summaryrefslogtreecommitdiffstats
path: root/src/amd/vulkan/radv_debug.c
blob: c93ebf1c77a48e4d1fbea51b23332f5f502aabe0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*
 * Copyright © 2016 Red Hat.
 * Copyright © 2016 Bas Nieuwenhuizen
 *
 * based in part on anv driver which is:
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <stdlib.h>
#include <stdio.h>

#include "sid.h"
#include "gfx9d.h"
#include "ac_debug.h"
#include "radv_debug.h"
#include "radv_shader.h"

#define TRACE_BO_SIZE 4096

#define COLOR_RESET	"\033[0m"
#define COLOR_RED	"\033[31m"
#define COLOR_GREEN	"\033[1;32m"
#define COLOR_YELLOW	"\033[1;33m"
#define COLOR_CYAN	"\033[1;36m"

/* Trace BO layout (offsets are 4 bytes):
 *
 * [0]: primary trace ID
 * [1]: secondary trace ID
 * [2-3]: 64-bit GFX pipeline pointer
 * [4-5]: 64-bit COMPUTE pipeline pointer
 * [6-7]: 64-bit descriptor set #0 pointer
 * ...
 * [68-69]: 64-bit descriptor set #31 pointer
 */

bool
radv_init_trace(struct radv_device *device)
{
	struct radeon_winsys *ws = device->ws;

	device->trace_bo = ws->buffer_create(ws, TRACE_BO_SIZE, 8,
					     RADEON_DOMAIN_VRAM,
					     RADEON_FLAG_CPU_ACCESS);
	if (!device->trace_bo)
		return false;

	device->trace_id_ptr = ws->buffer_map(device->trace_bo);
	if (!device->trace_id_ptr)
		return false;

	memset(device->trace_id_ptr, 0, TRACE_BO_SIZE);

	ac_vm_fault_occured(device->physical_device->rad_info.chip_class,
			    &device->dmesg_timestamp, NULL);

	return true;
}

static void
radv_dump_trace(struct radv_device *device, struct radeon_winsys_cs *cs)
{
	const char *filename = getenv("RADV_TRACE_FILE");
	FILE *f = fopen(filename, "w");

	if (!f) {
		fprintf(stderr, "Failed to write trace dump to %s\n", filename);
		return;
	}

	fprintf(f, "Trace ID: %x\n", *device->trace_id_ptr);
	device->ws->cs_dump(cs, f, (const int*)device->trace_id_ptr, 2);
	fclose(f);
}

static void
radv_dump_mmapped_reg(struct radv_device *device, FILE *f, unsigned offset)
{
	struct radeon_winsys *ws = device->ws;
	uint32_t value;

	if (ws->read_registers(ws, offset, 1, &value))
		ac_dump_reg(f, device->physical_device->rad_info.chip_class,
			    offset, value, ~0);
}

static void
radv_dump_debug_registers(struct radv_device *device, FILE *f)
{
	struct radeon_info *info = &device->physical_device->rad_info;

	if (info->drm_major == 2 && info->drm_minor < 42)
		return; /* no radeon support */

	fprintf(f, "Memory-mapped registers:\n");
	radv_dump_mmapped_reg(device, f, R_008010_GRBM_STATUS);

	/* No other registers can be read on DRM < 3.1.0. */
	if (info->drm_major < 3 || info->drm_minor < 1) {
		fprintf(f, "\n");
		return;
	}

	radv_dump_mmapped_reg(device, f, R_008008_GRBM_STATUS2);
	radv_dump_mmapped_reg(device, f, R_008014_GRBM_STATUS_SE0);
	radv_dump_mmapped_reg(device, f, R_008018_GRBM_STATUS_SE1);
	radv_dump_mmapped_reg(device, f, R_008038_GRBM_STATUS_SE2);
	radv_dump_mmapped_reg(device, f, R_00803C_GRBM_STATUS_SE3);
	radv_dump_mmapped_reg(device, f, R_00D034_SDMA0_STATUS_REG);
	radv_dump_mmapped_reg(device, f, R_00D834_SDMA1_STATUS_REG);
	if (info->chip_class <= VI) {
		radv_dump_mmapped_reg(device, f, R_000E50_SRBM_STATUS);
		radv_dump_mmapped_reg(device, f, R_000E4C_SRBM_STATUS2);
		radv_dump_mmapped_reg(device, f, R_000E54_SRBM_STATUS3);
	}
	radv_dump_mmapped_reg(device, f, R_008680_CP_STAT);
	radv_dump_mmapped_reg(device, f, R_008674_CP_STALLED_STAT1);
	radv_dump_mmapped_reg(device, f, R_008678_CP_STALLED_STAT2);
	radv_dump_mmapped_reg(device, f, R_008670_CP_STALLED_STAT3);
	radv_dump_mmapped_reg(device, f, R_008210_CP_CPC_STATUS);
	radv_dump_mmapped_reg(device, f, R_008214_CP_CPC_BUSY_STAT);
	radv_dump_mmapped_reg(device, f, R_008218_CP_CPC_STALLED_STAT1);
	radv_dump_mmapped_reg(device, f, R_00821C_CP_CPF_STATUS);
	radv_dump_mmapped_reg(device, f, R_008220_CP_CPF_BUSY_STAT);
	radv_dump_mmapped_reg(device, f, R_008224_CP_CPF_STALLED_STAT1);
	fprintf(f, "\n");
}

static const char *
radv_get_descriptor_name(enum VkDescriptorType type)
{
	switch (type) {
	case VK_DESCRIPTOR_TYPE_SAMPLER:
		return "SAMPLER";
	case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
		return "COMBINED_IMAGE_SAMPLER";
	case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
		return "SAMPLED_IMAGE";
	case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
		return "STORAGE_IMAGE";
	case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
		return "UNIFORM_TEXEL_BUFFER";
	case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
		return "STORAGE_TEXEL_BUFFER";
	case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
		return "UNIFORM_BUFFER";
	case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
		return "STORAGE_BUFFER";
	case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
		return "UNIFORM_BUFFER_DYNAMIC";
	case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
		return "STORAGE_BUFFER_DYNAMIC";
	case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
		return "INPUT_ATTACHMENT";
	default:
		return "UNKNOWN";
	}
}

static void
radv_dump_buffer_descriptor(enum chip_class chip_class, const uint32_t *desc,
			    FILE *f)
{
	fprintf(f, COLOR_CYAN "    Buffer:" COLOR_RESET "\n");
	for (unsigned j = 0; j < 4; j++)
		ac_dump_reg(f, chip_class, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4,
			    desc[j], 0xffffffff);
}

static void
radv_dump_image_descriptor(enum chip_class chip_class, const uint32_t *desc,
			   FILE *f)
{
	fprintf(f, COLOR_CYAN "    Image:" COLOR_RESET "\n");
	for (unsigned j = 0; j < 8; j++)
		ac_dump_reg(f, chip_class, R_008F10_SQ_IMG_RSRC_WORD0 + j * 4,
			    desc[j], 0xffffffff);

	fprintf(f, COLOR_CYAN "    FMASK:" COLOR_RESET "\n");
	for (unsigned j = 0; j < 8; j++)
		ac_dump_reg(f, chip_class, R_008F10_SQ_IMG_RSRC_WORD0 + j * 4,
			    desc[8 + j], 0xffffffff);
}

static void
radv_dump_sampler_descriptor(enum chip_class chip_class, const uint32_t *desc,
			     FILE *f)
{
	fprintf(f, COLOR_CYAN "    Sampler state:" COLOR_RESET "\n");
	for (unsigned j = 0; j < 4; j++) {
		ac_dump_reg(f, chip_class, R_008F30_SQ_IMG_SAMP_WORD0 + j * 4,
			    desc[j], 0xffffffff);
	}
}

static void
radv_dump_combined_image_sampler_descriptor(enum chip_class chip_class,
					    const uint32_t *desc, FILE *f)
{
	radv_dump_image_descriptor(chip_class, desc, f);
	radv_dump_sampler_descriptor(chip_class, desc + 16, f);
}

static void
radv_dump_descriptor_set(enum chip_class chip_class,
			 struct radv_descriptor_set *set, unsigned id, FILE *f)
{
	const struct radv_descriptor_set_layout *layout;
	int i;

	if (!set)
		return;
	layout = set->layout;

	fprintf(f, "** descriptor set (%d) **\n", id);
	fprintf(f, "va: 0x%"PRIx64"\n", set->va);
	fprintf(f, "size: %d\n", set->size);
	fprintf(f, "mapped_ptr:\n");

	for (i = 0; i < set->size / 4; i++) {
		fprintf(f, "\t[0x%x] = 0x%08x\n", i, set->mapped_ptr[i]);
	}
	fprintf(f, "\n");

	fprintf(f, "\t*** layout ***\n");
	fprintf(f, "\tbinding_count: %d\n", layout->binding_count);
	fprintf(f, "\tsize: %d\n", layout->size);
	fprintf(f, "\tshader_stages: %x\n", layout->shader_stages);
	fprintf(f, "\tdynamic_shader_stages: %x\n",
		layout->dynamic_shader_stages);
	fprintf(f, "\tbuffer_count: %d\n", layout->buffer_count);
	fprintf(f, "\tdynamic_offset_count: %d\n",
		layout->dynamic_offset_count);
	fprintf(f, "\n");

	for (i = 0; i < set->layout->binding_count; i++) {
		uint32_t *desc =
			set->mapped_ptr + layout->binding[i].offset / 4;

		fprintf(f, "\t\t**** binding layout (%d) ****\n", i);
		fprintf(f, "\t\ttype: %s\n",
			radv_get_descriptor_name(layout->binding[i].type));
		fprintf(f, "\t\tarray_size: %d\n",
			layout->binding[i].array_size);
		fprintf(f, "\t\toffset: %d\n",
			layout->binding[i].offset);
		fprintf(f, "\t\tbuffer_offset: %d\n",
			layout->binding[i].buffer_offset);
		fprintf(f, "\t\tdynamic_offset_offset: %d\n",
			layout->binding[i].dynamic_offset_offset);
		fprintf(f, "\t\tdynamic_offset_count: %d\n",
			layout->binding[i].dynamic_offset_count);
		fprintf(f, "\t\tsize: %d\n",
			layout->binding[i].size);
		fprintf(f, "\t\timmutable_samplers_offset: %d\n",
			layout->binding[i].immutable_samplers_offset);
		fprintf(f, "\t\timmutable_samplers_equal: %d\n",
			layout->binding[i].immutable_samplers_equal);
		fprintf(f, "\n");

		switch (layout->binding[i].type) {
		case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
		case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
		case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
		case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
			radv_dump_buffer_descriptor(chip_class, desc, f);
			break;
		case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
		case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
		case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
			radv_dump_image_descriptor(chip_class, desc, f);
			break;
		case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
			radv_dump_combined_image_sampler_descriptor(chip_class, desc, f);
			break;
		case VK_DESCRIPTOR_TYPE_SAMPLER:
			radv_dump_sampler_descriptor(chip_class, desc, f);
			break;
		case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
		case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
			/* todo */
			break;
		default:
			assert(!"unknown descriptor type");
			break;
		}
		fprintf(f, "\n");
	}
	fprintf(f, "\n\n");
}

static void
radv_dump_descriptors(struct radv_pipeline *pipeline, FILE *f)
{
	struct radv_device *device = pipeline->device;
	enum chip_class chip_class = device->physical_device->rad_info.chip_class;
	uint64_t *ptr = (uint64_t *)device->trace_id_ptr;
	int i;

	fprintf(f, "List of descriptors:\n");
	for (i = 0; i < MAX_SETS; i++) {
		struct radv_descriptor_set *set =
			(struct radv_descriptor_set *)ptr[i + 3];

		radv_dump_descriptor_set(chip_class, set, i, f);
	}
}

struct radv_shader_inst {
	char text[160];  /* one disasm line */
	unsigned offset; /* instruction offset */
	unsigned size;   /* instruction size = 4 or 8 */
};

/* Split a disassembly string into lines and add them to the array pointed
 * to by "instructions". */
static void si_add_split_disasm(const char *disasm,
				uint64_t start_addr,
				unsigned *num,
				struct radv_shader_inst *instructions)
{
	struct radv_shader_inst *last_inst = *num ? &instructions[*num - 1] : NULL;
	char *next;

	while ((next = strchr(disasm, '\n'))) {
		struct radv_shader_inst *inst = &instructions[*num];
		unsigned len = next - disasm;

		assert(len < ARRAY_SIZE(inst->text));
		memcpy(inst->text, disasm, len);
		inst->text[len] = 0;
		inst->offset = last_inst ? last_inst->offset + last_inst->size : 0;

		const char *semicolon = strchr(disasm, ';');
		assert(semicolon);
		/* More than 16 chars after ";" means the instruction is 8 bytes long. */
		inst->size = next - semicolon > 16 ? 8 : 4;

		snprintf(inst->text + len, ARRAY_SIZE(inst->text) - len,
			" [PC=0x%"PRIx64", off=%u, size=%u]",
			start_addr + inst->offset, inst->offset, inst->size);

		last_inst = inst;
		(*num)++;
		disasm = next + 1;
	}
}

static void
radv_dump_annotated_shader(struct radv_pipeline *pipeline,
			   struct radv_shader_variant *shader,
			   gl_shader_stage stage,
			   struct ac_wave_info *waves, unsigned num_waves,
			   FILE *f)
{
	struct radv_device *device = pipeline->device;
	uint64_t start_addr, end_addr;
	unsigned i;

	if (!shader)
		return;

	start_addr = device->ws->buffer_get_va(shader->bo) + shader->bo_offset;
	end_addr = start_addr + shader->code_size;

	/* See if any wave executes the shader. */
	for (i = 0; i < num_waves; i++) {
		if (start_addr <= waves[i].pc && waves[i].pc <= end_addr)
			break;
	}

	if (i == num_waves)
		return; /* the shader is not being executed */

	/* Remember the first found wave. The waves are sorted according to PC. */
	waves = &waves[i];
	num_waves -= i;

	/* Get the list of instructions.
	 * Buffer size / 4 is the upper bound of the instruction count.
	 */
	unsigned num_inst = 0;
	struct radv_shader_inst *instructions =
		calloc(shader->code_size / 4, sizeof(struct radv_shader_inst));

	si_add_split_disasm(shader->disasm_string,
			    start_addr, &num_inst, instructions);

	fprintf(f, COLOR_YELLOW "%s - annotated disassembly:" COLOR_RESET "\n",
		radv_get_shader_name(shader, stage));

	/* Print instructions with annotations. */
	for (i = 0; i < num_inst; i++) {
		struct radv_shader_inst *inst = &instructions[i];

		fprintf(f, "%s\n", inst->text);

		/* Print which waves execute the instruction right now. */
		while (num_waves && start_addr + inst->offset == waves->pc) {
			fprintf(f,
				"          " COLOR_GREEN "^ SE%u SH%u CU%u "
				"SIMD%u WAVE%u  EXEC=%016"PRIx64 "  ",
				waves->se, waves->sh, waves->cu, waves->simd,
				waves->wave, waves->exec);

			if (inst->size == 4) {
				fprintf(f, "INST32=%08X" COLOR_RESET "\n",
					waves->inst_dw0);
			} else {
				fprintf(f, "INST64=%08X %08X" COLOR_RESET "\n",
					waves->inst_dw0, waves->inst_dw1);
			}

			waves->matched = true;
			waves = &waves[1];
			num_waves--;
		}
	}

	fprintf(f, "\n\n");
	free(instructions);
}

static void
radv_dump_annotated_shaders(struct radv_pipeline *pipeline,
			    struct radv_shader_variant *compute_shader,
			    FILE *f)
{
	struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP];
	unsigned num_waves = ac_get_wave_info(waves);
	unsigned mask;

	fprintf(f, COLOR_CYAN "The number of active waves = %u" COLOR_RESET
		"\n\n", num_waves);

	/* Dump annotated active graphics shaders. */
	mask = pipeline->active_stages;
	while (mask) {
		int stage = u_bit_scan(&mask);

		radv_dump_annotated_shader(pipeline, pipeline->shaders[stage],
					   stage, waves, num_waves, f);
	}

	radv_dump_annotated_shader(pipeline, compute_shader,
				   MESA_SHADER_COMPUTE, waves, num_waves, f);

	/* Print waves executing shaders that are not currently bound. */
	unsigned i;
	bool found = false;
	for (i = 0; i < num_waves; i++) {
		if (waves[i].matched)
			continue;

		if (!found) {
			fprintf(f, COLOR_CYAN
				"Waves not executing currently-bound shaders:"
				COLOR_RESET "\n");
			found = true;
		}
		fprintf(f, "    SE%u SH%u CU%u SIMD%u WAVE%u  EXEC=%016"PRIx64
			"  INST=%08X %08X  PC=%"PRIx64"\n",
			waves[i].se, waves[i].sh, waves[i].cu, waves[i].simd,
			waves[i].wave, waves[i].exec, waves[i].inst_dw0,
			waves[i].inst_dw1, waves[i].pc);
	}
	if (found)
		fprintf(f, "\n\n");
}

static void
radv_dump_shader(struct radv_pipeline *pipeline,
		 struct radv_shader_variant *shader, gl_shader_stage stage,
		 FILE *f)
{
	if (!shader)
		return;

	fprintf(f, "%s:\n%s\n\n", radv_get_shader_name(shader, stage),
		shader->disasm_string);

	radv_shader_dump_stats(pipeline->device, shader, stage, f);
}

static void
radv_dump_shaders(struct radv_pipeline *pipeline,
		  struct radv_shader_variant *compute_shader, FILE *f)
{
	unsigned mask;

	/* Dump active graphics shaders. */
	mask = pipeline->active_stages;
	while (mask) {
		int stage = u_bit_scan(&mask);

		radv_dump_shader(pipeline, pipeline->shaders[stage], stage, f);
	}

	radv_dump_shader(pipeline, compute_shader, MESA_SHADER_COMPUTE, f);
}

static void
radv_dump_graphics_state(struct radv_pipeline *graphics_pipeline,
			 struct radv_pipeline *compute_pipeline, FILE *f)
{
	struct radv_shader_variant *compute_shader =
		compute_pipeline ? compute_pipeline->shaders[MESA_SHADER_COMPUTE] : NULL;

	if (!graphics_pipeline)
		return;

	radv_dump_shaders(graphics_pipeline, compute_shader, f);
	radv_dump_annotated_shaders(graphics_pipeline, compute_shader, f);
	radv_dump_descriptors(graphics_pipeline, f);
}

static void
radv_dump_compute_state(struct radv_pipeline *compute_pipeline, FILE *f)
{
	if (!compute_pipeline)
		return;

	radv_dump_shaders(compute_pipeline,
			  compute_pipeline->shaders[MESA_SHADER_COMPUTE], f);
	radv_dump_annotated_shaders(compute_pipeline,
				    compute_pipeline->shaders[MESA_SHADER_COMPUTE],
				    f);
	radv_dump_descriptors(compute_pipeline, f);
}

static struct radv_pipeline *
radv_get_saved_graphics_pipeline(struct radv_device *device)
{
	uint64_t *ptr = (uint64_t *)device->trace_id_ptr;

	return (struct radv_pipeline *)ptr[1];
}

static struct radv_pipeline *
radv_get_saved_compute_pipeline(struct radv_device *device)
{
	uint64_t *ptr = (uint64_t *)device->trace_id_ptr;

	return (struct radv_pipeline *)ptr[2];
}

static bool
radv_gpu_hang_occured(struct radv_queue *queue, enum ring_type ring)
{
	struct radeon_winsys *ws = queue->device->ws;

	if (!ws->ctx_wait_idle(queue->hw_ctx, ring, queue->queue_idx))
		return true;

	return false;
}

void
radv_check_gpu_hangs(struct radv_queue *queue, struct radeon_winsys_cs *cs)
{
	struct radv_pipeline *graphics_pipeline, *compute_pipeline;
	struct radv_device *device = queue->device;
	enum ring_type ring;
	uint64_t addr;

	ring = radv_queue_family_to_ring(queue->queue_family_index);

	bool hang_occurred = radv_gpu_hang_occured(queue, ring);
	bool vm_fault_occurred = false;
	if (queue->device->instance->debug_flags & RADV_DEBUG_VM_FAULTS)
		vm_fault_occurred = ac_vm_fault_occured(device->physical_device->rad_info.chip_class,
		                                        &device->dmesg_timestamp, &addr);
	if (!hang_occurred && !vm_fault_occurred)
		return;

	graphics_pipeline = radv_get_saved_graphics_pipeline(device);
	compute_pipeline = radv_get_saved_compute_pipeline(device);

	if (vm_fault_occurred) {
		fprintf(stderr, "VM fault report.\n\n");
		fprintf(stderr, "Failing VM page: 0x%08"PRIx64"\n\n", addr);
	}

	radv_dump_debug_registers(device, stderr);

	switch (ring) {
	case RING_GFX:
		radv_dump_graphics_state(graphics_pipeline, compute_pipeline,
					 stderr);
		break;
	case RING_COMPUTE:
		radv_dump_compute_state(compute_pipeline, stderr);
		break;
	default:
		assert(0);
		break;
	}

	radv_dump_trace(queue->device, cs);
	abort();
}

void
radv_print_spirv(struct radv_shader_module *module, FILE *fp)
{
	char path[] = "/tmp/fileXXXXXX";
	char line[2048], command[128];
	FILE *p;
	int fd;

	/* Dump the binary into a temporary file. */
	fd = mkstemp(path);
	if (fd < 0)
		return;

	if (write(fd, module->data, module->size) == -1)
		goto fail;

	sprintf(command, "spirv-dis %s", path);

	/* Disassemble using spirv-dis if installed. */
	p = popen(command, "r");
	if (p) {
		while (fgets(line, sizeof(line), p))
			fprintf(fp, "%s", line);
		pclose(p);
	}

fail:
	close(fd);
	unlink(path);
}