aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/vulkan/radv_shader.c
blob: ac6c751928e00efb3a3303f021fe984fa529bbdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
/*
 * Copyright © 2016 Red Hat.
 * Copyright © 2016 Bas Nieuwenhuizen
 *
 * based in part on anv driver which is:
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_helper.h"
#include "radv_shader_args.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"

#include "sid.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "ac_rtld.h"
#include "vk_format.h"
#include "util/debug.h"
#include "ac_exp_param.h"

#include "aco_interface.h"

#include "util/string_buffer.h"

static const struct nir_shader_compiler_options nir_options_llvm = {
	.vertex_id_zero_based = true,
	.lower_scmp = true,
	.lower_flrp16 = true,
	.lower_flrp32 = true,
	.lower_flrp64 = true,
	.lower_device_index_to_zero = true,
	.lower_fsat = true,
	.lower_fdiv = true,
	.lower_fmod = true,
	.lower_bitfield_insert_to_bitfield_select = true,
	.lower_bitfield_extract = true,
	.lower_sub = true,
	.lower_pack_snorm_2x16 = true,
	.lower_pack_snorm_4x8 = true,
	.lower_pack_unorm_2x16 = true,
	.lower_pack_unorm_4x8 = true,
	.lower_unpack_snorm_2x16 = true,
	.lower_unpack_snorm_4x8 = true,
	.lower_unpack_unorm_2x16 = true,
	.lower_unpack_unorm_4x8 = true,
	.lower_extract_byte = true,
	.lower_extract_word = true,
	.lower_ffma = true,
	.lower_fpow = true,
	.lower_mul_2x32_64 = true,
	.lower_rotate = true,
	.max_unroll_iterations = 32,
	.use_interpolated_input_intrinsics = true,
	/* nir_lower_int64() isn't actually called for the LLVM backend, but
	 * this helps the loop unrolling heuristics. */
	.lower_int64_options = nir_lower_imul64 |
                               nir_lower_imul_high64 |
                               nir_lower_imul_2x32_64 |
                               nir_lower_divmod64 |
                               nir_lower_minmax64 |
                               nir_lower_iabs64,
	.lower_doubles_options = nir_lower_drcp |
				 nir_lower_dsqrt |
				 nir_lower_drsq |
				 nir_lower_ddiv,
};

static const struct nir_shader_compiler_options nir_options_aco = {
	.vertex_id_zero_based = true,
	.lower_scmp = true,
	.lower_flrp16 = true,
	.lower_flrp32 = true,
	.lower_flrp64 = true,
	.lower_device_index_to_zero = true,
	.lower_fdiv = true,
	.lower_fmod = true,
	.lower_bitfield_insert_to_bitfield_select = true,
	.lower_bitfield_extract = true,
	.lower_pack_snorm_2x16 = true,
	.lower_pack_snorm_4x8 = true,
	.lower_pack_unorm_2x16 = true,
	.lower_pack_unorm_4x8 = true,
	.lower_unpack_snorm_2x16 = true,
	.lower_unpack_snorm_4x8 = true,
	.lower_unpack_unorm_2x16 = true,
	.lower_unpack_unorm_4x8 = true,
	.lower_unpack_half_2x16 = true,
	.lower_extract_byte = true,
	.lower_extract_word = true,
	.lower_ffma = true,
	.lower_fpow = true,
	.lower_mul_2x32_64 = true,
	.lower_rotate = true,
	.max_unroll_iterations = 32,
	.use_interpolated_input_intrinsics = true,
	.lower_int64_options = nir_lower_imul64 |
                               nir_lower_imul_high64 |
                               nir_lower_imul_2x32_64 |
                               nir_lower_divmod64 |
                               nir_lower_minmax64 |
                               nir_lower_iabs64,
	.lower_doubles_options = nir_lower_drcp |
				 nir_lower_dsqrt |
				 nir_lower_drsq |
				 nir_lower_ddiv,
};

bool
radv_can_dump_shader(struct radv_device *device,
		     struct radv_shader_module *module,
		     bool is_gs_copy_shader)
{
	if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS))
		return false;
	if (module)
		return !module->nir ||
			(device->instance->debug_flags & RADV_DEBUG_DUMP_META_SHADERS);

	return is_gs_copy_shader;
}

bool
radv_can_dump_shader_stats(struct radv_device *device,
			   struct radv_shader_module *module)
{
	/* Only dump non-meta shader stats. */
	return device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS &&
	       module && !module->nir;
}

VkResult radv_CreateShaderModule(
	VkDevice                                    _device,
	const VkShaderModuleCreateInfo*             pCreateInfo,
	const VkAllocationCallbacks*                pAllocator,
	VkShaderModule*                             pShaderModule)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	struct radv_shader_module *module;

	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
	assert(pCreateInfo->flags == 0);

	module = vk_alloc2(&device->vk.alloc, pAllocator,
			     sizeof(*module) + pCreateInfo->codeSize, 8,
			     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
	if (module == NULL)
		return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);

	vk_object_base_init(&device->vk, &module->base,
			    VK_OBJECT_TYPE_SHADER_MODULE);

	module->nir = NULL;
	module->size = pCreateInfo->codeSize;
	memcpy(module->data, pCreateInfo->pCode, module->size);

	_mesa_sha1_compute(module->data, module->size, module->sha1);

	*pShaderModule = radv_shader_module_to_handle(module);

	return VK_SUCCESS;
}

void radv_DestroyShaderModule(
	VkDevice                                    _device,
	VkShaderModule                              _module,
	const VkAllocationCallbacks*                pAllocator)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	RADV_FROM_HANDLE(radv_shader_module, module, _module);

	if (!module)
		return;

	vk_object_base_finish(&module->base);
	vk_free2(&device->vk.alloc, pAllocator, module);
}

void
radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively,
                  bool allow_copies)
{
        bool progress;
        unsigned lower_flrp =
                (shader->options->lower_flrp16 ? 16 : 0) |
                (shader->options->lower_flrp32 ? 32 : 0) |
                (shader->options->lower_flrp64 ? 64 : 0);

        do {
                progress = false;

		NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp);
		NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp);

                NIR_PASS_V(shader, nir_lower_vars_to_ssa);
		NIR_PASS_V(shader, nir_lower_pack);

		if (allow_copies) {
			/* Only run this pass in the first call to
			 * radv_optimize_nir.  Later calls assume that we've
			 * lowered away any copy_deref instructions and we
			 *  don't want to introduce any more.
			*/
			NIR_PASS(progress, shader, nir_opt_find_array_copies);
		}

		NIR_PASS(progress, shader, nir_opt_copy_prop_vars);
		NIR_PASS(progress, shader, nir_opt_dead_write_vars);
		NIR_PASS(progress, shader, nir_remove_dead_variables,
			 nir_var_function_temp | nir_var_shader_in | nir_var_shader_out,
			 NULL);

                NIR_PASS_V(shader, nir_lower_alu_to_scalar, NULL, NULL);
                NIR_PASS_V(shader, nir_lower_phis_to_scalar);

                NIR_PASS(progress, shader, nir_copy_prop);
                NIR_PASS(progress, shader, nir_opt_remove_phis);
                NIR_PASS(progress, shader, nir_opt_dce);
                if (nir_opt_trivial_continues(shader)) {
                        progress = true;
                        NIR_PASS(progress, shader, nir_copy_prop);
			NIR_PASS(progress, shader, nir_opt_remove_phis);
                        NIR_PASS(progress, shader, nir_opt_dce);
                }
                NIR_PASS(progress, shader, nir_opt_if, true);
                NIR_PASS(progress, shader, nir_opt_dead_cf);
                NIR_PASS(progress, shader, nir_opt_cse);
                NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true);
                NIR_PASS(progress, shader, nir_opt_constant_folding);
                NIR_PASS(progress, shader, nir_opt_algebraic);

                if (lower_flrp != 0) {
                        bool lower_flrp_progress = false;
                        NIR_PASS(lower_flrp_progress,
                                 shader,
                                 nir_lower_flrp,
                                 lower_flrp,
                                 false /* always_precise */,
                                 shader->options->lower_ffma);
                        if (lower_flrp_progress) {
                                NIR_PASS(progress, shader,
                                         nir_opt_constant_folding);
                                progress = true;
                        }

                        /* Nothing should rematerialize any flrps, so we only
                         * need to do this lowering once.
                         */
                        lower_flrp = 0;
                }

                NIR_PASS(progress, shader, nir_opt_undef);
                if (shader->options->max_unroll_iterations) {
                        NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
                }
        } while (progress && !optimize_conservatively);

	NIR_PASS(progress, shader, nir_opt_conditional_discard);
        NIR_PASS(progress, shader, nir_opt_shrink_load);
        NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo);
}

static void
shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
{
	assert(glsl_type_is_vector_or_scalar(type));

	uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
	unsigned length = glsl_get_vector_elements(type);
	*size = comp_size * length,
	*align = comp_size;
}

nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
			   struct radv_shader_module *module,
			   const char *entrypoint_name,
			   gl_shader_stage stage,
			   const VkSpecializationInfo *spec_info,
			   const VkPipelineCreateFlags flags,
			   const struct radv_pipeline_layout *layout,
			   unsigned subgroup_size, unsigned ballot_bit_size)
{
	nir_shader *nir;
	const nir_shader_compiler_options *nir_options =
		device->physical_device->use_llvm ? &nir_options_llvm :
						    &nir_options_aco;

	if (module->nir) {
		/* Some things such as our meta clear/blit code will give us a NIR
		 * shader directly.  In that case, we just ignore the SPIR-V entirely
		 * and just use the NIR shader */
		nir = module->nir;
		nir->options = nir_options;
		nir_validate_shader(nir, "in internal shader");

		assert(exec_list_length(&nir->functions) == 1);
	} else {
		uint32_t *spirv = (uint32_t *) module->data;
		assert(module->size % 4 == 0);

		if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV)
			radv_print_spirv(module->data, module->size, stderr);

		uint32_t num_spec_entries = 0;
		struct nir_spirv_specialization *spec_entries = NULL;
		if (spec_info && spec_info->mapEntryCount > 0) {
			num_spec_entries = spec_info->mapEntryCount;
			spec_entries = calloc(num_spec_entries, sizeof(*spec_entries));
			for (uint32_t i = 0; i < num_spec_entries; i++) {
				VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
				const void *data = spec_info->pData + entry.offset;
				assert(data + entry.size <= spec_info->pData + spec_info->dataSize);

				spec_entries[i].id = spec_info->pMapEntries[i].constantID;
				switch (entry.size) {
				case 8:
					spec_entries[i].value.u64 = *(const uint64_t *)data;
					break;
				case 4:
					spec_entries[i].value.u32 = *(const uint32_t *)data;
					break;
				case 2:
					spec_entries[i].value.u16 = *(const uint16_t *)data;
					break;
				case 1:
					spec_entries[i].value.u8 = *(const uint8_t *)data;
					break;
				default:
					assert(!"Invalid spec constant size");
					break;
				}
			}
		}
		const struct spirv_to_nir_options spirv_options = {
			.lower_ubo_ssbo_access_to_offsets = true,
			.caps = {
				.amd_fragment_mask = true,
				.amd_gcn_shader = true,
				.amd_image_gather_bias_lod = true,
				.amd_image_read_write_lod = true,
				.amd_shader_ballot = true,
				.amd_shader_explicit_vertex_parameter = true,
				.amd_trinary_minmax = true,
				.demote_to_helper_invocation = true,
				.derivative_group = true,
				.descriptor_array_dynamic_indexing = true,
				.descriptor_array_non_uniform_indexing = true,
				.descriptor_indexing = true,
				.device_group = true,
				.draw_parameters = true,
				.float_controls = true,
				.float16 = device->physical_device->rad_info.has_packed_math_16bit,
				.float64 = true,
				.geometry_streams = true,
				.image_ms_array = true,
				.image_read_without_format = true,
				.image_write_without_format = true,
				.int8 = true,
				.int16 = true,
				.int64 = true,
				.int64_atomics = true,
				.min_lod = true,
				.multiview = true,
				.physical_storage_buffer_address = true,
				.post_depth_coverage = true,
				.runtime_descriptor_array = true,
				.shader_clock = true,
				.shader_viewport_index_layer = true,
				.stencil_export = true,
				.storage_8bit = true,
				.storage_16bit = true,
				.storage_image_ms = true,
				.subgroup_arithmetic = true,
				.subgroup_ballot = true,
				.subgroup_basic = true,
				.subgroup_quad = true,
				.subgroup_shuffle = true,
				.subgroup_vote = true,
				.tessellation = true,
				.transform_feedback = true,
				.variable_pointers = true,
			},
			.ubo_addr_format = nir_address_format_32bit_index_offset,
			.ssbo_addr_format = nir_address_format_32bit_index_offset,
			.phys_ssbo_addr_format = nir_address_format_64bit_global,
			.push_const_addr_format = nir_address_format_logical,
			.shared_addr_format = nir_address_format_32bit_offset,
			.frag_coord_is_sysval = true,
		};
		nir = spirv_to_nir(spirv, module->size / 4,
				   spec_entries, num_spec_entries,
				   stage, entrypoint_name,
				   &spirv_options, nir_options);
		assert(nir->info.stage == stage);
		nir_validate_shader(nir, "after spirv_to_nir");

		free(spec_entries);

		/* We have to lower away local constant initializers right before we
		 * inline functions.  That way they get properly initialized at the top
		 * of the function and not at the top of its caller.
		 */
		NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_function_temp);
		NIR_PASS_V(nir, nir_lower_returns);
		NIR_PASS_V(nir, nir_inline_functions);
		NIR_PASS_V(nir, nir_opt_deref);

		/* Pick off the single entrypoint that we want */
		foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
			if (func->is_entrypoint)
				func->name = ralloc_strdup(func, "main");
			else
				exec_node_remove(&func->node);
		}
		assert(exec_list_length(&nir->functions) == 1);

		/* Make sure we lower constant initializers on output variables so that
		 * nir_remove_dead_variables below sees the corresponding stores
		 */
		NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_shader_out);

		/* Now that we've deleted all but the main function, we can go ahead and
		 * lower the rest of the constant initializers.
		 */
		NIR_PASS_V(nir, nir_lower_variable_initializers, ~0);

		/* Split member structs.  We do this before lower_io_to_temporaries so that
		 * it doesn't lower system values to temporaries by accident.
		 */
		NIR_PASS_V(nir, nir_split_var_copies);
		NIR_PASS_V(nir, nir_split_per_member_structs);

		if (nir->info.stage == MESA_SHADER_FRAGMENT &&
		    !device->physical_device->use_llvm)
                        NIR_PASS_V(nir, nir_lower_io_to_vector, nir_var_shader_out);
		if (nir->info.stage == MESA_SHADER_FRAGMENT)
			NIR_PASS_V(nir, nir_lower_input_attachments, true);

		NIR_PASS_V(nir, nir_remove_dead_variables,
		           nir_var_shader_in | nir_var_shader_out | nir_var_system_value | nir_var_mem_shared,
			   NULL);

		NIR_PASS_V(nir, nir_propagate_invariant);

		NIR_PASS_V(nir, nir_lower_system_values);
		NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
		NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout);
		if (device->instance->debug_flags & RADV_DEBUG_DISCARD_TO_DEMOTE)
			NIR_PASS_V(nir, nir_lower_discard_to_demote);

		nir_lower_doubles_options lower_doubles =
			nir->options->lower_doubles_options;

		if (device->physical_device->rad_info.chip_class == GFX6) {
			/* GFX6 doesn't support v_floor_f64 and the precision
			 * of v_fract_f64 which is used to implement 64-bit
			 * floor is less than what Vulkan requires.
			 */
			lower_doubles |= nir_lower_dfloor;
		}

		NIR_PASS_V(nir, nir_lower_doubles, NULL, lower_doubles);
	}

	/* Vulkan uses the separate-shader linking model */
	nir->info.separate_shader = true;

	nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));

	if (nir->info.stage == MESA_SHADER_GEOMETRY)
		nir_lower_gs_intrinsics(nir, true);

	static const nir_lower_tex_options tex_options = {
	  .lower_txp = ~0,
	  .lower_tg4_offsets = true,
	};

	nir_lower_tex(nir, &tex_options);

	nir_lower_vars_to_ssa(nir);

	if (nir->info.stage == MESA_SHADER_VERTEX ||
	    nir->info.stage == MESA_SHADER_GEOMETRY ||
	    nir->info.stage == MESA_SHADER_FRAGMENT) {
		NIR_PASS_V(nir, nir_lower_io_to_temporaries,
			   nir_shader_get_entrypoint(nir), true, true);
	} else if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
		NIR_PASS_V(nir, nir_lower_io_to_temporaries,
			   nir_shader_get_entrypoint(nir), true, false);
	}

	nir_split_var_copies(nir);

	nir_lower_global_vars_to_local(nir);
	nir_remove_dead_variables(nir, nir_var_function_temp, NULL);
	bool gfx7minus = device->physical_device->rad_info.chip_class <= GFX7;
	nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) {
			.subgroup_size = subgroup_size,
			.ballot_bit_size = ballot_bit_size,
			.lower_to_scalar = 1,
			.lower_subgroup_masks = 1,
			.lower_shuffle = 1,
			.lower_shuffle_to_32bit = 1,
			.lower_vote_eq_to_ballot = 1,
			.lower_quad_broadcast_dynamic = 1,
			.lower_quad_broadcast_dynamic_to_const = gfx7minus,
		});

	nir_lower_load_const_to_scalar(nir);

	if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT))
		radv_optimize_nir(nir, false, true);

	/* We call nir_lower_var_copies() after the first radv_optimize_nir()
	 * to remove any copies introduced by nir_opt_find_array_copies().
	 */
	nir_lower_var_copies(nir);

	/* Lower deref operations for compute shared memory. */
	if (nir->info.stage == MESA_SHADER_COMPUTE) {
		NIR_PASS_V(nir, nir_lower_vars_to_explicit_types,
			   nir_var_mem_shared, shared_var_info);
		NIR_PASS_V(nir, nir_lower_explicit_io,
			   nir_var_mem_shared, nir_address_format_32bit_offset);
	}

	/* Lower large variables that are always constant with load_constant
	 * intrinsics, which get turned into PC-relative loads from a data
	 * section next to the shader.
	 */
	NIR_PASS_V(nir, nir_opt_large_constants,
		   glsl_get_natural_size_align_bytes, 16);

	/* Indirect lowering must be called after the radv_optimize_nir() loop
	 * has been called at least once. Otherwise indirect lowering can
	 * bloat the instruction count of the loop and cause it to be
	 * considered too large for unrolling.
	 */
	ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class);
	radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false);

	return nir;
}

static int
type_size_vec4(const struct glsl_type *type, bool bindless)
{
	return glsl_count_attribute_slots(type, false);
}

static nir_variable *
find_layer_in_var(nir_shader *nir)
{
	nir_foreach_variable(var, &nir->inputs) {
		if (var->data.location == VARYING_SLOT_LAYER) {
			return var;
		}
	}

	nir_variable *var =
		nir_variable_create(nir, nir_var_shader_in, glsl_int_type(), "layer id");
	var->data.location = VARYING_SLOT_LAYER;
	var->data.interpolation = INTERP_MODE_FLAT;
	return var;
}

/* We use layered rendering to implement multiview, which means we need to map
 * view_index to gl_Layer. The attachment lowering also uses needs to know the
 * layer so that it can sample from the correct layer. The code generates a
 * load from the layer_id sysval, but since we don't have a way to get at this
 * information from the fragment shader, we also need to lower this to the
 * gl_Layer varying.  This pass lowers both to a varying load from the LAYER
 * slot, before lowering io, so that nir_assign_var_locations() will give the
 * LAYER varying the correct driver_location.
 */

static bool
lower_view_index(nir_shader *nir)
{
	bool progress = false;
	nir_function_impl *entry = nir_shader_get_entrypoint(nir);
	nir_builder b;
	nir_builder_init(&b, entry);
	
	nir_variable *layer = NULL;
	nir_foreach_block(block, entry) {
		nir_foreach_instr_safe(instr, block) {
			if (instr->type != nir_instr_type_intrinsic)
				continue;

			nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
			if (load->intrinsic != nir_intrinsic_load_view_index &&
			    load->intrinsic != nir_intrinsic_load_layer_id)
				continue;

			if (!layer)
				layer = find_layer_in_var(nir);

			b.cursor = nir_before_instr(instr);
			nir_ssa_def *def = nir_load_var(&b, layer);
			nir_ssa_def_rewrite_uses(&load->dest.ssa,
						 nir_src_for_ssa(def));

			nir_instr_remove(instr);
			progress = true;
		}
	}

	return progress;
}

void
radv_lower_fs_io(nir_shader *nir)
{
	NIR_PASS_V(nir, lower_view_index);
	nir_assign_io_var_locations(&nir->inputs, &nir->num_inputs,
				    MESA_SHADER_FRAGMENT);

	NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in, type_size_vec4, 0);

	/* This pass needs actual constants */
	nir_opt_constant_folding(nir);

	NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in);
}


static void *
radv_alloc_shader_memory(struct radv_device *device,
			 struct radv_shader_variant *shader)
{
	mtx_lock(&device->shader_slab_mutex);
	list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
		uint64_t offset = 0;
		list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
			if (s->bo_offset - offset >= shader->code_size) {
				shader->bo = slab->bo;
				shader->bo_offset = offset;
				list_addtail(&shader->slab_list, &s->slab_list);
				mtx_unlock(&device->shader_slab_mutex);
				return slab->ptr + offset;
			}
			offset = align_u64(s->bo_offset + s->code_size, 256);
		}
		if (offset <= slab->size && slab->size - offset >= shader->code_size) {
			shader->bo = slab->bo;
			shader->bo_offset = offset;
			list_addtail(&shader->slab_list, &slab->shaders);
			mtx_unlock(&device->shader_slab_mutex);
			return slab->ptr + offset;
		}
	}

	mtx_unlock(&device->shader_slab_mutex);
	struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));

	slab->size = MAX2(256 * 1024, shader->code_size);
	slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
	                                     RADEON_DOMAIN_VRAM,
					     RADEON_FLAG_NO_INTERPROCESS_SHARING |
					     (device->physical_device->rad_info.cpdma_prefetch_writes_memory ?
					             0 : RADEON_FLAG_READ_ONLY),
					     RADV_BO_PRIORITY_SHADER);
	if (!slab->bo) {
		free(slab);
		return NULL;
	}

	slab->ptr = (char*)device->ws->buffer_map(slab->bo);
	if (!slab->ptr) {
		device->ws->buffer_destroy(slab->bo);
		free(slab);
		return NULL;
	}

	list_inithead(&slab->shaders);

	mtx_lock(&device->shader_slab_mutex);
	list_add(&slab->slabs, &device->shader_slabs);

	shader->bo = slab->bo;
	shader->bo_offset = 0;
	list_add(&shader->slab_list, &slab->shaders);
	mtx_unlock(&device->shader_slab_mutex);
	return slab->ptr;
}

void
radv_destroy_shader_slabs(struct radv_device *device)
{
	list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
		device->ws->buffer_destroy(slab->bo);
		free(slab);
	}
	mtx_destroy(&device->shader_slab_mutex);
}

/* For the UMR disassembler. */
#define DEBUGGER_END_OF_CODE_MARKER    0xbf9f0000 /* invalid instruction */
#define DEBUGGER_NUM_MARKERS           5

static unsigned
radv_get_shader_binary_size(size_t code_size)
{
	return code_size + DEBUGGER_NUM_MARKERS * 4;
}

static void radv_postprocess_config(const struct radv_physical_device *pdevice,
				    const struct ac_shader_config *config_in,
				    const struct radv_shader_info *info,
				    gl_shader_stage stage,
				    struct ac_shader_config *config_out)
{
	bool scratch_enabled = config_in->scratch_bytes_per_wave > 0;
	unsigned vgpr_comp_cnt = 0;
	unsigned num_input_vgprs = info->num_input_vgprs;

	if (stage == MESA_SHADER_FRAGMENT) {
		num_input_vgprs = ac_get_fs_input_vgpr_cnt(config_in, NULL, NULL);
	}

	unsigned num_vgprs = MAX2(config_in->num_vgprs, num_input_vgprs);
	/* +3 for scratch wave offset and VCC */
	unsigned num_sgprs = MAX2(config_in->num_sgprs, info->num_input_sgprs + 3);
	unsigned num_shared_vgprs = config_in->num_shared_vgprs;
	/* shared VGPRs are introduced in Navi and are allocated in blocks of 8 (RDNA ref 3.6.5) */
	assert((pdevice->rad_info.chip_class >= GFX10 && num_shared_vgprs % 8 == 0)
	       || (pdevice->rad_info.chip_class < GFX10 && num_shared_vgprs == 0));
	unsigned num_shared_vgpr_blocks = num_shared_vgprs / 8;

	*config_out = *config_in;
	config_out->num_vgprs = num_vgprs;
	config_out->num_sgprs = num_sgprs;
	config_out->num_shared_vgprs = num_shared_vgprs;

	config_out->rsrc2 = S_00B12C_USER_SGPR(info->num_user_sgprs) |
			    S_00B12C_SCRATCH_EN(scratch_enabled);

	if (!pdevice->use_ngg_streamout) {
		config_out->rsrc2 |= S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) |
				     S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) |
				     S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) |
				     S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) |
				     S_00B12C_SO_EN(!!info->so.num_outputs);
	}

	config_out->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) /
					   (info->wave_size == 32 ? 8 : 4)) |
			    S_00B848_DX10_CLAMP(1) |
			    S_00B848_FLOAT_MODE(config_out->float_mode);

	if (pdevice->rad_info.chip_class >= GFX10) {
		config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(info->num_user_sgprs >> 5);
	} else {
		config_out->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8);
		config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(info->num_user_sgprs >> 5);
	}

	switch (stage) {
	case MESA_SHADER_TESS_EVAL:
		if (info->is_ngg) {
			config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
			config_out->rsrc2 |= S_00B22C_OC_LDS_EN(1);
		} else if (info->tes.as_es) {
			assert(pdevice->rad_info.chip_class <= GFX8);
			vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;

			config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
		} else {
			bool enable_prim_id = info->tes.export_prim_id || info->uses_prim_id;
			vgpr_comp_cnt = enable_prim_id ? 3 : 2;

			config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
			config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
		}
		config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
		break;
	case MESA_SHADER_TESS_CTRL:
		if (pdevice->rad_info.chip_class >= GFX9) {
			/* We need at least 2 components for LS.
			 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
			 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
			 */
			if (pdevice->rad_info.chip_class >= GFX10) {
				vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 1;
			} else {
				vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
			}
		} else {
			config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1);
		}
		config_out->rsrc1 |= S_00B428_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) |
				     S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10);
		config_out->rsrc2 |= S_00B42C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
		break;
	case MESA_SHADER_VERTEX:
		if (info->is_ngg) {
			config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
		} else if (info->vs.as_ls) {
			assert(pdevice->rad_info.chip_class <= GFX8);
			/* We need at least 2 components for LS.
			 * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID).
			 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
			 */
			vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1;
		} else if (info->vs.as_es) {
			assert(pdevice->rad_info.chip_class <= GFX8);
			/* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
			vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0;
		} else {
			/* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID)
			 * If PrimID is disabled. InstanceID / StepRate1 is loaded instead.
			 * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded.
			 */
			if (info->vs.needs_instance_id && pdevice->rad_info.chip_class >= GFX10) {
				vgpr_comp_cnt = 3;
			} else if (info->vs.export_prim_id) {
				vgpr_comp_cnt = 2;
			} else if (info->vs.needs_instance_id) {
				vgpr_comp_cnt = 1;
			} else {
				vgpr_comp_cnt = 0;
			}

			config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
		}
		config_out->rsrc2 |= S_00B12C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
		break;
	case MESA_SHADER_FRAGMENT:
		config_out->rsrc1 |= S_00B028_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10);
		config_out->rsrc2 |= S_00B02C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
		break;
	case MESA_SHADER_GEOMETRY:
		config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) |
				     S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10);
		config_out->rsrc2 |= S_00B22C_SHARED_VGPR_CNT(num_shared_vgpr_blocks);
		break;
	case MESA_SHADER_COMPUTE:
		config_out->rsrc1 |= S_00B848_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) |
				     S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10);
		config_out->rsrc2 |=
			S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) |
			S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) |
			S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) |
			S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 :
						info->cs.uses_thread_id[1] ? 1 : 0) |
			S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) |
			S_00B84C_LDS_SIZE(config_in->lds_size);
		config_out->rsrc3 |= S_00B8A0_SHARED_VGPR_CNT(num_shared_vgpr_blocks);

		break;
	default:
		unreachable("unsupported shader type");
		break;
	}

	if (pdevice->rad_info.chip_class >= GFX10 && info->is_ngg &&
	    (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY)) {
		unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;
		gl_shader_stage es_stage = stage;
		if (stage == MESA_SHADER_GEOMETRY)
			es_stage = info->gs.es_type;

		/* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */
		if (es_stage == MESA_SHADER_VERTEX) {
			es_vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 0;
		} else if (es_stage == MESA_SHADER_TESS_EVAL) {
			bool enable_prim_id = info->tes.export_prim_id || info->uses_prim_id;
			es_vgpr_comp_cnt = enable_prim_id ? 3 : 2;
		} else
			unreachable("Unexpected ES shader stage");

		bool tes_triangles = stage == MESA_SHADER_TESS_EVAL &&
			info->tes.primitive_mode >= 4; /* GL_TRIANGLES */
		if (info->uses_invocation_id || stage == MESA_SHADER_VERTEX) {
			gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
		} else if (info->uses_prim_id) {
			gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
		} else if (info->gs.vertices_in >= 3 || tes_triangles) {
			gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
		} else {
			gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
		}

		config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) |
				     S_00B228_WGP_MODE(1);
		config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
				     S_00B22C_LDS_SIZE(config_in->lds_size) |
				     S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL);
	} else if (pdevice->rad_info.chip_class >= GFX9 &&
		   stage == MESA_SHADER_GEOMETRY) {
		unsigned es_type = info->gs.es_type;
		unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt;

		if (es_type == MESA_SHADER_VERTEX) {
			/* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */
			if (info->vs.needs_instance_id) {
				es_vgpr_comp_cnt = pdevice->rad_info.chip_class >= GFX10 ? 3 : 1;
			} else {
				es_vgpr_comp_cnt = 0;
			}
		} else if (es_type == MESA_SHADER_TESS_EVAL) {
			es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2;
		} else {
			unreachable("invalid shader ES type");
		}

		/* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
		 * VGPR[0:4] are always loaded.
		 */
		if (info->uses_invocation_id) {
			gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
		} else if (info->uses_prim_id) {
			gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
		} else if (info->gs.vertices_in >= 3) {
			gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
		} else {
			gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
		}

		config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
		config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
		                         S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL);
	} else if (pdevice->rad_info.chip_class >= GFX9 &&
		   stage == MESA_SHADER_TESS_CTRL) {
		config_out->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt);
	} else {
		config_out->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt);
	}
}

struct radv_shader_variant *
radv_shader_variant_create(struct radv_device *device,
			   const struct radv_shader_binary *binary,
			   bool keep_shader_info)
{
	struct ac_shader_config config = {0};
	struct ac_rtld_binary rtld_binary = {0};
	struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
	if (!variant)
		return NULL;

	variant->ref_count = 1;

	if (binary->type == RADV_BINARY_TYPE_RTLD) {
		struct ac_rtld_symbol lds_symbols[2];
		unsigned num_lds_symbols = 0;
		const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data;
		size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size;

		if (device->physical_device->rad_info.chip_class >= GFX9 &&
		    (binary->stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg) &&
		    !binary->is_gs_copy_shader) {
			/* We add this symbol even on LLVM <= 8 to ensure that
			 * shader->config.lds_size is set correctly below.
			 */
			struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
			sym->name = "esgs_ring";
			sym->size = binary->info.ngg_info.esgs_ring_size;
			sym->align = 64 * 1024;
		}

		if (binary->info.is_ngg &&
		    binary->stage == MESA_SHADER_GEOMETRY) {
			struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
			sym->name = "ngg_emit";
			sym->size = binary->info.ngg_info.ngg_emit_size * 4;
			sym->align = 4;
		}

		struct ac_rtld_open_info open_info = {
			.info = &device->physical_device->rad_info,
			.shader_type = binary->stage,
			.wave_size = binary->info.wave_size,
			.num_parts = 1,
			.elf_ptrs = &elf_data,
			.elf_sizes = &elf_size,
			.num_shared_lds_symbols = num_lds_symbols,
			.shared_lds_symbols = lds_symbols,
		};
		
		if (!ac_rtld_open(&rtld_binary, open_info)) {
			free(variant);
			return NULL;
		}

		if (!ac_rtld_read_config(&device->physical_device->rad_info,
					 &rtld_binary, &config)) {
			ac_rtld_close(&rtld_binary);
			free(variant);
			return NULL;
		}

		if (rtld_binary.lds_size > 0) {
			unsigned alloc_granularity = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256;
			config.lds_size = align(rtld_binary.lds_size, alloc_granularity) / alloc_granularity;
		}

		variant->code_size = rtld_binary.rx_size;
		variant->exec_size = rtld_binary.exec_size;
	} else {
		assert(binary->type == RADV_BINARY_TYPE_LEGACY);
		config = ((struct radv_shader_binary_legacy *)binary)->config;
		variant->code_size = radv_get_shader_binary_size(((struct radv_shader_binary_legacy *)binary)->code_size);
		variant->exec_size = ((struct radv_shader_binary_legacy *)binary)->exec_size;
	}

	variant->info = binary->info;
	radv_postprocess_config(device->physical_device, &config, &binary->info,
				binary->stage, &variant->config);

	void *dest_ptr = radv_alloc_shader_memory(device, variant);
	if (!dest_ptr) {
		if (binary->type == RADV_BINARY_TYPE_RTLD)
			ac_rtld_close(&rtld_binary);
		free(variant);
		return NULL;
	}

	if (binary->type == RADV_BINARY_TYPE_RTLD) {
		struct radv_shader_binary_rtld* bin = (struct radv_shader_binary_rtld *)binary;
		struct ac_rtld_upload_info info = {
			.binary = &rtld_binary,
			.rx_va = radv_buffer_get_va(variant->bo) + variant->bo_offset,
			.rx_ptr = dest_ptr, 
		};

		if (!ac_rtld_upload(&info)) {
			radv_shader_variant_destroy(device, variant);
			ac_rtld_close(&rtld_binary);
			return NULL;
		}

		if (keep_shader_info ||
		    (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) {
			const char *disasm_data;
			size_t disasm_size;
			if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, &disasm_size)) {
				radv_shader_variant_destroy(device, variant);
				ac_rtld_close(&rtld_binary);
				return NULL;
			}

			variant->ir_string = bin->llvm_ir_size ? strdup((const char*)(bin->data + bin->elf_size)) : NULL;
			variant->disasm_string = malloc(disasm_size + 1);
			memcpy(variant->disasm_string, disasm_data, disasm_size);
			variant->disasm_string[disasm_size] = 0;
		}

		ac_rtld_close(&rtld_binary);
	} else {
		struct radv_shader_binary_legacy* bin = (struct radv_shader_binary_legacy *)binary;
		memcpy(dest_ptr, bin->data + bin->stats_size, bin->code_size);

		/* Add end-of-code markers for the UMR disassembler. */
		uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4;
		for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
			ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;

		variant->ir_string = bin->ir_size ? strdup((const char*)(bin->data + bin->stats_size + bin->code_size)) : NULL;
		variant->disasm_string = bin->disasm_size ? strdup((const char*)(bin->data + bin->stats_size + bin->code_size + bin->ir_size)) : NULL;

		if (bin->stats_size) {
			variant->statistics = calloc(bin->stats_size, 1);
			memcpy(variant->statistics, bin->data, bin->stats_size);
		}
	}
	return variant;
}

static char *
radv_dump_nir_shaders(struct nir_shader * const *shaders,
                      int shader_count)
{
	char *data = NULL;
	char *ret = NULL;
	size_t size = 0;
	FILE *f = open_memstream(&data, &size);
	if (f) {
		for (int i = 0; i < shader_count; ++i)
			nir_print_shader(shaders[i], f);
		fclose(f);
	}

	ret = malloc(size + 1);
	if (ret) {
		memcpy(ret, data, size);
		ret[size] = 0;
	}
	free(data);
	return ret;
}

static struct radv_shader_variant *
shader_variant_compile(struct radv_device *device,
		       struct radv_shader_module *module,
		       struct nir_shader * const *shaders,
		       int shader_count,
		       gl_shader_stage stage,
		       struct radv_shader_info *info,
		       struct radv_nir_compiler_options *options,
		       bool gs_copy_shader,
		       bool keep_shader_info,
		       bool keep_statistic_info,
		       struct radv_shader_binary **binary_out)
{
	enum radeon_family chip_family = device->physical_device->rad_info.family;
	struct radv_shader_binary *binary = NULL;

	options->family = chip_family;
	options->chip_class = device->physical_device->rad_info.chip_class;
	options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader);
	options->dump_preoptir = options->dump_shader &&
				 device->instance->debug_flags & RADV_DEBUG_PREOPTIR;
	options->record_ir = keep_shader_info;
	options->record_stats = keep_statistic_info;
	options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR;
	options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size;
	options->address32_hi = device->physical_device->rad_info.address32_hi;
	options->has_ls_vgpr_init_bug = device->physical_device->rad_info.has_ls_vgpr_init_bug;
	options->use_ngg_streamout = device->physical_device->use_ngg_streamout;
	options->enable_mrt_output_nan_fixup = device->instance->enable_mrt_output_nan_fixup;

	struct radv_shader_args args = {};
	args.options = options;
	args.shader_info = info;
	args.is_gs_copy_shader = gs_copy_shader;
	radv_declare_shader_args(&args, 
				 gs_copy_shader ? MESA_SHADER_VERTEX
						: shaders[shader_count - 1]->info.stage,
				 shader_count >= 2,
				 shader_count >= 2 ? shaders[shader_count - 2]->info.stage
						   : MESA_SHADER_VERTEX);

	if (device->physical_device->use_llvm ||
	    options->dump_shader || options->record_ir)
		ac_init_llvm_once();

	if (device->physical_device->use_llvm) {
		llvm_compile_shader(device, shader_count, shaders, &binary, &args);
	} else {
		aco_compile_shader(shader_count, shaders, &binary, &args);
	}

	binary->info = *info;

	struct radv_shader_variant *variant = radv_shader_variant_create(device, binary,
									 keep_shader_info);
	if (!variant) {
		free(binary);
		return NULL;
	}

	if (options->dump_shader) {
		fprintf(stderr, "%s", radv_get_shader_name(info, shaders[0]->info.stage));
		for (int i = 1; i < shader_count; ++i)
			fprintf(stderr, " + %s", radv_get_shader_name(info, shaders[i]->info.stage));

		fprintf(stderr, "\ndisasm:\n%s\n", variant->disasm_string);
	}


	if (keep_shader_info) {
		variant->nir_string = radv_dump_nir_shaders(shaders, shader_count);
		if (!gs_copy_shader && !module->nir) {
			variant->spirv = malloc(module->size);
			if (!variant->spirv) {
				free(variant);
				free(binary);
				return NULL;
			}

			memcpy(variant->spirv, module->data, module->size);
			variant->spirv_size = module->size;
		}
	}

	if (binary_out)
		*binary_out = binary;
	else
		free(binary);

	return variant;
}

struct radv_shader_variant *
radv_shader_variant_compile(struct radv_device *device,
			   struct radv_shader_module *module,
			   struct nir_shader *const *shaders,
			   int shader_count,
			   struct radv_pipeline_layout *layout,
			   const struct radv_shader_variant_key *key,
			   struct radv_shader_info *info,
			   bool keep_shader_info, bool keep_statistic_info,
			   struct radv_shader_binary **binary_out)
{
	struct radv_nir_compiler_options options = {0};

	options.layout = layout;
	if (key)
		options.key = *key;

	options.explicit_scratch_args = !device->physical_device->use_llvm;
	options.robust_buffer_access = device->robust_buffer_access;

	return shader_variant_compile(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage, info,
				     &options, false, keep_shader_info, keep_statistic_info, binary_out);
}

struct radv_shader_variant *
radv_create_gs_copy_shader(struct radv_device *device,
			   struct nir_shader *shader,
			   struct radv_shader_info *info,
			   struct radv_shader_binary **binary_out,
			   bool keep_shader_info, bool keep_statistic_info,
			   bool multiview)
{
	struct radv_nir_compiler_options options = {0};

	options.explicit_scratch_args = !device->physical_device->use_llvm;
	options.key.has_multiview_view_index = multiview;

	return shader_variant_compile(device, NULL, &shader, 1, MESA_SHADER_VERTEX,
				      info, &options, true, keep_shader_info, keep_statistic_info, binary_out);
}

void
radv_shader_variant_destroy(struct radv_device *device,
			    struct radv_shader_variant *variant)
{
	if (!p_atomic_dec_zero(&variant->ref_count))
		return;

	mtx_lock(&device->shader_slab_mutex);
	list_del(&variant->slab_list);
	mtx_unlock(&device->shader_slab_mutex);

	free(variant->spirv);
	free(variant->nir_string);
	free(variant->disasm_string);
	free(variant->ir_string);
	free(variant->statistics);
	free(variant);
}

const char *
radv_get_shader_name(struct radv_shader_info *info,
		     gl_shader_stage stage)
{
	switch (stage) {
	case MESA_SHADER_VERTEX:
		if (info->vs.as_ls)
			return "Vertex Shader as LS";
		else if (info->vs.as_es)
			return "Vertex Shader as ES";
		else if (info->is_ngg)
			return "Vertex Shader as ESGS";
		else
			return "Vertex Shader as VS";
	case MESA_SHADER_TESS_CTRL:
		return "Tessellation Control Shader";
	case MESA_SHADER_TESS_EVAL:
		if (info->tes.as_es)
			return "Tessellation Evaluation Shader as ES";
		else if (info->is_ngg)
			return "Tessellation Evaluation Shader as ESGS";
		else
			return "Tessellation Evaluation Shader as VS";
	case MESA_SHADER_GEOMETRY:
		return "Geometry Shader";
	case MESA_SHADER_FRAGMENT:
		return "Pixel Shader";
	case MESA_SHADER_COMPUTE:
		return "Compute Shader";
	default:
		return "Unknown shader";
	};
}

unsigned
radv_get_max_workgroup_size(enum chip_class chip_class,
                            gl_shader_stage stage,
                            const unsigned *sizes)
{
	switch (stage) {
	case MESA_SHADER_TESS_CTRL:
		return chip_class >= GFX7 ? 128 : 64;
	case MESA_SHADER_GEOMETRY:
		return chip_class >= GFX9 ? 128 : 64;
	case MESA_SHADER_COMPUTE:
		break;
	default:
		return 0;
	}

	unsigned max_workgroup_size = sizes[0] * sizes[1] * sizes[2];
	return max_workgroup_size;
}

unsigned
radv_get_max_waves(struct radv_device *device,
                   struct radv_shader_variant *variant,
                   gl_shader_stage stage)
{
	enum chip_class chip_class = device->physical_device->rad_info.chip_class;
	unsigned lds_increment = chip_class >= GFX7 ? 512 : 256;
	uint8_t wave_size = variant->info.wave_size;
	struct ac_shader_config *conf = &variant->config;
	unsigned max_simd_waves;
	unsigned lds_per_wave = 0;

	max_simd_waves = device->physical_device->rad_info.max_wave64_per_simd;

	if (stage == MESA_SHADER_FRAGMENT) {
		lds_per_wave = conf->lds_size * lds_increment +
			       align(variant->info.ps.num_interp * 48,
				     lds_increment);
	} else if (stage == MESA_SHADER_COMPUTE) {
		unsigned max_workgroup_size =
			radv_get_max_workgroup_size(chip_class, stage, variant->info.cs.block_size);
		lds_per_wave = (conf->lds_size * lds_increment) /
			       DIV_ROUND_UP(max_workgroup_size, wave_size);
	}

	if (conf->num_sgprs) {
		unsigned sgprs = align(conf->num_sgprs, chip_class >= GFX8 ? 16 : 8);
		max_simd_waves =
			MIN2(max_simd_waves,
			     device->physical_device->rad_info.num_physical_sgprs_per_simd /
			     sgprs);
	}

	if (conf->num_vgprs) {
		unsigned vgprs = align(conf->num_vgprs, wave_size == 32 ? 8 : 4);
		max_simd_waves =
			MIN2(max_simd_waves,
			     device->physical_device->rad_info.num_physical_wave64_vgprs_per_simd / vgprs);
	}

	unsigned max_lds_per_simd = device->physical_device->rad_info.lds_size_per_workgroup / device->physical_device->rad_info.num_simd_per_compute_unit;
	if (lds_per_wave)
		max_simd_waves = MIN2(max_simd_waves, max_lds_per_simd / lds_per_wave);

	return max_simd_waves;
}

static void
generate_shader_stats(struct radv_device *device,
		      struct radv_shader_variant *variant,
		      gl_shader_stage stage,
		      struct _mesa_string_buffer *buf)
{
	struct ac_shader_config *conf = &variant->config;
	unsigned max_simd_waves = radv_get_max_waves(device, variant, stage);

	if (stage == MESA_SHADER_FRAGMENT) {
		_mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n"
					   "SPI_PS_INPUT_ADDR = 0x%04x\n"
					   "SPI_PS_INPUT_ENA  = 0x%04x\n",
					   conf->spi_ps_input_addr, conf->spi_ps_input_ena);
	}

	_mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n"
				   "SGPRS: %d\n"
				   "VGPRS: %d\n"
				   "Spilled SGPRs: %d\n"
				   "Spilled VGPRs: %d\n"
				   "PrivMem VGPRS: %d\n"
				   "Code Size: %d bytes\n"
				   "LDS: %d blocks\n"
				   "Scratch: %d bytes per wave\n"
				   "Max Waves: %d\n",
				   conf->num_sgprs, conf->num_vgprs,
				   conf->spilled_sgprs, conf->spilled_vgprs,
				   variant->info.private_mem_vgprs, variant->exec_size,
				   conf->lds_size, conf->scratch_bytes_per_wave,
				   max_simd_waves);

	if (variant->statistics) {
		_mesa_string_buffer_printf(buf, "*** COMPILER STATS ***\n");
		for (unsigned i = 0; i < variant->statistics->count; i++) {
			struct radv_compiler_statistic_info *info = &variant->statistics->infos[i];
			uint32_t value = variant->statistics->values[i];
			_mesa_string_buffer_printf(buf, "%s: %lu\n", info->name, value);
		}
	}

	_mesa_string_buffer_printf(buf, "********************\n\n\n");
}

void
radv_shader_dump_stats(struct radv_device *device,
		       struct radv_shader_variant *variant,
		       gl_shader_stage stage,
		       FILE *file)
{
	struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256);

	generate_shader_stats(device, variant, stage, buf);

	fprintf(file, "\n%s:\n", radv_get_shader_name(&variant->info, stage));
	fprintf(file, "%s", buf->buf);

	_mesa_string_buffer_destroy(buf);
}

VkResult
radv_GetShaderInfoAMD(VkDevice _device,
		      VkPipeline _pipeline,
		      VkShaderStageFlagBits shaderStage,
		      VkShaderInfoTypeAMD infoType,
		      size_t* pInfoSize,
		      void* pInfo)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
	gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage);
	struct radv_shader_variant *variant = pipeline->shaders[stage];
	struct _mesa_string_buffer *buf;
	VkResult result = VK_SUCCESS;

	/* Spec doesn't indicate what to do if the stage is invalid, so just
	 * return no info for this. */
	if (!variant)
		return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT);

	switch (infoType) {
	case VK_SHADER_INFO_TYPE_STATISTICS_AMD:
		if (!pInfo) {
			*pInfoSize = sizeof(VkShaderStatisticsInfoAMD);
		} else {
			unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256;
			struct ac_shader_config *conf = &variant->config;

			VkShaderStatisticsInfoAMD statistics = {};
			statistics.shaderStageMask = shaderStage;
			statistics.numPhysicalVgprs = device->physical_device->rad_info.num_physical_wave64_vgprs_per_simd;
			statistics.numPhysicalSgprs = device->physical_device->rad_info.num_physical_sgprs_per_simd;
			statistics.numAvailableSgprs = statistics.numPhysicalSgprs;

			if (stage == MESA_SHADER_COMPUTE) {
				unsigned *local_size = variant->info.cs.block_size;
				unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2];

				statistics.numAvailableVgprs = statistics.numPhysicalVgprs /
							       ceil((double)workgroup_size / statistics.numPhysicalVgprs);

				statistics.computeWorkGroupSize[0] = local_size[0];
				statistics.computeWorkGroupSize[1] = local_size[1];
				statistics.computeWorkGroupSize[2] = local_size[2];
			} else {
				statistics.numAvailableVgprs = statistics.numPhysicalVgprs;
			}

			statistics.resourceUsage.numUsedVgprs = conf->num_vgprs;
			statistics.resourceUsage.numUsedSgprs = conf->num_sgprs;
			statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768;
			statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier;
			statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave;

			size_t size = *pInfoSize;
			*pInfoSize = sizeof(statistics);

			memcpy(pInfo, &statistics, MIN2(size, *pInfoSize));

			if (size < *pInfoSize)
				result = VK_INCOMPLETE;
		}

		break;
	case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD:
		buf = _mesa_string_buffer_create(NULL, 1024);

		_mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(&variant->info, stage));
		_mesa_string_buffer_printf(buf, "%s\n\n", variant->ir_string);
		_mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string);
		generate_shader_stats(device, variant, stage, buf);

		/* Need to include the null terminator. */
		size_t length = buf->length + 1;

		if (!pInfo) {
			*pInfoSize = length;
		} else {
			size_t size = *pInfoSize;
			*pInfoSize = length;

			memcpy(pInfo, buf->buf, MIN2(size, length));

			if (size < length)
				result = VK_INCOMPLETE;
		}

		_mesa_string_buffer_destroy(buf);
		break;
	default:
		/* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */
		result = VK_ERROR_FEATURE_NOT_PRESENT;
		break;
	}

	return result;
}