aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/vulkan/radv_meta_resolve_cs.c
blob: 2d79cb09fecda019346d76eb30a8351633bcfb19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
/*
 * Copyright © 2016 Dave Airlie
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */


#include <assert.h>
#include <stdbool.h>

#include "radv_meta.h"
#include "radv_private.h"
#include "nir/nir_builder.h"
#include "sid.h"
#include "vk_format.h"

static nir_ssa_def *radv_meta_build_resolve_srgb_conversion(nir_builder *b,
							    nir_ssa_def *input)
{
	nir_const_value v;
	unsigned i;
	v.u32[0] = 0x3b4d2e1c; // 0.00313080009

	nir_ssa_def *cmp[3];
	for (i = 0; i < 3; i++)
		cmp[i] = nir_flt(b, nir_channel(b, input, i),
				 nir_build_imm(b, 1, 32, v));

	nir_ssa_def *ltvals[3];
	v.f32[0] = 12.92;
	for (i = 0; i < 3; i++)
		ltvals[i] = nir_fmul(b, nir_channel(b, input, i),
				     nir_build_imm(b, 1, 32, v));

	nir_ssa_def *gtvals[3];

	for (i = 0; i < 3; i++) {
		v.f32[0] = 1.0/2.4;
		gtvals[i] = nir_fpow(b, nir_channel(b, input, i),
				     nir_build_imm(b, 1, 32, v));
		v.f32[0] = 1.055;
		gtvals[i] = nir_fmul(b, gtvals[i],
				     nir_build_imm(b, 1, 32, v));
		v.f32[0] = 0.055;
		gtvals[i] = nir_fsub(b, gtvals[i],
				     nir_build_imm(b, 1, 32, v));
	}

	nir_ssa_def *comp[4];
	for (i = 0; i < 3; i++)
		comp[i] = nir_bcsel(b, cmp[i], ltvals[i], gtvals[i]);
	comp[3] = nir_channels(b, input, 1 << 3);
	return nir_vec(b, comp, 4);
}

static nir_shader *
build_resolve_compute_shader(struct radv_device *dev, bool is_integer, bool is_srgb, int samples)
{
	nir_builder b;
	char name[64];
	const struct glsl_type *sampler_type = glsl_sampler_type(GLSL_SAMPLER_DIM_MS,
								 false,
								 false,
								 GLSL_TYPE_FLOAT);
	const struct glsl_type *img_type = glsl_sampler_type(GLSL_SAMPLER_DIM_2D,
							     false,
							     false,
							     GLSL_TYPE_FLOAT);
	snprintf(name, 64, "meta_resolve_cs-%d-%s", samples, is_integer ? "int" : (is_srgb ? "srgb" : "float"));
	nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_COMPUTE, NULL);
	b.shader->info.name = ralloc_strdup(b.shader, name);
	b.shader->info.cs.local_size[0] = 16;
	b.shader->info.cs.local_size[1] = 16;
	b.shader->info.cs.local_size[2] = 1;

	nir_variable *input_img = nir_variable_create(b.shader, nir_var_uniform,
						      sampler_type, "s_tex");
	input_img->data.descriptor_set = 0;
	input_img->data.binding = 0;

	nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform,
						       img_type, "out_img");
	output_img->data.descriptor_set = 0;
	output_img->data.binding = 1;
	nir_ssa_def *invoc_id = nir_load_system_value(&b, nir_intrinsic_load_local_invocation_id, 0);
	nir_ssa_def *wg_id = nir_load_system_value(&b, nir_intrinsic_load_work_group_id, 0);
	nir_ssa_def *block_size = nir_imm_ivec4(&b,
						b.shader->info.cs.local_size[0],
						b.shader->info.cs.local_size[1],
						b.shader->info.cs.local_size[2], 0);

	nir_ssa_def *global_id = nir_iadd(&b, nir_imul(&b, wg_id, block_size), invoc_id);

	nir_intrinsic_instr *src_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
	nir_intrinsic_set_base(src_offset, 0);
	nir_intrinsic_set_range(src_offset, 16);
	src_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
	src_offset->num_components = 2;
	nir_ssa_dest_init(&src_offset->instr, &src_offset->dest, 2, 32, "src_offset");
	nir_builder_instr_insert(&b, &src_offset->instr);

	nir_intrinsic_instr *dst_offset = nir_intrinsic_instr_create(b.shader, nir_intrinsic_load_push_constant);
	nir_intrinsic_set_base(dst_offset, 0);
	nir_intrinsic_set_range(dst_offset, 16);
	dst_offset->src[0] = nir_src_for_ssa(nir_imm_int(&b, 8));
	dst_offset->num_components = 2;
	nir_ssa_dest_init(&dst_offset->instr, &dst_offset->dest, 2, 32, "dst_offset");
	nir_builder_instr_insert(&b, &dst_offset->instr);

	nir_ssa_def *img_coord = nir_channels(&b, nir_iadd(&b, global_id, &src_offset->dest.ssa), 0x3);
	nir_variable *color = nir_local_variable_create(b.impl, glsl_vec4_type(), "color");

	radv_meta_build_resolve_shader_core(&b, is_integer, samples, input_img,
	                                    color, img_coord);

	nir_ssa_def *outval = nir_load_var(&b, color);
	if (is_srgb)
		outval = radv_meta_build_resolve_srgb_conversion(&b, outval);

	nir_ssa_def *coord = nir_iadd(&b, global_id, &dst_offset->dest.ssa);
	nir_intrinsic_instr *store = nir_intrinsic_instr_create(b.shader, nir_intrinsic_image_deref_store);
	store->src[0] = nir_src_for_ssa(&nir_build_deref_var(&b, output_img)->dest.ssa);
	store->src[1] = nir_src_for_ssa(coord);
	store->src[2] = nir_src_for_ssa(nir_ssa_undef(&b, 1, 32));
	store->src[3] = nir_src_for_ssa(outval);
	nir_builder_instr_insert(&b, &store->instr);
	return b.shader;
}


static VkResult
create_layout(struct radv_device *device)
{
	VkResult result;
	/*
	 * two descriptors one for the image being sampled
	 * one for the buffer being written.
	 */
	VkDescriptorSetLayoutCreateInfo ds_create_info = {
		.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
		.flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
		.bindingCount = 2,
		.pBindings = (VkDescriptorSetLayoutBinding[]) {
			{
				.binding = 0,
				.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
				.descriptorCount = 1,
				.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
				.pImmutableSamplers = NULL
			},
			{
				.binding = 1,
				.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
				.descriptorCount = 1,
				.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
				.pImmutableSamplers = NULL
			},
		}
	};

	result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device),
						&ds_create_info,
						&device->meta_state.alloc,
						&device->meta_state.resolve_compute.ds_layout);
	if (result != VK_SUCCESS)
		goto fail;


	VkPipelineLayoutCreateInfo pl_create_info = {
		.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
		.setLayoutCount = 1,
		.pSetLayouts = &device->meta_state.resolve_compute.ds_layout,
		.pushConstantRangeCount = 1,
		.pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_COMPUTE_BIT, 0, 16},
	};

	result = radv_CreatePipelineLayout(radv_device_to_handle(device),
					  &pl_create_info,
					  &device->meta_state.alloc,
					  &device->meta_state.resolve_compute.p_layout);
	if (result != VK_SUCCESS)
		goto fail;
	return VK_SUCCESS;
fail:
	return result;
}

static VkResult
create_resolve_pipeline(struct radv_device *device,
			int samples,
			bool is_integer,
			bool is_srgb,
			VkPipeline *pipeline)
{
	VkResult result;
	struct radv_shader_module cs = { .nir = NULL };

	cs.nir = build_resolve_compute_shader(device, is_integer, is_srgb, samples);

	/* compute shader */

	VkPipelineShaderStageCreateInfo pipeline_shader_stage = {
		.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
		.stage = VK_SHADER_STAGE_COMPUTE_BIT,
		.module = radv_shader_module_to_handle(&cs),
		.pName = "main",
		.pSpecializationInfo = NULL,
	};

	VkComputePipelineCreateInfo vk_pipeline_info = {
		.sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
		.stage = pipeline_shader_stage,
		.flags = 0,
		.layout = device->meta_state.resolve_compute.p_layout,
	};

	result = radv_CreateComputePipelines(radv_device_to_handle(device),
					     radv_pipeline_cache_to_handle(&device->meta_state.cache),
					     1, &vk_pipeline_info, NULL,
					     pipeline);
	if (result != VK_SUCCESS)
		goto fail;

	ralloc_free(cs.nir);
	return VK_SUCCESS;
fail:
	ralloc_free(cs.nir);
	return result;
}

VkResult
radv_device_init_meta_resolve_compute_state(struct radv_device *device)
{
	struct radv_meta_state *state = &device->meta_state;
	VkResult res;

	res = create_layout(device);
	if (res != VK_SUCCESS)
		goto fail;

	for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
		uint32_t samples = 1 << i;

		res = create_resolve_pipeline(device, samples, false, false,
					      &state->resolve_compute.rc[i].pipeline);
		if (res != VK_SUCCESS)
			goto fail;

		res = create_resolve_pipeline(device, samples, true, false,
					      &state->resolve_compute.rc[i].i_pipeline);
		if (res != VK_SUCCESS)
			goto fail;

		res = create_resolve_pipeline(device, samples, false, true,
					      &state->resolve_compute.rc[i].srgb_pipeline);
		if (res != VK_SUCCESS)
			goto fail;

	}

	return VK_SUCCESS;
fail:
	radv_device_finish_meta_resolve_compute_state(device);
	return res;
}

void
radv_device_finish_meta_resolve_compute_state(struct radv_device *device)
{
	struct radv_meta_state *state = &device->meta_state;
	for (uint32_t i = 0; i < MAX_SAMPLES_LOG2; ++i) {
		radv_DestroyPipeline(radv_device_to_handle(device),
				     state->resolve_compute.rc[i].pipeline,
				     &state->alloc);

		radv_DestroyPipeline(radv_device_to_handle(device),
				     state->resolve_compute.rc[i].i_pipeline,
				     &state->alloc);

		radv_DestroyPipeline(radv_device_to_handle(device),
				     state->resolve_compute.rc[i].srgb_pipeline,
				     &state->alloc);
	}

	radv_DestroyDescriptorSetLayout(radv_device_to_handle(device),
					state->resolve_compute.ds_layout,
					&state->alloc);
	radv_DestroyPipelineLayout(radv_device_to_handle(device),
				   state->resolve_compute.p_layout,
				   &state->alloc);
}

static void
emit_resolve(struct radv_cmd_buffer *cmd_buffer,
	     struct radv_image_view *src_iview,
	     struct radv_image_view *dest_iview,
	     const VkOffset2D *src_offset,
             const VkOffset2D *dest_offset,
             const VkExtent2D *resolve_extent)
{
	struct radv_device *device = cmd_buffer->device;
	const uint32_t samples = src_iview->image->info.samples;
	const uint32_t samples_log2 = ffs(samples) - 1;
	radv_meta_push_descriptor_set(cmd_buffer,
				      VK_PIPELINE_BIND_POINT_COMPUTE,
				      device->meta_state.resolve_compute.p_layout,
				      0, /* set */
				      2, /* descriptorWriteCount */
				      (VkWriteDescriptorSet[]) {
					{
						.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
						.dstBinding = 0,
						.dstArrayElement = 0,
						.descriptorCount = 1,
						.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
			                      .pImageInfo = (VkDescriptorImageInfo[]) {
		                              {
	                                      .sampler = VK_NULL_HANDLE,
					      .imageView = radv_image_view_to_handle(src_iview),
	                                      .imageLayout = VK_IMAGE_LAYOUT_GENERAL	                              },
	                      }
		              },
		              {
		                      .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
		                      .dstBinding = 1,
		                      .dstArrayElement = 0,
				      .descriptorCount = 1,
				      .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
	                      .pImageInfo = (VkDescriptorImageInfo[]) {
                              {
                                      .sampler = VK_NULL_HANDLE,
                                     .imageView = radv_image_view_to_handle(dest_iview),
                                     .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
                              },
                      }
			      }
				      });

	VkPipeline pipeline;
	if (vk_format_is_int(src_iview->image->vk_format))
		pipeline = device->meta_state.resolve_compute.rc[samples_log2].i_pipeline;
	else if (vk_format_is_srgb(src_iview->image->vk_format))
		pipeline = device->meta_state.resolve_compute.rc[samples_log2].srgb_pipeline;
	else
		pipeline = device->meta_state.resolve_compute.rc[samples_log2].pipeline;

	radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer),
			     VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);

	unsigned push_constants[4] = {
		src_offset->x,
		src_offset->y,
		dest_offset->x,
		dest_offset->y,
	};
	radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
			      device->meta_state.resolve_compute.p_layout,
			      VK_SHADER_STAGE_COMPUTE_BIT, 0, 16,
			      push_constants);
	radv_unaligned_dispatch(cmd_buffer, resolve_extent->width, resolve_extent->height, 1);

}

void radv_meta_resolve_compute_image(struct radv_cmd_buffer *cmd_buffer,
				     struct radv_image *src_image,
				     VkImageLayout src_image_layout,
				     struct radv_image *dest_image,
				     VkImageLayout dest_image_layout,
				     uint32_t region_count,
				     const VkImageResolve *regions)
{
	struct radv_meta_saved_state saved_state;

	radv_decompress_resolve_src(cmd_buffer, src_image, src_image_layout,
				    region_count, regions);

	radv_meta_save(&saved_state, cmd_buffer,
		       RADV_META_SAVE_COMPUTE_PIPELINE |
		       RADV_META_SAVE_CONSTANTS |
		       RADV_META_SAVE_DESCRIPTORS);

	for (uint32_t r = 0; r < region_count; ++r) {
		const VkImageResolve *region = &regions[r];

		assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
		assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
		assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount);

		const uint32_t src_base_layer =
			radv_meta_get_iview_layer(src_image, &region->srcSubresource,
						  &region->srcOffset);

		const uint32_t dest_base_layer =
			radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
						  &region->dstOffset);

		const struct VkExtent3D extent =
			radv_sanitize_image_extent(src_image->type, region->extent);
		const struct VkOffset3D srcOffset =
			radv_sanitize_image_offset(src_image->type, region->srcOffset);
		const struct VkOffset3D dstOffset =
			radv_sanitize_image_offset(dest_image->type, region->dstOffset);

		for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
		     ++layer) {

			struct radv_image_view src_iview;
			radv_image_view_init(&src_iview, cmd_buffer->device,
					     &(VkImageViewCreateInfo) {
						     .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
							     .image = radv_image_to_handle(src_image),
							     .viewType = radv_meta_get_view_type(src_image),
							     .format = src_image->vk_format,
							     .subresourceRange = {
							     .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
							     .baseMipLevel = region->srcSubresource.mipLevel,
							     .levelCount = 1,
							     .baseArrayLayer = src_base_layer + layer,
							     .layerCount = 1,
						     },
					     });

			struct radv_image_view dest_iview;
			radv_image_view_init(&dest_iview, cmd_buffer->device,
					     &(VkImageViewCreateInfo) {
						     .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
							     .image = radv_image_to_handle(dest_image),
							     .viewType = radv_meta_get_view_type(dest_image),
							     .format = vk_to_non_srgb_format(dest_image->vk_format),
							     .subresourceRange = {
							     .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
							     .baseMipLevel = region->dstSubresource.mipLevel,
							     .levelCount = 1,
							     .baseArrayLayer = dest_base_layer + layer,
							     .layerCount = 1,
						     },
					     });

			emit_resolve(cmd_buffer,
				     &src_iview,
				     &dest_iview,
				     &(VkOffset2D) {srcOffset.x, srcOffset.y },
				     &(VkOffset2D) {dstOffset.x, dstOffset.y },
				     &(VkExtent2D) {extent.width, extent.height });
		}
	}
	radv_meta_restore(&saved_state, cmd_buffer);
}

/**
 * Emit any needed resolves for the current subpass.
 */
void
radv_cmd_buffer_resolve_subpass_cs(struct radv_cmd_buffer *cmd_buffer)
{
	struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
	const struct radv_subpass *subpass = cmd_buffer->state.subpass;
	struct radv_meta_saved_state saved_state;
	struct radv_subpass_barrier barrier;

	/* Resolves happen before the end-of-subpass barriers get executed, so
	 * we have to make the attachment shader-readable.
	 */
	barrier.src_stage_mask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
	barrier.src_access_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
	barrier.dst_access_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
	radv_subpass_barrier(cmd_buffer, &barrier);

	radv_decompress_resolve_subpass_src(cmd_buffer);

	radv_meta_save(&saved_state, cmd_buffer,
		       RADV_META_SAVE_COMPUTE_PIPELINE |
		       RADV_META_SAVE_CONSTANTS |
		       RADV_META_SAVE_DESCRIPTORS);

	for (uint32_t i = 0; i < subpass->color_count; ++i) {
		struct radv_subpass_attachment src_att = subpass->color_attachments[i];
		struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i];
		struct radv_image_view *src_iview = cmd_buffer->state.framebuffer->attachments[src_att.attachment].attachment;
		struct radv_image_view *dst_iview = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment;
		if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
			continue;

		struct radv_image *src_image = src_iview->image;
		struct radv_image *dst_image = dst_iview->image;
		for (uint32_t layer = 0; layer < src_image->info.array_size; layer++) {

			struct radv_image_view tsrc_iview;
			radv_image_view_init(&tsrc_iview, cmd_buffer->device,
					     &(VkImageViewCreateInfo) {
						     .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
							     .image = radv_image_to_handle(src_image),
							     .viewType = radv_meta_get_view_type(src_image),
							     .format = src_image->vk_format,
							     .subresourceRange = {
							     .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
							     .baseMipLevel = src_iview->base_mip,
							     .levelCount = 1,
							     .baseArrayLayer = layer,
							     .layerCount = 1,
						     },
					     });

			struct radv_image_view tdst_iview;
			radv_image_view_init(&tdst_iview, cmd_buffer->device,
					     &(VkImageViewCreateInfo) {
						     .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
							     .image = radv_image_to_handle(dst_image),
							     .viewType = radv_meta_get_view_type(dst_image),
							     .format = vk_to_non_srgb_format(dst_image->vk_format),
							     .subresourceRange = {
							     .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
							     .baseMipLevel = dst_iview->base_mip,
							     .levelCount = 1,
							     .baseArrayLayer = layer,
							     .layerCount = 1,
						     },
					     });
			emit_resolve(cmd_buffer,
				     &tsrc_iview,
				     &tdst_iview,
				     &(VkOffset2D) { 0, 0 },
				     &(VkOffset2D) { 0, 0 },
				     &(VkExtent2D) { fb->width, fb->height });
		}
	}

	cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
	                                RADV_CMD_FLAG_INV_VMEM_L1;

	radv_meta_restore(&saved_state, cmd_buffer);
}