1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
/*
* The implementations contained in this file are heavily based on the
* implementations found in the Berkeley SoftFloat library. As such, they are
* licensed under the same 3-clause BSD license:
*
* License for Berkeley SoftFloat Release 3e
*
* John R. Hauser
* 2018 January 20
*
* The following applies to the whole of SoftFloat Release 3e as well as to
* each source file individually.
*
* Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the
* University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions, and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions, and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#version 430
#extension GL_ARB_gpu_shader_int64 : enable
#extension GL_ARB_shader_bit_encoding : enable
#extension GL_EXT_shader_integer_mix : enable
#pragma warning(off)
/* Software IEEE floating-point rounding mode.
* GLSL spec section "4.7.1 Range and Precision":
* The rounding mode cannot be set and is undefined.
* But here, we are able to define the rounding mode at the compilation time.
*/
#define FLOAT_ROUND_NEAREST_EVEN 0
#define FLOAT_ROUND_TO_ZERO 1
#define FLOAT_ROUND_DOWN 2
#define FLOAT_ROUND_UP 3
#define FLOAT_ROUNDING_MODE FLOAT_ROUND_NEAREST_EVEN
/* Absolute value of a Float64 :
* Clear the sign bit
*/
uint64_t
__fabs64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
a.y &= 0x7FFFFFFFu;
return packUint2x32(a);
}
/* Returns 1 if the double-precision floating-point value `a' is a NaN;
* otherwise returns 0.
*/
bool
__is_nan(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
return (0xFFE00000u <= (a.y<<1)) &&
((a.x != 0u) || ((a.y & 0x000FFFFFu) != 0u));
}
/* Negate value of a Float64 :
* Toggle the sign bit
*/
uint64_t
__fneg64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
uint t = a.y;
t ^= (1u << 31);
a.y = mix(t, a.y, __is_nan(__a));
return packUint2x32(a);
}
uint64_t
__fsign64(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
uvec2 retval;
retval.x = 0u;
retval.y = mix((a.y & 0x80000000u) | 0x3FF00000u, 0u, (a.y << 1 | a.x) == 0u);
return packUint2x32(retval);
}
/* Returns the fraction bits of the double-precision floating-point value `a'.*/
uint
__extractFloat64FracLo(uint64_t a)
{
return unpackUint2x32(a).x;
}
uint
__extractFloat64FracHi(uint64_t a)
{
return unpackUint2x32(a).y & 0x000FFFFFu;
}
/* Returns the exponent bits of the double-precision floating-point value `a'.*/
int
__extractFloat64Exp(uint64_t __a)
{
uvec2 a = unpackUint2x32(__a);
return int((a.y>>20) & 0x7FFu);
}
bool
__feq64_nonnan(uint64_t __a, uint64_t __b)
{
uvec2 a = unpackUint2x32(__a);
uvec2 b = unpackUint2x32(__b);
return (a.x == b.x) &&
((a.y == b.y) || ((a.x == 0u) && (((a.y | b.y)<<1) == 0u)));
}
/* Returns true if the double-precision floating-point value `a' is equal to the
* corresponding value `b', and false otherwise. The comparison is performed
* according to the IEEE Standard for Floating-Point Arithmetic.
*/
bool
__feq64(uint64_t a, uint64_t b)
{
if (__is_nan(a) || __is_nan(b))
return false;
return __feq64_nonnan(a, b);
}
/* Returns true if the double-precision floating-point value `a' is not equal
* to the corresponding value `b', and false otherwise. The comparison is
* performed according to the IEEE Standard for Floating-Point Arithmetic.
*/
bool
__fne64(uint64_t a, uint64_t b)
{
if (__is_nan(a) || __is_nan(b))
return true;
return !__feq64_nonnan(a, b);
}
/* Returns the sign bit of the double-precision floating-point value `a'.*/
uint
__extractFloat64Sign(uint64_t a)
{
return unpackUint2x32(a).y >> 31;
}
/* Returns true if the 64-bit value formed by concatenating `a0' and `a1' is less
* than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
* returns false.
*/
bool
lt64(uint a0, uint a1, uint b0, uint b1)
{
return (a0 < b0) || ((a0 == b0) && (a1 < b1));
}
bool
__flt64_nonnan(uint64_t __a, uint64_t __b)
{
uvec2 a = unpackUint2x32(__a);
uvec2 b = unpackUint2x32(__b);
uint aSign = __extractFloat64Sign(__a);
uint bSign = __extractFloat64Sign(__b);
if (aSign != bSign)
return (aSign != 0u) && ((((a.y | b.y)<<1) | a.x | b.x) != 0u);
return mix(lt64(a.y, a.x, b.y, b.x), lt64(b.y, b.x, a.y, a.x), aSign != 0u);
}
/* Returns true if the double-precision floating-point value `a' is less than
* the corresponding value `b', and false otherwise. The comparison is performed
* according to the IEEE Standard for Floating-Point Arithmetic.
*/
bool
__flt64(uint64_t a, uint64_t b)
{
if (__is_nan(a) || __is_nan(b))
return false;
return __flt64_nonnan(a, b);
}
/* Returns true if the double-precision floating-point value `a' is greater
* than or equal to * the corresponding value `b', and false otherwise. The
* comparison is performed * according to the IEEE Standard for Floating-Point
* Arithmetic.
*/
bool
__fge64(uint64_t a, uint64_t b)
{
if (__is_nan(a) || __is_nan(b))
return false;
return !__flt64_nonnan(a, b);
}
|