template_horizontal_single_implementation.render(op=self)
         elif horizontal_operation in self.flags:
            return constant_template_horizontal.render(op=self)
      elif self.num_operands == 3:
         if self.name == "vector_insert":
            return constant_template_vector_insert.render(op=self)
         elif self.name == "lrp":
            return constant_template_lrp.render(op=self)
         elif self.name == "csel":
            return constant_template_csel.render(op=self)
      elif self.num_operands == 4:
         if self.name == "vector":
            return constant_template_vector.render(op=self)

      return constant_template_common.render(op=self)


   def get_c_expression(self, types, indices=("c", "c", "c")):
      src0 = "op[0]->value.{}[{}]".format(types[0].union_field, indices[0])
      src1 = "op[1]->value.{}[{}]".format(types[1].union_field, indices[1]) if len(types) >= 2 else "ERROR"
      src2 = "op[2]->value.{}[{}]".format(types[2].union_field, indices[2]) if len(types) >= 3 else "ERROR"
      src3 = "op[3]->value.{}[c]".format(types[3].union_field) if len(types) >= 4 else "ERROR"

      expr = self.c_expression[types[0].union_field] if types[0].union_field in self.c_expression else self.c_expression['default']

      return expr.format(src0=src0,
                         src1=src1,
                         src2=src2,
                         src3=src3)


   def signatures(self):
      if self.all_signatures is not None:
         return self.all_signatures
      else:
         return type_signature_iter(self.dest_type, self.source_types, self.num_operands)


ir_expression_operation = [
   operation("bit_not", 1, printable_name="~", source_types=integer_types, c_expression="~ {src0}"),
   operation("logic_not", 1, printable_name="!", source_types=(bool_type,), c_expression="!{src0}"),
   operation("neg", 1, source_types=numeric_types, c_expression={'u': "-((int) {src0})", 'default': "-{src0}"}),
   operation("abs", 1, source_types=signed_numeric_types, c_expression={'i': "{src0} < 0 ? -{src0} : {src0}", 'f': "fabsf({src0})", 'd': "fabs({src0})"}),
   operation("sign", 1, source_types=signed_numeric_types, c_expression={'i': "({src0} > 0) - ({src0} < 0)", 'f': "float(({src0} > 0.0F) - ({src0} < 0.0F))", 'd': "double(({src0} > 0.0) - ({src0} < 0.0))"}),
   operation("rcp", 1, source_types=real_types, c_expression={'f': "{src0} != 0.0F ? 1.0F / {src0} : 0.0F", 'd': "{src0} != 0.0 ? 1.0 / {src0} : 0.0"}),
   operation("rsq", 1, source_types=real_types, c_expression={'f': "1.0F / sqrtf({src0})", 'd': "1.0 / sqrt({src0})"}),
   operation("sqrt", 1, source_types=real_types, c_expression={'f': "sqrtf({src0})", 'd': "sqrt({src0})"}),
   operation("exp", 1, source_types=(float_type,), c_expression="expf({src0})"),         # Log base e on gentype
   operation("log", 1, source_types=(float_type,), c_expression="logf({src0})"),         # Natural log on gentype
   operation("exp2", 1, source_types=(float_type,), c_expression="exp2f({src0})"),
   operation("log2", 1, source_types=(float_type,), c_expression="log2f({src0})"),

   # Float-to-integer conversion.
   operation("f2i", 1, source_types=(float_type,), dest_type=int_type, c_expression="(int) {src0}"),
   # Float-to-unsigned conversion.
   operation("f2u", 1, source_types=(float_type,), dest_type=uint_type, c_expression="(unsigned) {src0}"),
   # Integer-to-float conversion.
   operation("i2f", 1, source_types=(int_type,), dest_type=float_type, c_expression="(float) {src0}"),
   # Float-to-boolean conversion
   operation("f2b", 1, source_types=(float_type,), dest_type=bool_type, c_expression="{src0} != 0.0F ? true : false"),
   # Boolean-to-float conversion
   operation("b2f", 1, source_types=(bool_type,), dest_type=float_type, c_expression="{src0} ? 1.0F : 0.0F"),
   # int-to-boolean conversion
   operation("i2b", 1, source_types=integer_types, dest_type=bool_type, c_expression="{src0} ? true : false"),
   # Boolean-to-int conversion
   operation("b2i", 1, source_types=(bool_type,), dest_type=int_type, c_expression="{src0} ? 1 : 0"),
   # Unsigned-to-float conversion.
   operation("u2f", 1, source_types=(uint_type,), dest_type=float_type, c_expression="(float) {src0}"),
   # Integer-to-unsigned conversion.
   operation("i2u", 1, source_types=(int_type,), dest_type=uint_type, c_expression="{src0}"),
   # Unsigned-to-integer conversion.
   operation("u2i", 1, source_types=(uint_type,), dest_type=int_type, c_expression="{src0}"),
   # Double-to-float conversion.
   operation("d2f", 1, source_types=(double_type,), dest_type=float_type, c_expression="{src0}"),
   # Float-to-double conversion.
   operation("f2d", 1, source_types=(float_type,), dest_type=double_type, c_expression="{src0}"),
   # Double-to-integer conversion.
   operation("d2i", 1, source_types=(double_type,), dest_type=int_type, c_expression="{src0}"),
   # Integer-to-double conversion.
   operation("i2d", 1, source_types=(int_type,), dest_type=double_type, c_expression="{src0}"),
   # Double-to-unsigned conversion.
   operation("d2u", 1, source_types=(double_type,), dest_type=uint_type, c_expression="{src0}"),
   # Unsigned-to-double conversion.
   operation("u2d", 1, source_types=(uint_type,), dest_type=double_type, c_expression="{src0}"),
   # Double-to-boolean conversion.
   operation("d2b", 1, source_types=(double_type,), dest_type=bool_type, c_expression="{src0} != 0.0"),
   # 'Bit-identical int-to-float "conversion"
   operation("bitcast_i2f", 1, source_types=(int_type,), dest_type=float_type, c_expression="bitcast_u2f({src0})"),
   # 'Bit-identical float-to-int "conversion"
   operation("bitcast_f2i", 1, source_types=(float_type,), dest_type=int_type, c_expression="bitcast_f2u({src0})"),
   # 'Bit-identical uint-to-float "conversion"
   operation("bitcast_u2f", 1, source_types=(uint_type,), dest_type=float_type, c_expression="bitcast_u2f({src0})"),
   # 'Bit-identical float-to-uint "conversion"
   operation("bitcast_f2u", 1, source_types=(float_type,), dest_type=uint_type, c_expression="bitcast_f2u({src0})"),

   # Unary floating-point rounding operations.
   operation("trunc", 1, source_types=real_types, c_expression={'f': "truncf({src0})", 'd': "trunc({src0})"}),
   operation("ceil", 1, source_types=real_types, c_expression={'f': "ceilf({src0})", 'd': "ceil({src0})"}),
   operation("floor", 1, source_types=real_types, c_expression={'f': "floorf({src0})", 'd': "floor({src0})"}),
   operation("fract", 1, source_types=real_types, c_expression={'f': "{src0} - floorf({src0})", 'd': "{src0} - floor({src0})"}),
   operation("round_even", 1, source_types=real_types, c_expression={'f': "_mesa_roundevenf({src0})", 'd': "_mesa_roundeven({src0})"}),

   # Trigonometric operations.
   operation("sin", 1, source_types=(float_type,), c_expression="sinf({src0})"),
   operation("cos", 1, source_types=(float_type,), c_expression="cosf({src0})"),

   # Partial derivatives.
   operation("dFdx", 1, source_types=(float_type,), c_expression="0.0f"),
   operation("dFdx_coarse", 1, printable_name="dFdxCoarse", source_types=(float_type,), c_expression="0.0f"),
   operation("dFdx_fine", 1, printable_name="dFdxFine", source_types=(float_type,), c_expression="0.0f"),
   operation("dFdy", 1, source_types=(float_type,), c_expression="0.0f"),
   operation("dFdy_coarse", 1, printable_name="dFdyCoarse", source_types=(float_type,), c_expression="0.0f"),
   operation("dFdy_fine", 1, printable_name="dFdyFine", source_types=(float_type,), c_expression="0.0f"),

   # Floating point pack and unpack operations.
   operation("pack_snorm_2x16", 1, printable_name="packSnorm2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_snorm_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation),
   operation("pack_snorm_4x8", 1, printable_name="packSnorm4x8", source_types=(float_type,), dest_type=uint_type, c_expression="pack_4x8(pack_snorm_1x8, op[0]->value.f[0], op[0]->value.f[1], op[0]->value.f[2], op[0]->value.f[3])", flags=horizontal_operation),
   operation("pack_unorm_2x16", 1, printable_name="packUnorm2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_unorm_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation),
   operation("pack_unorm_4x8", 1, printable_name="packUnorm4x8", source_types=(float_type,), dest_type=uint_type, c_expression="pack_4x8(pack_unorm_1x8, op[0]->value.f[0], op[0]->value.f[1], op[0]->value.f[2], op[0]->value.f[3])", flags=horizontal_operation),
   operation("pack_half_2x16", 1, printable_name="packHalf2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_half_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation),
   operation("unpack_snorm_2x16", 1, printable_name="unpackSnorm2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_snorm_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))),
   operation("unpack_snorm_4x8", 1, printable_name="unpackSnorm4x8", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_4x8(unpack_snorm_1x8, op[0]->value.u[0], &data.f[0], &data.f[1], &data.f[2], &data.f[3])", flags=frozenset((horizontal_operation, non_assign_operation))),
   operation("unpack_unorm_2x16", 1, printable_name="unpackUnorm2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_unorm_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))),
   operation("unpack_unorm_4x8", 1, printable_name="unpackUnorm4x8", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_4x8(unpack_unorm_1x8, op[0]->value.u[0], &data.f[0], &data.f[1], &data.f[2], &data.f[3])", flags=frozenset((horizontal_operation, non_assign_operation))),
   operation("unpack_half_2x16", 1, printable_name="unpackHalf2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_half_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))),

   # Bit operations, part of ARB_gpu_shader5.
   operation("bitfield_reverse", 1, source_types=integer_types, c_expression="bitfield_reverse({src0})"),
   operation("bit_count", 1, source_types=integer_types, dest_type=int_type, c_expression="_mesa_bitcount({src0})"),
   operation("find_msb", 1, source_types=integer_types, dest_type=int_type, c_expression={'u': "find_msb_uint({src0})", 'i': "find_msb_int({src0})"}),
   operation("find_lsb", 1, source_types=integer_types, dest_type=int_type, c_expression="find_msb_uint({src0} & -{src0})"),

   operation("saturate", 1, printable_name="sat", source_types=(float_type,), c_expression="CLAMP({src0}, 0.0f, 1.0f)"),

   # Double packing, part of ARB_gpu_shader_fp64.
   operation("pack_double_2x32", 1, printable_name="packDouble2x32", source_types=(uint_type,), dest_type=double_type, c_expression="memcpy(&data.d[0], &op[0]->value.u[0], sizeof(double))", flags=frozenset((horizontal_operation, non_assign_operation))),
   operation("unpack_double_2x32", 1, printable_name="unpackDouble2x32", source_types=(double_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.d[0], sizeof(double))", flags=frozenset((horizontal_operation, non_assign_operation))),

   operation("frexp_sig", 1),
   operation("frexp_exp", 1),

   operation("noise", 1),

   operation("subroutine_to_int", 1),

   # Interpolate fs input at centroid
   #
   # operand0 is the fs input.
   operation("interpolate_at_centroid", 1),

   # Ask the driver for the total size of a buffer block.
   # operand0 is the ir_constant buffer block index in the linked shader.
   operation("get_buffer_size", 1),

   # Calculate length of an unsized array inside a buffer block.
   # This opcode is going to be replaced in a lowering pass inside
   # the linker.
   #
   # operand0 is the unsized array's ir_value for the calculation
   # of its length.
   operation("ssbo_unsized_array_length", 1),

   # Vote among threads on the value of the boolean argument.
   operation("vote_any", 1),
   operation("vote_all", 1),
   operation("vote_eq", 1),

   operation("add", 2, printable_name="+", source_types=numeric_types, c_expression="{src0} + {src1}", flags=vector_scalar_operation),
   operation("sub", 2, printable_name="-", source_types=numeric_types, c_expression="{src0} - {src1}", flags=vector_scalar_operation),
   # "Floating-point or low 32-bit integer multiply."
   operation("mul", 2, printable_name="*", source_types=numeric_types, c_expression="{src0} * {src1}"),
   operation("imul_high", 2),       # Calculates the high 32-bits of a 64-bit multiply.
   operation("div", 2, printable_name="/", source_types=numeric_types, c_expression={'u': "{src1} == 0 ? 0 : {src0} / {src1}", 'i': "{src1} == 0 ? 0 : {src0} / {src1}", 'default': "{src0} / {src1}"}, flags=vector_scalar_operation),

   # Returns the carry resulting from the addition of the two arguments.
   operation("carry", 2),

   # Returns the borrow resulting from the subtraction of the second argument
   # from the first argument.
   operation("borrow", 2),

   # Either (vector % vector) or (vector % scalar)
   #
   # We don't use fmod because it rounds toward zero; GLSL specifies the use
   # of floor.
   operation("mod", 2, printable_name="%", source_types=numeric_types, c_expression={'u': "{src1} == 0 ? 0 : {src0} % {src1}", 'i': "{src1} == 0 ? 0 : {src0} % {src1}", 'f': "{src0} - {src1} * floorf({src0} / {src1})", 'd': "{src0} - {src1} * floor({src0} / {src1})"}, flags=vector_scalar_operation),

   # Binary comparison operators which return a boolean vector.
   # The type of both operands must be equal.
   operation("less", 2, printable_name="<", source_types=numeric_types, dest_type=bool_type, c_expression="{src0} < {src1}"),
   operation("greater", 2, printable_name=">", source_types=numeric_types, dest_type=bool_type, c_expression="{src0} > {src1}"),
   operation("lequal", 2, printable_name="<=", source_types=numeric_types, dest_type=bool_type, c_expression="{src0} <= {src1}"),
   operation("gequal", 2, printable_name=">=", source_types=numeric_types, dest_type=bool_type, c_expression="{src0} >= {src1}"),
   operation("equal", 2, printable_name="==", source_types=all_types, dest_type=bool_type, c_expression="{src0} == {src1}"),
   operation("nequal", 2, printable_name="!=", source_types=all_types, dest_type=bool_type, c_expression="{src0} != {src1}"),

   # Returns single boolean for whether all components of operands[0]
   # equal the components of operands[1].
   operation("all_equal", 2, source_types=all_types, dest_type=bool_type, c_expression="op[0]->has_value(op[1])", flags=frozenset((horizontal_operation, types_identical_operation))),

   # Returns single boolean for whether any component of operands[0]
   # is not equal to the corresponding component of operands[1].
   operation("any_nequal", 2, source_types=all_types, dest_type=bool_type, c_expression="!op[0]->has_value(op[1])", flags=frozenset((horizontal_operation, types_identical_operation))),

   # Bit-wise binary operations.
   operation("lshift", 2, printable_name="<<", source_types=integer_types, c_expression="{src0} << {src1}", flags=frozenset((vector_scalar_operation, mixed_type_operation))),
   operation("rshift", 2, printable_name=">>", source_types=integer_types, c_expression="{src0} >> {src1}", flags=frozenset((vector_scalar_operation, mixed_type_operation))),
   operation("bit_and", 2, printable_name="&", source_types=integer_types, c_expression="{src0} & {src1}", flags=vector_scalar_operation),
   operation("bit_xor", 2, printable_name="^", source_types=integer_types, c_expression="{src0} ^ {src1}", flags=vector_scalar_operation),
   operation("bit_or", 2, printable_name="|", source_types=integer_types, c_expression="{src0} | {src1}", flags=vector_scalar_operation),

   operation("logic_and", 2, printable_name="&&", source_types=(bool_type,), c_expression="{src0} && {src1}"),
   operation("logic_xor", 2, printable_name="^^", source_types=(bool_type,), c_expression="{src0} != {src1}"),
   operation("logic_or", 2, printable_name="||", source_types=(bool_type,), c_expression="{src0} || {src1}"),

   operation("dot", 2, source_types=real_types, c_expression={'f': "dot_f(op[0], op[1])", 'd': "dot_d(op[0], op[1])"}, flags=horizontal_operation),
   operation("min", 2, source_types=numeric_types, c_expression="MIN2({src0}, {src1})", flags=vector_scalar_operation),
   operation("max", 2, source_types=numeric_types, c_expression="MAX2({src0}, {src1})", flags=vector_scalar_operation),

   operation("pow", 2, source_types=(float_type,), c_expression="powf({src0}, {src1})"),

   # Load a value the size of a given GLSL type from a uniform block.
   #
   # operand0 is the ir_constant uniform block index in the linked shader.
   # operand1 is a byte offset within the uniform block.
   operation("ubo_load", 2),

   # Multiplies a number by two to a power, part of ARB_gpu_shader5.
   operation("ldexp", 2,
             all_signatures=((float_type, (float_type, int_type)),
                             (double_type, (double_type, int_type))),
             c_expression={'f': "ldexpf_flush_subnormal({src0}, {src1})",
                           'd': "ldexp_flush_subnormal({src0}, {src1})"}),

   # Extract a scalar from a vector
   #
   # operand0 is the vector
   # operand1 is the index of the field to read from operand0
   operation("vector_extract", 2, source_types=all_types, c_expression="anything-except-None"),

   # Interpolate fs input at offset
   #
   # operand0 is the fs input
   # operand1 is the offset from the pixel center
   operation("interpolate_at_offset", 2),

   # Interpolate fs input at sample position
   #
   # operand0 is the fs input
   # operand1 is the sample ID
   operation("interpolate_at_sample", 2),

   # Fused floating-point multiply-add, part of ARB_gpu_shader5.
   operation("fma", 3, source_types=real_types, c_expression="{src0} * {src1} + {src2}"),

   operation("lrp", 3, source_types=real_types, c_expression={'f': "{src0} * (1.0f - {src2}) + ({src1} * {src2})", 'd': "{src0} * (1.0 - {src2}) + ({src1} * {src2})"}),

   # Conditional Select
   #
   # A vector conditional select instruction (like ?:, but operating per-
   # component on vectors).
   #
   # See also lower_instructions_visitor::ldexp_to_arith
   operation("csel", 3,
             all_signatures=zip(all_types, zip(len(all_types) * (bool_type,), all_types, all_types)),
             c_expression="{src0} ? {src1} : {src2}"),

   operation("bitfield_extract", 3,
             all_signatures=((int_type, (uint_type, int_type, int_type)),
                             (int_type, (int_type, int_type, int_type))),
             c_expression={'u': "bitfield_extract_uint({src0}, {src1}, {src2})",
                           'i': "bitfield_extract_int({src0}, {src1}, {src2})"}),

   # Generate a value with one field of a vector changed
   #
   # operand0 is the vector
   # operand1 is the value to write into the vector result
   # operand2 is the index in operand0 to be modified
   operation("vector_insert", 3, source_types=all_types, c_expression="anything-except-None"),

   operation("bitfield_insert", 4,
             all_signatures=((uint_type, (uint_type, uint_type, int_type, int_type)),
                             (int_type, (int_type, int_type, int_type, int_type))),
             c_expression="bitfield_insert({src0}, {src1}, {src2}, {src3})"),

   operation("vector", 4, source_types=all_types, c_expression="anything-except-None"),
]


if __name__ == "__main__":
   copyright = """/*
 * Copyright (C) 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */
"""
   enum_template = mako.template.Template(copyright + """
enum ir_expression_operation {
% for item in values:
   ${item.get_enum_name()},
% endfor

   /* Sentinels marking the last of each kind of operation. */
% for item in lasts:
   ir_last_${("un", "bin", "tri", "quad")[item.num_operands - 1]}op = ${item.get_enum_name()},
% endfor
   ir_last_opcode = ir_quadop_${lasts[3].name}
};""")

   strings_template = mako.template.Template(copyright + """
const char *const ir_expression_operation_strings[] = {
% for item in values:
   "${item.printable_name}",
% endfor
};""")

   constant_template = mako.template.Template("""\
   switch (this->operation) {
% for op in values:
    % if op.c_expression is not None:
${op.get_template()}

    % endif
% endfor
   default:
      /* FINISHME: Should handle all expression types. */
      return NULL;
   }
""")

   if sys.argv[1] == "enum":
      lasts = [None, None, None, None]
      for item in reversed(ir_expression_operation):
         i = item.num_operands - 1
         if lasts[i] is None:
            lasts[i] = item

      print(enum_template.render(values=ir_expression_operation,
                                 lasts=lasts))
   elif sys.argv[1] == "strings":
      print(strings_template.render(values=ir_expression_operation))
   elif sys.argv[1] == "constant":
      print(constant_template.render(values=ir_expression_operation))