summaryrefslogtreecommitdiffstats
path: root/src/amd/vulkan/radv_shader.c
blob: 285f42e937720dca1fa2b6eb694f393ee1ac1361 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
 * Copyright © 2016 Red Hat.
 * Copyright © 2016 Bas Nieuwenhuizen
 *
 * based in part on anv driver which is:
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "util/mesa-sha1.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"

#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>

#include "sid.h"
#include "gfx9d.h"
#include "r600d_common.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "vk_format.h"
#include "util/debug.h"
#include "ac_exp_param.h"

static const struct nir_shader_compiler_options nir_options = {
	.vertex_id_zero_based = true,
	.lower_scmp = true,
	.lower_flrp32 = true,
	.lower_fsat = true,
	.lower_fdiv = true,
	.lower_sub = true,
	.lower_pack_snorm_2x16 = true,
	.lower_pack_snorm_4x8 = true,
	.lower_pack_unorm_2x16 = true,
	.lower_pack_unorm_4x8 = true,
	.lower_unpack_snorm_2x16 = true,
	.lower_unpack_snorm_4x8 = true,
	.lower_unpack_unorm_2x16 = true,
	.lower_unpack_unorm_4x8 = true,
	.lower_extract_byte = true,
	.lower_extract_word = true,
	.max_unroll_iterations = 32
};

VkResult radv_CreateShaderModule(
	VkDevice                                    _device,
	const VkShaderModuleCreateInfo*             pCreateInfo,
	const VkAllocationCallbacks*                pAllocator,
	VkShaderModule*                             pShaderModule)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	struct radv_shader_module *module;

	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
	assert(pCreateInfo->flags == 0);

	module = vk_alloc2(&device->alloc, pAllocator,
			     sizeof(*module) + pCreateInfo->codeSize, 8,
			     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
	if (module == NULL)
		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

	module->nir = NULL;
	module->size = pCreateInfo->codeSize;
	memcpy(module->data, pCreateInfo->pCode, module->size);

	_mesa_sha1_compute(module->data, module->size, module->sha1);

	*pShaderModule = radv_shader_module_to_handle(module);

	return VK_SUCCESS;
}

void radv_DestroyShaderModule(
	VkDevice                                    _device,
	VkShaderModule                              _module,
	const VkAllocationCallbacks*                pAllocator)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	RADV_FROM_HANDLE(radv_shader_module, module, _module);

	if (!module)
		return;

	vk_free2(&device->alloc, pAllocator, module);
}

static void
radv_optimize_nir(struct nir_shader *shader)
{
        bool progress;

        do {
                progress = false;

                NIR_PASS_V(shader, nir_lower_vars_to_ssa);
		NIR_PASS_V(shader, nir_lower_64bit_pack);
                NIR_PASS_V(shader, nir_lower_alu_to_scalar);
                NIR_PASS_V(shader, nir_lower_phis_to_scalar);

                NIR_PASS(progress, shader, nir_copy_prop);
                NIR_PASS(progress, shader, nir_opt_remove_phis);
                NIR_PASS(progress, shader, nir_opt_dce);
                if (nir_opt_trivial_continues(shader)) {
                        progress = true;
                        NIR_PASS(progress, shader, nir_copy_prop);
			NIR_PASS(progress, shader, nir_opt_remove_phis);
                        NIR_PASS(progress, shader, nir_opt_dce);
                }
                NIR_PASS(progress, shader, nir_opt_if);
                NIR_PASS(progress, shader, nir_opt_dead_cf);
                NIR_PASS(progress, shader, nir_opt_cse);
                NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
                NIR_PASS(progress, shader, nir_opt_algebraic);
                NIR_PASS(progress, shader, nir_opt_constant_folding);
                NIR_PASS(progress, shader, nir_opt_undef);
                NIR_PASS(progress, shader, nir_opt_conditional_discard);
                if (shader->options->max_unroll_iterations) {
                        NIR_PASS(progress, shader, nir_opt_loop_unroll, 0);
                }
        } while (progress);
}

nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
			   struct radv_shader_module *module,
			   const char *entrypoint_name,
			   gl_shader_stage stage,
			   const VkSpecializationInfo *spec_info)
{
	if (strcmp(entrypoint_name, "main") != 0) {
		radv_finishme("Multiple shaders per module not really supported");
	}

	nir_shader *nir;
	nir_function *entry_point;
	if (module->nir) {
		/* Some things such as our meta clear/blit code will give us a NIR
		 * shader directly.  In that case, we just ignore the SPIR-V entirely
		 * and just use the NIR shader */
		nir = module->nir;
		nir->options = &nir_options;
		nir_validate_shader(nir);

		assert(exec_list_length(&nir->functions) == 1);
		struct exec_node *node = exec_list_get_head(&nir->functions);
		entry_point = exec_node_data(nir_function, node, node);
	} else {
		uint32_t *spirv = (uint32_t *) module->data;
		assert(module->size % 4 == 0);

		if (device->debug_flags & RADV_DEBUG_DUMP_SPIRV)
			radv_print_spirv(spirv, module->size, stderr);

		uint32_t num_spec_entries = 0;
		struct nir_spirv_specialization *spec_entries = NULL;
		if (spec_info && spec_info->mapEntryCount > 0) {
			num_spec_entries = spec_info->mapEntryCount;
			spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
			for (uint32_t i = 0; i < num_spec_entries; i++) {
				VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
				const void *data = spec_info->pData + entry.offset;
				assert(data + entry.size <= spec_info->pData + spec_info->dataSize);

				spec_entries[i].id = spec_info->pMapEntries[i].constantID;
				if (spec_info->dataSize == 8)
					spec_entries[i].data64 = *(const uint64_t *)data;
				else
					spec_entries[i].data32 = *(const uint32_t *)data;
			}
		}
		const struct nir_spirv_supported_extensions supported_ext = {
			.draw_parameters = true,
			.float64 = true,
			.image_read_without_format = true,
			.image_write_without_format = true,
			.tessellation = true,
			.int64 = true,
			.multiview = true,
			.variable_pointers = true,
		};
		entry_point = spirv_to_nir(spirv, module->size / 4,
					   spec_entries, num_spec_entries,
					   stage, entrypoint_name, &supported_ext, &nir_options);
		nir = entry_point->shader;
		assert(nir->stage == stage);
		nir_validate_shader(nir);

		free(spec_entries);

		/* We have to lower away local constant initializers right before we
		 * inline functions.  That way they get properly initialized at the top
		 * of the function and not at the top of its caller.
		 */
		NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
		NIR_PASS_V(nir, nir_lower_returns);
		NIR_PASS_V(nir, nir_inline_functions);

		/* Pick off the single entrypoint that we want */
		foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
			if (func != entry_point)
				exec_node_remove(&func->node);
		}
		assert(exec_list_length(&nir->functions) == 1);
		entry_point->name = ralloc_strdup(entry_point, "main");

		NIR_PASS_V(nir, nir_remove_dead_variables,
		           nir_var_shader_in | nir_var_shader_out | nir_var_system_value);

		/* Now that we've deleted all but the main function, we can go ahead and
		 * lower the rest of the constant initializers.
		 */
		NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
		NIR_PASS_V(nir, nir_lower_system_values);
		NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
	}

	/* Vulkan uses the separate-shader linking model */
	nir->info.separate_shader = true;

	nir_shader_gather_info(nir, entry_point->impl);

	nir_variable_mode indirect_mask = 0;
	indirect_mask |= nir_var_shader_in;
	indirect_mask |= nir_var_local;

	nir_lower_indirect_derefs(nir, indirect_mask);

	static const nir_lower_tex_options tex_options = {
	  .lower_txp = ~0,
	};

	nir_lower_tex(nir, &tex_options);

	nir_lower_vars_to_ssa(nir);
	nir_lower_var_copies(nir);
	nir_lower_global_vars_to_local(nir);
	nir_remove_dead_variables(nir, nir_var_local);
	radv_optimize_nir(nir);

	if (device->debug_flags & RADV_DEBUG_DUMP_SHADERS)
		nir_print_shader(nir, stderr);

	return nir;
}

void *
radv_alloc_shader_memory(struct radv_device *device,
			 struct radv_shader_variant *shader)
{
	mtx_lock(&device->shader_slab_mutex);
	list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
		uint64_t offset = 0;
		list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) {
			if (s->bo_offset - offset >= shader->code_size) {
				shader->bo = slab->bo;
				shader->bo_offset = offset;
				list_addtail(&shader->slab_list, &s->slab_list);
				mtx_unlock(&device->shader_slab_mutex);
				return slab->ptr + offset;
			}
			offset = align_u64(s->bo_offset + s->code_size, 256);
		}
		if (slab->size - offset >= shader->code_size) {
			shader->bo = slab->bo;
			shader->bo_offset = offset;
			list_addtail(&shader->slab_list, &slab->shaders);
			mtx_unlock(&device->shader_slab_mutex);
			return slab->ptr + offset;
		}
	}

	mtx_unlock(&device->shader_slab_mutex);
	struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab));

	slab->size = 256 * 1024;
	slab->bo = device->ws->buffer_create(device->ws, slab->size, 256,
	                                     RADEON_DOMAIN_VRAM, 0);
	slab->ptr = (char*)device->ws->buffer_map(slab->bo);
	list_inithead(&slab->shaders);

	mtx_lock(&device->shader_slab_mutex);
	list_add(&slab->slabs, &device->shader_slabs);

	shader->bo = slab->bo;
	shader->bo_offset = 0;
	list_add(&shader->slab_list, &slab->shaders);
	mtx_unlock(&device->shader_slab_mutex);
	return slab->ptr;
}

void
radv_destroy_shader_slabs(struct radv_device *device)
{
	list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) {
		device->ws->buffer_destroy(slab->bo);
		free(slab);
	}
	mtx_destroy(&device->shader_slab_mutex);
}

static void
radv_fill_shader_variant(struct radv_device *device,
			 struct radv_shader_variant *variant,
			 struct ac_shader_binary *binary,
			 gl_shader_stage stage)
{
	bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
	unsigned vgpr_comp_cnt = 0;

	if (scratch_enabled && !device->llvm_supports_spill)
		radv_finishme("shader scratch support only available with LLVM 4.0");

	variant->code_size = binary->code_size;
	variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
			S_00B12C_SCRATCH_EN(scratch_enabled);

	switch (stage) {
	case MESA_SHADER_TESS_EVAL:
		vgpr_comp_cnt = 3;
		/* fallthrough */
	case MESA_SHADER_TESS_CTRL:
		variant->rsrc2 |= S_00B42C_OC_LDS_EN(1);
		break;
	case MESA_SHADER_VERTEX:
	case MESA_SHADER_GEOMETRY:
		vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
		break;
	case MESA_SHADER_FRAGMENT:
		break;
	case MESA_SHADER_COMPUTE:
		variant->rsrc2 |=
			S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
			S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
			S_00B84C_TG_SIZE_EN(1) |
			S_00B84C_LDS_SIZE(variant->config.lds_size);
		break;
	default:
		unreachable("unsupported shader type");
		break;
	}

	variant->rsrc1 =  S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
		S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
		S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
		S_00B848_DX10_CLAMP(1) |
		S_00B848_FLOAT_MODE(variant->config.float_mode);

	void *ptr = radv_alloc_shader_memory(device, variant);
	memcpy(ptr, binary->code, binary->code_size);
}

static struct radv_shader_variant *
shader_variant_create(struct radv_device *device,
		      struct radv_shader_module *module,
		      struct nir_shader *shader,
		      gl_shader_stage stage,
		      struct ac_nir_compiler_options *options,
		      bool gs_copy_shader,
		      void **code_out,
		      unsigned *code_size_out)
{
	enum radeon_family chip_family = device->physical_device->rad_info.family;
	bool dump_shaders = device->debug_flags & RADV_DEBUG_DUMP_SHADERS;
	enum ac_target_machine_options tm_options = 0;
	struct radv_shader_variant *variant;
	struct ac_shader_binary binary;
	LLVMTargetMachineRef tm;

	variant = calloc(1, sizeof(struct radv_shader_variant));
	if (!variant)
		return NULL;

	options->family = chip_family;
	options->chip_class = device->physical_device->rad_info.chip_class;

	if (options->supports_spill)
		tm_options |= AC_TM_SUPPORTS_SPILL;
	if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED)
		tm_options |= AC_TM_SISCHED;
	tm = ac_create_target_machine(chip_family, tm_options);

	if (gs_copy_shader) {
		ac_create_gs_copy_shader(tm, shader, &binary, &variant->config,
					 &variant->info, options, dump_shaders);
	} else {
		ac_compile_nir_shader(tm, &binary, &variant->config,
				      &variant->info, shader, options,
				      dump_shaders);
	}

	LLVMDisposeTargetMachine(tm);

	radv_fill_shader_variant(device, variant, &binary, stage);

	if (code_out) {
		*code_out = binary.code;
		*code_size_out = binary.code_size;
	} else
		free(binary.code);
	free(binary.config);
	free(binary.rodata);
	free(binary.global_symbol_offsets);
	free(binary.relocs);
	variant->ref_count = 1;

	if (device->trace_bo) {
		variant->disasm_string = binary.disasm_string;
		if (!gs_copy_shader && !module->nir) {
			variant->nir = shader;
			variant->spirv = (uint32_t *)module->data;
			variant->spirv_size = module->size;
		}
	} else {
		free(binary.disasm_string);
	}

	return variant;
}

struct radv_shader_variant *
radv_shader_variant_create(struct radv_device *device,
			   struct radv_shader_module *module,
			   struct nir_shader *shader,
			   struct radv_pipeline_layout *layout,
			   const struct ac_shader_variant_key *key,
			   void **code_out,
			   unsigned *code_size_out)
{
	struct ac_nir_compiler_options options = {0};

	options.layout = layout;
	if (key)
		options.key = *key;

	options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
	options.supports_spill = device->llvm_supports_spill;

	return shader_variant_create(device, module, shader, shader->stage,
				     &options, false, code_out, code_size_out);
}

struct radv_shader_variant *
radv_create_gs_copy_shader(struct radv_device *device,
			   struct nir_shader *shader,
			   void **code_out,
			   unsigned *code_size_out,
			   bool multiview)
{
	struct ac_nir_compiler_options options = {0};

	options.key.has_multiview_view_index = multiview;

	return shader_variant_create(device, NULL, shader, MESA_SHADER_VERTEX,
				     &options, true, code_out, code_size_out);
}

void
radv_shader_variant_destroy(struct radv_device *device,
			    struct radv_shader_variant *variant)
{
	if (!p_atomic_dec_zero(&variant->ref_count))
		return;

	mtx_lock(&device->shader_slab_mutex);
	list_del(&variant->slab_list);
	mtx_unlock(&device->shader_slab_mutex);

	ralloc_free(variant->nir);
	free(variant->disasm_string);
	free(variant);
}

uint32_t
radv_shader_stage_to_user_data_0(gl_shader_stage stage, bool has_gs,
				 bool has_tess)
{
	switch (stage) {
	case MESA_SHADER_FRAGMENT:
		return R_00B030_SPI_SHADER_USER_DATA_PS_0;
	case MESA_SHADER_VERTEX:
		if (has_tess)
			return R_00B530_SPI_SHADER_USER_DATA_LS_0;
		else
			return has_gs ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B130_SPI_SHADER_USER_DATA_VS_0;
	case MESA_SHADER_GEOMETRY:
		return R_00B230_SPI_SHADER_USER_DATA_GS_0;
	case MESA_SHADER_COMPUTE:
		return R_00B900_COMPUTE_USER_DATA_0;
	case MESA_SHADER_TESS_CTRL:
		return R_00B430_SPI_SHADER_USER_DATA_HS_0;
	case MESA_SHADER_TESS_EVAL:
		if (has_gs)
			return R_00B330_SPI_SHADER_USER_DATA_ES_0;
		else
			return R_00B130_SPI_SHADER_USER_DATA_VS_0;
	default:
		unreachable("unknown shader");
	}
}

const char *
radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage)
{
	switch (stage) {
	case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
	case MESA_SHADER_GEOMETRY: return "Geometry Shader";
	case MESA_SHADER_FRAGMENT: return "Pixel Shader";
	case MESA_SHADER_COMPUTE: return "Compute Shader";
	case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
	case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
	default:
		return "Unknown shader";
	};
}

void
radv_shader_dump_stats(struct radv_device *device,
		       struct radv_shader_variant *variant,
		       gl_shader_stage stage,
		       FILE *file)
{
	unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
	struct ac_shader_config *conf;
	unsigned max_simd_waves;
	unsigned lds_per_wave = 0;

	switch (device->physical_device->rad_info.family) {
	/* These always have 8 waves: */
	case CHIP_POLARIS10:
	case CHIP_POLARIS11:
	case CHIP_POLARIS12:
		max_simd_waves = 8;
		break;
	default:
		max_simd_waves = 10;
	}

	conf = &variant->config;

	if (stage == MESA_SHADER_FRAGMENT) {
		lds_per_wave = conf->lds_size * lds_increment +
			       align(variant->info.fs.num_interp * 48,
				     lds_increment);
	}

	if (conf->num_sgprs) {
		if (device->physical_device->rad_info.chip_class >= VI)
			max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
		else
			max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
	}

	if (conf->num_vgprs)
		max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);

	/* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
	 * that PS can use.
	 */
	if (lds_per_wave)
		max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);

	fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage));

	if (stage == MESA_SHADER_FRAGMENT) {
		fprintf(file, "*** SHADER CONFIG ***\n"
			"SPI_PS_INPUT_ADDR = 0x%04x\n"
			"SPI_PS_INPUT_ENA  = 0x%04x\n",
			conf->spi_ps_input_addr, conf->spi_ps_input_ena);
	}

	fprintf(file, "*** SHADER STATS ***\n"
		"SGPRS: %d\n"
		"VGPRS: %d\n"
		"Spilled SGPRs: %d\n"
		"Spilled VGPRs: %d\n"
		"Code Size: %d bytes\n"
		"LDS: %d blocks\n"
		"Scratch: %d bytes per wave\n"
		"Max Waves: %d\n"
		"********************\n\n\n",
		conf->num_sgprs, conf->num_vgprs,
		conf->spilled_sgprs, conf->spilled_vgprs, variant->code_size,
		conf->lds_size, conf->scratch_bytes_per_wave,
		max_simd_waves);
}