summaryrefslogtreecommitdiffstats
path: root/src/amd/vulkan/radv_meta_resolve.c
blob: 3e6633dec03fa9c127690f1794e5842c2163edc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>

#include "radv_meta.h"
#include "radv_private.h"
#include "nir/nir_builder.h"
#include "sid.h"

/* emit 0, 0, 0, 1 */
static nir_shader *
build_nir_fs(void)
{
	const struct glsl_type *vec4 = glsl_vec4_type();
	nir_builder b;
	nir_variable *f_color; /* vec4, fragment output color */

	nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
	b.shader->info->name = ralloc_asprintf(b.shader,
					       "meta_resolve_fs");

	f_color = nir_variable_create(b.shader, nir_var_shader_out, vec4,
				      "f_color");
	f_color->data.location = FRAG_RESULT_DATA0;
	nir_store_var(&b, f_color, nir_imm_vec4(&b, 0.0, 0.0, 0.0, 1.0), 0xf);

	return b.shader;
}

static VkResult
create_pass(struct radv_device *device)
{
	VkResult result;
	VkDevice device_h = radv_device_to_handle(device);
	const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
	VkAttachmentDescription attachments[2];
	int i;

	for (i = 0; i < 2; i++) {
		attachments[i].format = VK_FORMAT_UNDEFINED;
		attachments[i].samples = 1;
		attachments[i].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
		attachments[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
	}
	attachments[0].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
	attachments[0].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
	attachments[1].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
	attachments[1].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

	result = radv_CreateRenderPass(device_h,
				       &(VkRenderPassCreateInfo) {
					       .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
						       .attachmentCount = 2,
						       .pAttachments = attachments,
						       .subpassCount = 1,
								.pSubpasses = &(VkSubpassDescription) {
						       .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
						       .inputAttachmentCount = 0,
						       .colorAttachmentCount = 2,
						       .pColorAttachments = (VkAttachmentReference[]) {
							       {
								       .attachment = 0,
								       .layout = VK_IMAGE_LAYOUT_GENERAL,
							       },
							       {
								       .attachment = 1,
								       .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
							       },
						       },
						       .pResolveAttachments = NULL,
						       .pDepthStencilAttachment = &(VkAttachmentReference) {
							       .attachment = VK_ATTACHMENT_UNUSED,
						       },
						       .preserveAttachmentCount = 0,
						       .pPreserveAttachments = NULL,
					       },
								.dependencyCount = 0,
									 },
				       alloc,
				       &device->meta_state.resolve.pass);

	return result;
}

static VkResult
create_pipeline(struct radv_device *device,
                VkShaderModule vs_module_h)
{
	VkResult result;
	VkDevice device_h = radv_device_to_handle(device);

	struct radv_shader_module fs_module = {
		.nir = build_nir_fs(),
	};

	if (!fs_module.nir) {
		/* XXX: Need more accurate error */
		result = VK_ERROR_OUT_OF_HOST_MEMORY;
		goto cleanup;
	}

	result = radv_graphics_pipeline_create(device_h,
					       radv_pipeline_cache_to_handle(&device->meta_state.cache),
					       &(VkGraphicsPipelineCreateInfo) {
						       .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
						       .stageCount = 2,
						       .pStages = (VkPipelineShaderStageCreateInfo[]) {
						       {
							       .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
							       .stage = VK_SHADER_STAGE_VERTEX_BIT,
							       .module = vs_module_h,
							       .pName = "main",
						       },
						       {
							       .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
							       .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
							       .module = radv_shader_module_to_handle(&fs_module),
							       .pName = "main",
						       },
					       },
					       .pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) {
						       .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
						       .vertexBindingDescriptionCount = 0,
						       .vertexAttributeDescriptionCount = 0,
					       },
					       .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
						       .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
						       .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
						       .primitiveRestartEnable = false,
					       },
					       .pViewportState = &(VkPipelineViewportStateCreateInfo) {
						       .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
						       .viewportCount = 1,
						       .scissorCount = 1,
					       },
					       .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
						       .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
						       .depthClampEnable = false,
						       .rasterizerDiscardEnable = false,
						       .polygonMode = VK_POLYGON_MODE_FILL,
						       .cullMode = VK_CULL_MODE_NONE,
						       .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
					       },
					       .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
						       .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
						       .rasterizationSamples = 1,
						       .sampleShadingEnable = false,
						       .pSampleMask = NULL,
						       .alphaToCoverageEnable = false,
						       .alphaToOneEnable = false,
					       },
					       .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
						       .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
						       .logicOpEnable = false,
						       .attachmentCount = 2,
						       .pAttachments = (VkPipelineColorBlendAttachmentState []) {
							       {
							       .colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
									       VK_COLOR_COMPONENT_G_BIT |
									       VK_COLOR_COMPONENT_B_BIT |
									       VK_COLOR_COMPONENT_A_BIT,
							       },
							       {
							       .colorWriteMask = 0,

							       }
						       },
						},
						.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
							.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
							.dynamicStateCount = 2,
							.pDynamicStates = (VkDynamicState[]) {
								VK_DYNAMIC_STATE_VIEWPORT,
								VK_DYNAMIC_STATE_SCISSOR,
							},
						},
																       .renderPass = device->meta_state.resolve.pass,
																       .subpass = 0,
																       },
					       &(struct radv_graphics_pipeline_create_info) {
						       .use_rectlist = true,
						       .custom_blend_mode = V_028808_CB_RESOLVE,
							       },
					       &device->meta_state.alloc,
					       &device->meta_state.resolve.pipeline);
	if (result != VK_SUCCESS)
		goto cleanup;

	goto cleanup;

cleanup:
	ralloc_free(fs_module.nir);
	return result;
}

void
radv_device_finish_meta_resolve_state(struct radv_device *device)
{
	struct radv_meta_state *state = &device->meta_state;
	VkDevice device_h = radv_device_to_handle(device);
	VkRenderPass pass_h = device->meta_state.resolve.pass;
	const VkAllocationCallbacks *alloc = &device->meta_state.alloc;

	if (pass_h)
		radv_DestroyRenderPass(device_h, pass_h,
					     &device->meta_state.alloc);

	VkPipeline pipeline_h = state->resolve.pipeline;
	if (pipeline_h) {
		radv_DestroyPipeline(device_h, pipeline_h, alloc);
	}
}

VkResult
radv_device_init_meta_resolve_state(struct radv_device *device)
{
	VkResult res = VK_SUCCESS;

	zero(device->meta_state.resolve);

	struct radv_shader_module vs_module = { .nir = radv_meta_build_nir_vs_generate_vertices() };
	if (!vs_module.nir) {
		/* XXX: Need more accurate error */
		res = VK_ERROR_OUT_OF_HOST_MEMORY;
		goto fail;
	}

	res = create_pass(device);
	if (res != VK_SUCCESS)
		goto fail;

	VkShaderModule vs_module_h = radv_shader_module_to_handle(&vs_module);
	res = create_pipeline(device, vs_module_h);
	if (res != VK_SUCCESS)
		goto fail;

	goto cleanup;

fail:
	radv_device_finish_meta_resolve_state(device);

cleanup:
	ralloc_free(vs_module.nir);

	return res;
}

static void
emit_resolve(struct radv_cmd_buffer *cmd_buffer,
             const VkOffset2D *dest_offset,
             const VkExtent2D *resolve_extent)
{
	struct radv_device *device = cmd_buffer->device;
	VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);

	cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;

	VkPipeline pipeline_h = device->meta_state.resolve.pipeline;
	RADV_FROM_HANDLE(radv_pipeline, pipeline, pipeline_h);

	if (cmd_buffer->state.pipeline != pipeline) {
		radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
				     pipeline_h);
	}

	radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) {
		.x = dest_offset->x,
		.y = dest_offset->y,
		.width = resolve_extent->width,
		.height = resolve_extent->height,
		.minDepth = 0.0f,
		.maxDepth = 1.0f
	});

	radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) {
		.offset = *dest_offset,
		.extent = *resolve_extent,
	});

	radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0);
	cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
}

void radv_CmdResolveImage(
	VkCommandBuffer                             cmd_buffer_h,
	VkImage                                     src_image_h,
	VkImageLayout                               src_image_layout,
	VkImage                                     dest_image_h,
	VkImageLayout                               dest_image_layout,
	uint32_t                                    region_count,
	const VkImageResolve*                       regions)
{
	RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, cmd_buffer_h);
	RADV_FROM_HANDLE(radv_image, src_image, src_image_h);
	RADV_FROM_HANDLE(radv_image, dest_image, dest_image_h);
	struct radv_device *device = cmd_buffer->device;
	struct radv_meta_saved_state saved_state;
	VkDevice device_h = radv_device_to_handle(device);
	bool use_compute_resolve = false;
	bool use_fragment_resolve = false;
	/* we can use the hw resolve only for single full resolves */
	if (region_count == 1) {
		if (regions[0].srcOffset.x ||
		    regions[0].srcOffset.y ||
		    regions[0].srcOffset.z)
			use_compute_resolve = true;
		if (regions[0].dstOffset.x ||
		    regions[0].dstOffset.y ||
		    regions[0].dstOffset.z)
			use_compute_resolve = true;

		if (regions[0].extent.width != src_image->info.width ||
		    regions[0].extent.height != src_image->info.height ||
		    regions[0].extent.depth != src_image->info.depth)
			use_compute_resolve = true;
	} else
		use_compute_resolve = true;

	if (use_fragment_resolve) {
		radv_meta_resolve_fragment_image(cmd_buffer,
						 src_image,
						 src_image_layout,
						 dest_image,
						 dest_image_layout,
						 region_count, regions);
		return;
	}

	if (use_compute_resolve) {
		radv_meta_resolve_compute_image(cmd_buffer,
						src_image,
						src_image_layout,
						dest_image,
						dest_image_layout,
						region_count, regions);
		return;
	}

	radv_meta_save_graphics_reset_vport_scissor_novertex(&saved_state, cmd_buffer);

	assert(src_image->info.samples > 1);
	assert(dest_image->info.samples == 1);

	if (src_image->info.samples >= 16) {
		/* See commit aa3f9aaf31e9056a255f9e0472ebdfdaa60abe54 for the
		 * glBlitFramebuffer workaround for samples >= 16.
		 */
		radv_finishme("vkCmdResolveImage: need interpolation workaround when "
			      "samples >= 16");
	}

	if (src_image->info.array_size > 1)
		radv_finishme("vkCmdResolveImage: multisample array images");

	if (dest_image->surface.dcc_size) {
		radv_initialize_dcc(cmd_buffer, dest_image, 0xffffffff);
	}
	for (uint32_t r = 0; r < region_count; ++r) {
		const VkImageResolve *region = &regions[r];

		/* From the Vulkan 1.0 spec:
		 *
		 *    - The aspectMask member of srcSubresource and dstSubresource must
		 *      only contain VK_IMAGE_ASPECT_COLOR_BIT
		 *
		 *    - The layerCount member of srcSubresource and dstSubresource must
		 *      match
		 */
		assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
		assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
		assert(region->srcSubresource.layerCount ==
		       region->dstSubresource.layerCount);

		const uint32_t src_base_layer =
			radv_meta_get_iview_layer(src_image, &region->srcSubresource,
						  &region->srcOffset);

		const uint32_t dest_base_layer =
			radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
						  &region->dstOffset);

		/**
		 * From Vulkan 1.0.6 spec: 18.6 Resolving Multisample Images
		 *
		 *    extent is the size in texels of the source image to resolve in width,
		 *    height and depth. 1D images use only x and width. 2D images use x, y,
		 *    width and height. 3D images use x, y, z, width, height and depth.
		 *
		 *    srcOffset and dstOffset select the initial x, y, and z offsets in
		 *    texels of the sub-regions of the source and destination image data.
		 *    extent is the size in texels of the source image to resolve in width,
		 *    height and depth. 1D images use only x and width. 2D images use x, y,
		 *    width and height. 3D images use x, y, z, width, height and depth.
		 */
		const struct VkExtent3D extent =
			radv_sanitize_image_extent(src_image->type, region->extent);
		const struct VkOffset3D dstOffset =
			radv_sanitize_image_offset(dest_image->type, region->dstOffset);


		for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
		     ++layer) {

			struct radv_image_view src_iview;
			radv_image_view_init(&src_iview, cmd_buffer->device,
					     &(VkImageViewCreateInfo) {
						     .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
							     .image = src_image_h,
							     .viewType = radv_meta_get_view_type(src_image),
							     .format = src_image->vk_format,
							     .subresourceRange = {
							     .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
							     .baseMipLevel = region->srcSubresource.mipLevel,
							     .levelCount = 1,
							     .baseArrayLayer = src_base_layer + layer,
							     .layerCount = 1,
						     },
							     },
					     cmd_buffer, VK_IMAGE_USAGE_SAMPLED_BIT);

			struct radv_image_view dest_iview;
			radv_image_view_init(&dest_iview, cmd_buffer->device,
					     &(VkImageViewCreateInfo) {
						     .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
							     .image = dest_image_h,
							     .viewType = radv_meta_get_view_type(dest_image),
							     .format = dest_image->vk_format,
							     .subresourceRange = {
							     .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
							     .baseMipLevel = region->dstSubresource.mipLevel,
							     .levelCount = 1,
							     .baseArrayLayer = dest_base_layer + layer,
							     .layerCount = 1,
						     },
							     },
					     cmd_buffer, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);

			VkFramebuffer fb_h;
			radv_CreateFramebuffer(device_h,
					       &(VkFramebufferCreateInfo) {
						       .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
							       .attachmentCount = 2,
							       .pAttachments = (VkImageView[]) {
							       radv_image_view_to_handle(&src_iview),
							       radv_image_view_to_handle(&dest_iview),
						       },
						       .width = radv_minify(dest_image->info.width,
									    region->dstSubresource.mipLevel),
						       .height = radv_minify(dest_image->info.height,
									      region->dstSubresource.mipLevel),
						       .layers = 1
					       },
					       &cmd_buffer->pool->alloc,
					       &fb_h);

			radv_CmdBeginRenderPass(cmd_buffer_h,
						      &(VkRenderPassBeginInfo) {
							      .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
								      .renderPass = device->meta_state.resolve.pass,
								      .framebuffer = fb_h,
								      .renderArea = {
								      .offset = {
									      dstOffset.x,
									      dstOffset.y,
								      },
								      .extent = {
									      extent.width,
									      extent.height,
								      }
							      },
							      .clearValueCount = 0,
							      .pClearValues = NULL,
						      },
						      VK_SUBPASS_CONTENTS_INLINE);

			emit_resolve(cmd_buffer,
				     &(VkOffset2D) {
					     .x = dstOffset.x,
					     .y = dstOffset.y,
				     },
				     &(VkExtent2D) {
					     .width = extent.width,
					     .height = extent.height,
				     });

			radv_CmdEndRenderPass(cmd_buffer_h);

			radv_DestroyFramebuffer(device_h, fb_h,
						&cmd_buffer->pool->alloc);
		}
	}

	radv_meta_restore(&saved_state, cmd_buffer);
}

/**
 * Emit any needed resolves for the current subpass.
 */
void
radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer)
{
	struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
	const struct radv_subpass *subpass = cmd_buffer->state.subpass;
	struct radv_meta_saved_state saved_state;

	/* FINISHME(perf): Skip clears for resolve attachments.
	 *
	 * From the Vulkan 1.0 spec:
	 *
	 *    If the first use of an attachment in a render pass is as a resolve
	 *    attachment, then the loadOp is effectively ignored as the resolve is
	 *    guaranteed to overwrite all pixels in the render area.
	 */

	if (!subpass->has_resolve)
		return;

	radv_meta_save_graphics_reset_vport_scissor(&saved_state, cmd_buffer);

	for (uint32_t i = 0; i < subpass->color_count; ++i) {
		VkAttachmentReference src_att = subpass->color_attachments[i];
		VkAttachmentReference dest_att = subpass->resolve_attachments[i];
		struct radv_image *dst_img = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment->image;
		if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
			continue;

		if (dst_img->surface.dcc_size) {
			radv_initialize_dcc(cmd_buffer, dst_img, 0xffffffff);
			cmd_buffer->state.attachments[dest_att.attachment].current_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
		}

		struct radv_subpass resolve_subpass = {
			.color_count = 2,
			.color_attachments = (VkAttachmentReference[]) { src_att, dest_att },
			.depth_stencil_attachment = { .attachment = VK_ATTACHMENT_UNUSED },
		};

		radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass, false);

		/* Subpass resolves must respect the render area. We can ignore the
		 * render area here because vkCmdBeginRenderPass set the render area
		 * with 3DSTATE_DRAWING_RECTANGLE.
		 *
		 * XXX(chadv): Does the hardware really respect
		 * 3DSTATE_DRAWING_RECTANGLE when draing a 3DPRIM_RECTLIST?
		 */
		emit_resolve(cmd_buffer,
			     &(VkOffset2D) { 0, 0 },
			     &(VkExtent2D) { fb->width, fb->height });
	}

	cmd_buffer->state.subpass = subpass;
	radv_meta_restore(&saved_state, cmd_buffer);
}