summaryrefslogtreecommitdiffstats
path: root/src/amd/vulkan/radv_pipeline_cache.c
blob: bbddbbc2579c0f3eb47e9a873c0bab137c8f1fe3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "util/mesa-sha1.h"
#include "util/debug.h"
#include "util/disk_cache.h"
#include "util/u_atomic.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"

#include "ac_nir_to_llvm.h"

struct cache_entry {
	union {
		unsigned char sha1[20];
		uint32_t sha1_dw[5];
	};
	uint32_t binary_sizes[MESA_SHADER_STAGES];
	struct radv_shader_variant *variants[MESA_SHADER_STAGES];
	char code[0];
};

void
radv_pipeline_cache_init(struct radv_pipeline_cache *cache,
			 struct radv_device *device)
{
	cache->device = device;
	pthread_mutex_init(&cache->mutex, NULL);

	cache->modified = false;
	cache->kernel_count = 0;
	cache->total_size = 0;
	cache->table_size = 1024;
	const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
	cache->hash_table = malloc(byte_size);

	/* We don't consider allocation failure fatal, we just start with a 0-sized
	 * cache. Disable caching when we want to keep shader debug info, since
	 * we don't get the debug info on cached shaders. */
	if (cache->hash_table == NULL ||
	    (device->instance->debug_flags & RADV_DEBUG_NO_CACHE))
		cache->table_size = 0;
	else
		memset(cache->hash_table, 0, byte_size);
}

void
radv_pipeline_cache_finish(struct radv_pipeline_cache *cache)
{
	for (unsigned i = 0; i < cache->table_size; ++i)
		if (cache->hash_table[i]) {
			for(int j = 0; j < MESA_SHADER_STAGES; ++j)  {
				if (cache->hash_table[i]->variants[j])
					radv_shader_variant_destroy(cache->device,
								    cache->hash_table[i]->variants[j]);
			}
			vk_free(&cache->alloc, cache->hash_table[i]);
		}
	pthread_mutex_destroy(&cache->mutex);
	free(cache->hash_table);
}

static uint32_t
entry_size(struct cache_entry *entry)
{
	size_t ret = sizeof(*entry);
	for (int i = 0; i < MESA_SHADER_STAGES; ++i)
		if (entry->binary_sizes[i])
			ret += entry->binary_sizes[i];
	return ret;
}

void
radv_hash_shaders(unsigned char *hash,
		  const VkPipelineShaderStageCreateInfo **stages,
		  const struct radv_pipeline_layout *layout,
		  const struct radv_pipeline_key *key,
		  uint32_t flags)
{
	struct mesa_sha1 ctx;

	_mesa_sha1_init(&ctx);
	if (key)
		_mesa_sha1_update(&ctx, key, sizeof(*key));
	if (layout)
		_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));

	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
		if (stages[i]) {
			RADV_FROM_HANDLE(radv_shader_module, module, stages[i]->module);
			const VkSpecializationInfo *spec_info = stages[i]->pSpecializationInfo;

			_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
			_mesa_sha1_update(&ctx, stages[i]->pName, strlen(stages[i]->pName));
			if (spec_info) {
				_mesa_sha1_update(&ctx, spec_info->pMapEntries,
				                  spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
				_mesa_sha1_update(&ctx, spec_info->pData, spec_info->dataSize);
			}
		}
	}
	_mesa_sha1_update(&ctx, &flags, 4);
	_mesa_sha1_final(&ctx, hash);
}


static struct cache_entry *
radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache *cache,
				    const unsigned char *sha1)
{
	const uint32_t mask = cache->table_size - 1;
	const uint32_t start = (*(uint32_t *) sha1);

	if (cache->table_size == 0)
		return NULL;

	for (uint32_t i = 0; i < cache->table_size; i++) {
		const uint32_t index = (start + i) & mask;
		struct cache_entry *entry = cache->hash_table[index];

		if (!entry)
			return NULL;

		if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
			return entry;
		}
	}

	unreachable("hash table should never be full");
}

static struct cache_entry *
radv_pipeline_cache_search(struct radv_pipeline_cache *cache,
			   const unsigned char *sha1)
{
	struct cache_entry *entry;

	pthread_mutex_lock(&cache->mutex);

	entry = radv_pipeline_cache_search_unlocked(cache, sha1);

	pthread_mutex_unlock(&cache->mutex);

	return entry;
}

static void
radv_pipeline_cache_set_entry(struct radv_pipeline_cache *cache,
			      struct cache_entry *entry)
{
	const uint32_t mask = cache->table_size - 1;
	const uint32_t start = entry->sha1_dw[0];

	/* We'll always be able to insert when we get here. */
	assert(cache->kernel_count < cache->table_size / 2);

	for (uint32_t i = 0; i < cache->table_size; i++) {
		const uint32_t index = (start + i) & mask;
		if (!cache->hash_table[index]) {
			cache->hash_table[index] = entry;
			break;
		}
	}

	cache->total_size += entry_size(entry);
	cache->kernel_count++;
}


static VkResult
radv_pipeline_cache_grow(struct radv_pipeline_cache *cache)
{
	const uint32_t table_size = cache->table_size * 2;
	const uint32_t old_table_size = cache->table_size;
	const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
	struct cache_entry **table;
	struct cache_entry **old_table = cache->hash_table;

	table = malloc(byte_size);
	if (table == NULL)
		return vk_error(cache->device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);

	cache->hash_table = table;
	cache->table_size = table_size;
	cache->kernel_count = 0;
	cache->total_size = 0;

	memset(cache->hash_table, 0, byte_size);
	for (uint32_t i = 0; i < old_table_size; i++) {
		struct cache_entry *entry = old_table[i];
		if (!entry)
			continue;

		radv_pipeline_cache_set_entry(cache, entry);
	}

	free(old_table);

	return VK_SUCCESS;
}

static void
radv_pipeline_cache_add_entry(struct radv_pipeline_cache *cache,
			      struct cache_entry *entry)
{
	if (cache->kernel_count == cache->table_size / 2)
		radv_pipeline_cache_grow(cache);

	/* Failing to grow that hash table isn't fatal, but may mean we don't
	 * have enough space to add this new kernel. Only add it if there's room.
	 */
	if (cache->kernel_count < cache->table_size / 2)
		radv_pipeline_cache_set_entry(cache, entry);
}

static bool
radv_is_cache_disabled(struct radv_device *device)
{
	/* Pipeline caches can be disabled with RADV_DEBUG=nocache, with
	 * MESA_GLSL_CACHE_DISABLE=1, and when VK_AMD_shader_info is requested.
	 */
	return (device->instance->debug_flags & RADV_DEBUG_NO_CACHE);
}

/*
 * Secure compiles cannot open files so we get the parent process to load the
 * cache entry for us.
 */
static struct cache_entry *
radv_sc_read_from_disk_cache(struct radv_device *device, uint8_t *disk_sha1)
{
	struct cache_entry *entry;
	unsigned process = device->sc_state->secure_compile_thread_counter;
	enum radv_secure_compile_type sc_type = RADV_SC_TYPE_READ_DISK_CACHE;

	write(device->sc_state->secure_compile_processes[process].fd_secure_output,
	      &sc_type, sizeof(enum radv_secure_compile_type));
	write(device->sc_state->secure_compile_processes[process].fd_secure_output,
	      disk_sha1, sizeof(uint8_t) * 20);

	uint8_t found_cache_entry;
	if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
			  &found_cache_entry, sizeof(uint8_t), true))
		return NULL;

	if (found_cache_entry) {
		size_t entry_size;
		if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
				  &entry_size, sizeof(size_t), true))
			return NULL;

		entry = malloc(entry_size);
		if (!radv_sc_read(device->sc_state->secure_compile_processes[process].fd_secure_input,
				  entry, entry_size, true))
			return NULL;

		return entry;
	}

	return NULL;
}

/*
 * Secure compiles cannot open files so we get the parent process to write to
 * the disk cache for us.
 */
static void
radv_sc_write_to_disk_cache(struct radv_device *device, uint8_t *disk_sha1,
			    struct cache_entry *entry)
{
	unsigned process = device->sc_state->secure_compile_thread_counter;
	enum radv_secure_compile_type sc_type = RADV_SC_TYPE_WRITE_DISK_CACHE;

	write(device->sc_state->secure_compile_processes[process].fd_secure_output,
	      &sc_type, sizeof(enum radv_secure_compile_type));
	write(device->sc_state->secure_compile_processes[process].fd_secure_output,
	      disk_sha1, sizeof(uint8_t) * 20);

	uint32_t size = entry_size(entry);
	write(device->sc_state->secure_compile_processes[process].fd_secure_output,
	      &size, sizeof(uint32_t));
	write(device->sc_state->secure_compile_processes[process].fd_secure_output,
	      entry, size);
}

bool
radv_create_shader_variants_from_pipeline_cache(struct radv_device *device,
					        struct radv_pipeline_cache *cache,
					        const unsigned char *sha1,
					        struct radv_shader_variant **variants,
						bool *found_in_application_cache)
{
	struct cache_entry *entry;

	if (!cache) {
		cache = device->mem_cache;
		*found_in_application_cache = false;
	}

	pthread_mutex_lock(&cache->mutex);

	entry = radv_pipeline_cache_search_unlocked(cache, sha1);

	if (!entry) {
		*found_in_application_cache = false;

		/* Don't cache when we want debug info, since this isn't
		 * present in the cache.
		 */
		if (radv_is_cache_disabled(device) || !device->physical_device->disk_cache) {
			pthread_mutex_unlock(&cache->mutex);
			return false;
		}

		uint8_t disk_sha1[20];
		disk_cache_compute_key(device->physical_device->disk_cache,
				       sha1, 20, disk_sha1);

		if (radv_device_use_secure_compile(device->instance)) {
			entry = radv_sc_read_from_disk_cache(device, disk_sha1);
		} else {
			entry = (struct cache_entry *)
				disk_cache_get(device->physical_device->disk_cache,
					       disk_sha1, NULL);
		}

		if (!entry) {
			pthread_mutex_unlock(&cache->mutex);
			return false;
		} else {
			size_t size = entry_size(entry);
			struct cache_entry *new_entry = vk_alloc(&cache->alloc, size, 8,
								 VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
			if (!new_entry) {
				free(entry);
				pthread_mutex_unlock(&cache->mutex);
				return false;
			}

			memcpy(new_entry, entry, entry_size(entry));
			free(entry);
			entry = new_entry;

			if (!(device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE) ||
			    cache != device->mem_cache)
				radv_pipeline_cache_add_entry(cache, new_entry);
		}
	}

	char *p = entry->code;
	for(int i = 0; i < MESA_SHADER_STAGES; ++i) {
		if (!entry->variants[i] && entry->binary_sizes[i]) {
			struct radv_shader_binary *binary = calloc(1, entry->binary_sizes[i]);
			memcpy(binary, p, entry->binary_sizes[i]);
			p += entry->binary_sizes[i];

			entry->variants[i] = radv_shader_variant_create(device, binary, false);
			free(binary);
		} else if (entry->binary_sizes[i]) {
			p += entry->binary_sizes[i];
		}

	}

	memcpy(variants, entry->variants, sizeof(entry->variants));

	if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE &&
	    cache == device->mem_cache)
		vk_free(&cache->alloc, entry);
	else {
		for (int i = 0; i < MESA_SHADER_STAGES; ++i)
			if (entry->variants[i])
				p_atomic_inc(&entry->variants[i]->ref_count);
	}

	pthread_mutex_unlock(&cache->mutex);
	return true;
}

void
radv_pipeline_cache_insert_shaders(struct radv_device *device,
				   struct radv_pipeline_cache *cache,
				   const unsigned char *sha1,
				   struct radv_shader_variant **variants,
				   struct radv_shader_binary *const *binaries)
{
	if (!cache)
		cache = device->mem_cache;

	pthread_mutex_lock(&cache->mutex);
	struct cache_entry *entry = radv_pipeline_cache_search_unlocked(cache, sha1);
	if (entry) {
		for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
			if (entry->variants[i]) {
				radv_shader_variant_destroy(cache->device, variants[i]);
				variants[i] = entry->variants[i];
			} else {
				entry->variants[i] = variants[i];
			}
			if (variants[i])
				p_atomic_inc(&variants[i]->ref_count);
		}
		pthread_mutex_unlock(&cache->mutex);
		return;
	}

	/* Don't cache when we want debug info, since this isn't
	 * present in the cache.
	 */
	if (radv_is_cache_disabled(device)) {
		pthread_mutex_unlock(&cache->mutex);
		return;
	}

	size_t size = sizeof(*entry);
	for (int i = 0; i < MESA_SHADER_STAGES; ++i)
		if (variants[i])
			size += binaries[i]->total_size;


	entry = vk_alloc(&cache->alloc, size, 8,
			   VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
	if (!entry) {
		pthread_mutex_unlock(&cache->mutex);
		return;
	}

	memset(entry, 0, sizeof(*entry));
	memcpy(entry->sha1, sha1, 20);

	char* p = entry->code;

	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
		if (!variants[i])
			continue;

		entry->binary_sizes[i] = binaries[i]->total_size;

		memcpy(p, binaries[i], binaries[i]->total_size);
		p += binaries[i]->total_size;
	}

	/* Always add cache items to disk. This will allow collection of
	 * compiled shaders by third parties such as steam, even if the app
	 * implements its own pipeline cache.
	 */
	if (device->physical_device->disk_cache) {
		uint8_t disk_sha1[20];
		disk_cache_compute_key(device->physical_device->disk_cache, sha1, 20,
			       disk_sha1);

		/* Write the cache item out to the parent of this forked
		 * process.
		 */
		if (radv_device_use_secure_compile(device->instance)) {
			radv_sc_write_to_disk_cache(device, disk_sha1, entry);
		} else {
			disk_cache_put(device->physical_device->disk_cache,
				       disk_sha1, entry, entry_size(entry),
				       NULL);
		}
	}

	if (device->instance->debug_flags & RADV_DEBUG_NO_MEMORY_CACHE &&
	    cache == device->mem_cache) {
		vk_free2(&cache->alloc, NULL, entry);
		pthread_mutex_unlock(&cache->mutex);
		return;
	}

	/* We delay setting the variant so we have reproducible disk cache
	 * items.
	 */
	for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
		if (!variants[i])
			continue;

		entry->variants[i] = variants[i];
		p_atomic_inc(&variants[i]->ref_count);
	}

	radv_pipeline_cache_add_entry(cache, entry);

	cache->modified = true;
	pthread_mutex_unlock(&cache->mutex);
	return;
}

struct cache_header {
	uint32_t header_size;
	uint32_t header_version;
	uint32_t vendor_id;
	uint32_t device_id;
	uint8_t  uuid[VK_UUID_SIZE];
};

bool
radv_pipeline_cache_load(struct radv_pipeline_cache *cache,
			 const void *data, size_t size)
{
	struct radv_device *device = cache->device;
	struct cache_header header;

	if (size < sizeof(header))
		return false;
	memcpy(&header, data, sizeof(header));
	if (header.header_size < sizeof(header))
		return false;
	if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
		return false;
	if (header.vendor_id != ATI_VENDOR_ID)
		return false;
	if (header.device_id != device->physical_device->rad_info.pci_id)
		return false;
	if (memcmp(header.uuid, device->physical_device->cache_uuid, VK_UUID_SIZE) != 0)
		return false;

	char *end = (void *) data + size;
	char *p = (void *) data + header.header_size;

	while (end - p >= sizeof(struct cache_entry)) {
		struct cache_entry *entry = (struct cache_entry*)p;
		struct cache_entry *dest_entry;
		size_t size = entry_size(entry);
		if(end - p < size)
			break;

		dest_entry = vk_alloc(&cache->alloc, size,
					8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
		if (dest_entry) {
			memcpy(dest_entry, entry, size);
			for (int i = 0; i < MESA_SHADER_STAGES; ++i)
				dest_entry->variants[i] = NULL;
			radv_pipeline_cache_add_entry(cache, dest_entry);
		}
		p += size;
	}

	return true;
}

VkResult radv_CreatePipelineCache(
	VkDevice                                    _device,
	const VkPipelineCacheCreateInfo*            pCreateInfo,
	const VkAllocationCallbacks*                pAllocator,
	VkPipelineCache*                            pPipelineCache)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	struct radv_pipeline_cache *cache;

	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
	assert(pCreateInfo->flags == 0);

	cache = vk_alloc2(&device->alloc, pAllocator,
			    sizeof(*cache), 8,
			    VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
	if (cache == NULL)
		return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);

	if (pAllocator)
		cache->alloc = *pAllocator;
	else
		cache->alloc = device->alloc;

	radv_pipeline_cache_init(cache, device);

	if (pCreateInfo->initialDataSize > 0) {
		radv_pipeline_cache_load(cache,
					 pCreateInfo->pInitialData,
					 pCreateInfo->initialDataSize);
	}

	*pPipelineCache = radv_pipeline_cache_to_handle(cache);

	return VK_SUCCESS;
}

void radv_DestroyPipelineCache(
	VkDevice                                    _device,
	VkPipelineCache                             _cache,
	const VkAllocationCallbacks*                pAllocator)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);

	if (!cache)
		return;
	radv_pipeline_cache_finish(cache);

	vk_free2(&device->alloc, pAllocator, cache);
}

VkResult radv_GetPipelineCacheData(
	VkDevice                                    _device,
	VkPipelineCache                             _cache,
	size_t*                                     pDataSize,
	void*                                       pData)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
	struct cache_header *header;
	VkResult result = VK_SUCCESS;

	pthread_mutex_lock(&cache->mutex);

	const size_t size = sizeof(*header) + cache->total_size;
	if (pData == NULL) {
		pthread_mutex_unlock(&cache->mutex);
		*pDataSize = size;
		return VK_SUCCESS;
	}
	if (*pDataSize < sizeof(*header)) {
		pthread_mutex_unlock(&cache->mutex);
		*pDataSize = 0;
		return VK_INCOMPLETE;
	}
	void *p = pData, *end = pData + *pDataSize;
	header = p;
	header->header_size = sizeof(*header);
	header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
	header->vendor_id = ATI_VENDOR_ID;
	header->device_id = device->physical_device->rad_info.pci_id;
	memcpy(header->uuid, device->physical_device->cache_uuid, VK_UUID_SIZE);
	p += header->header_size;

	struct cache_entry *entry;
	for (uint32_t i = 0; i < cache->table_size; i++) {
		if (!cache->hash_table[i])
			continue;
		entry = cache->hash_table[i];
		const uint32_t size = entry_size(entry);
		if (end < p + size) {
			result = VK_INCOMPLETE;
			break;
		}

		memcpy(p, entry, size);
		for(int j = 0; j < MESA_SHADER_STAGES; ++j)
			((struct cache_entry*)p)->variants[j] = NULL;
		p += size;
	}
	*pDataSize = p - pData;

	pthread_mutex_unlock(&cache->mutex);
	return result;
}

static void
radv_pipeline_cache_merge(struct radv_pipeline_cache *dst,
			  struct radv_pipeline_cache *src)
{
	for (uint32_t i = 0; i < src->table_size; i++) {
		struct cache_entry *entry = src->hash_table[i];
		if (!entry || radv_pipeline_cache_search(dst, entry->sha1))
			continue;

		radv_pipeline_cache_add_entry(dst, entry);

		src->hash_table[i] = NULL;
	}
}

VkResult radv_MergePipelineCaches(
	VkDevice                                    _device,
	VkPipelineCache                             destCache,
	uint32_t                                    srcCacheCount,
	const VkPipelineCache*                      pSrcCaches)
{
	RADV_FROM_HANDLE(radv_pipeline_cache, dst, destCache);

	for (uint32_t i = 0; i < srcCacheCount; i++) {
		RADV_FROM_HANDLE(radv_pipeline_cache, src, pSrcCaches[i]);

		radv_pipeline_cache_merge(dst, src);
	}

	return VK_SUCCESS;
}