1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/*
* Copyright © 2018 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "aco_ir.h"
#include <array>
#include <map>
namespace aco {
#ifndef NDEBUG
void perfwarn(bool cond, const char *msg, Instruction *instr)
{
if (cond) {
fprintf(stderr, "ACO performance warning: %s\n", msg);
if (instr) {
fprintf(stderr, "instruction: ");
aco_print_instr(instr, stderr);
fprintf(stderr, "\n");
}
if (debug_flags & DEBUG_PERFWARN)
exit(1);
}
}
#endif
void validate(Program* program, FILE * output)
{
if (!(debug_flags & DEBUG_VALIDATE))
return;
bool is_valid = true;
auto check = [&output, &is_valid](bool check, const char * msg, aco::Instruction * instr) -> void {
if (!check) {
fprintf(output, "%s: ", msg);
aco_print_instr(instr, output);
fprintf(output, "\n");
is_valid = false;
}
};
auto check_block = [&output, &is_valid](bool check, const char * msg, aco::Block * block) -> void {
if (!check) {
fprintf(output, "%s: BB%u\n", msg, block->index);
is_valid = false;
}
};
for (Block& block : program->blocks) {
for (aco_ptr<Instruction>& instr : block.instructions) {
/* check base format */
Format base_format = instr->format;
base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA);
base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP);
if ((uint32_t)base_format & (uint32_t)Format::VOP1)
base_format = Format::VOP1;
else if ((uint32_t)base_format & (uint32_t)Format::VOP2)
base_format = Format::VOP2;
else if ((uint32_t)base_format & (uint32_t)Format::VOPC)
base_format = Format::VOPC;
else if ((uint32_t)base_format & (uint32_t)Format::VINTRP)
base_format = Format::VINTRP;
check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get());
/* check VOP3 modifiers */
if (((uint32_t)instr->format & (uint32_t)Format::VOP3) && instr->format != Format::VOP3) {
check(base_format == Format::VOP2 ||
base_format == Format::VOP1 ||
base_format == Format::VOPC ||
base_format == Format::VINTRP,
"Format cannot have VOP3A/VOP3B applied", instr.get());
}
/* check for undefs */
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isUndefined()) {
bool flat = instr->format == Format::FLAT || instr->format == Format::SCRATCH || instr->format == Format::GLOBAL;
bool can_be_undef = is_phi(instr) || instr->format == Format::EXP ||
instr->format == Format::PSEUDO_REDUCTION ||
(flat && i == 1) || (instr->format == Format::MIMG && i == 2) ||
((instr->format == Format::MUBUF || instr->format == Format::MTBUF) && i == 0);
check(can_be_undef, "Undefs can only be used in certain operands", instr.get());
}
}
/* check num literals */
if (instr->isSALU() || instr->isVALU()) {
unsigned num_literals = 0;
for (unsigned i = 0; i < instr->operands.size(); i++)
{
if (instr->operands[i].isLiteral() && instr->isVOP3() && program->chip_class >= GFX10) {
num_literals++;
} else if (instr->operands[i].isLiteral()) {
check(instr->format == Format::SOP1 ||
instr->format == Format::SOP2 ||
instr->format == Format::SOPC ||
instr->format == Format::VOP1 ||
instr->format == Format::VOP2 ||
instr->format == Format::VOPC,
"Literal applied on wrong instruction format", instr.get());
num_literals++;
check(!instr->isVALU() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get());
}
}
check(num_literals <= 1, "Only 1 Literal allowed", instr.get());
/* check num sgprs for VALU */
if (instr->isVALU()) {
check(instr->definitions[0].getTemp().type() == RegType::vgpr ||
(int) instr->format & (int) Format::VOPC ||
instr->opcode == aco_opcode::v_readfirstlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32_e64,
"Wrong Definition type for VALU instruction", instr.get());
unsigned num_sgpr = 0;
unsigned sgpr_idx = instr->operands.size();
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32 ||
instr->opcode == aco_opcode::v_readlane_b32_e64 ||
instr->opcode == aco_opcode::v_writelane_b32 ||
instr->opcode == aco_opcode::v_writelane_b32_e64) {
check(!instr->operands[i].isLiteral(), "No literal allowed on VALU instruction", instr.get());
check(i == 1 || (instr->operands[i].isTemp() && instr->operands[i].regClass() == v1), "Wrong Operand type for VALU instruction", instr.get());
continue;
}
if (instr->operands[i].isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) {
check(i != 1 || (int) instr->format & (int) Format::VOP3A, "Wrong source position for SGPR argument", instr.get());
if (sgpr_idx == instr->operands.size() || instr->operands[sgpr_idx].tempId() != instr->operands[i].tempId())
num_sgpr++;
sgpr_idx = i;
}
if (instr->operands[i].isConstant() && !instr->operands[i].isLiteral())
check(i == 0 || (int) instr->format & (int) Format::VOP3A, "Wrong source position for constant argument", instr.get());
}
check(num_sgpr + num_literals <= 1, "Only 1 Literal OR 1 SGPR allowed", instr.get());
}
if (instr->format == Format::SOP1 || instr->format == Format::SOP2) {
check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get());
for (const Operand& op : instr->operands) {
check(op.isConstant() || op.regClass().type() <= RegType::sgpr,
"Wrong Operand type for SALU instruction", instr.get());
}
}
}
switch (instr->format) {
case Format::PSEUDO: {
if (instr->opcode == aco_opcode::p_create_vector) {
unsigned size = 0;
for (const Operand& op : instr->operands) {
size += op.size();
}
check(size == instr->definitions[0].size(), "Definition size does not match operand sizes", instr.get());
if (instr->definitions[0].getTemp().type() == RegType::sgpr) {
for (const Operand& op : instr->operands) {
check(op.isConstant() || op.regClass().type() == RegType::sgpr,
"Wrong Operand type for scalar vector", instr.get());
}
}
} else if (instr->opcode == aco_opcode::p_extract_vector) {
check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get());
check(instr->operands[1].constantValue() < instr->operands[0].size(), "Index out of range", instr.get());
check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr,
"Cannot extract SGPR value from VGPR vector", instr.get());
} else if (instr->opcode == aco_opcode::p_parallelcopy) {
check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get());
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isTemp())
check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) ||
(instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr),
"Operand and Definition types do not match", instr.get());
}
} else if (instr->opcode == aco_opcode::p_phi) {
check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->definitions[0].getTemp().regClass() == program->lane_mask, "Logical Phi Definition must be vgpr or divergent boolean", instr.get());
} else if (instr->opcode == aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands)
check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get());
check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get());
}
break;
}
case Format::SMEM: {
if (instr->operands.size() >= 1)
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "SMEM operands must be sgpr", instr.get());
if (instr->operands.size() >= 2)
check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr),
"SMEM offset must be constant or sgpr", instr.get());
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get());
break;
}
case Format::MTBUF:
case Format::MUBUF:
case Format::MIMG: {
check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get());
check(instr->operands[0].hasRegClass() && instr->operands[0].regClass().type() == RegType::vgpr,
"VADDR must be in vgpr for VMEM instructions", instr.get());
check(instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get());
check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get());
break;
}
case Format::DS: {
for (const Operand& op : instr->operands) {
check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0,
"Only VGPRs are valid DS instruction operands", instr.get());
}
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get());
break;
}
case Format::EXP: {
for (unsigned i = 0; i < 4; i++)
check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr,
"Only VGPRs are valid Export arguments", instr.get());
break;
}
case Format::FLAT:
check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get());
/* fallthrough */
case Format::GLOBAL:
case Format::SCRATCH: {
check(instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get());
check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr,
"FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get());
if (!instr->definitions.empty())
check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get());
else
check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get());
break;
}
default:
break;
}
}
}
/* validate CFG */
for (unsigned i = 0; i < program->blocks.size(); i++) {
Block& block = program->blocks[i];
check_block(block.index == i, "block.index must match actual index", &block);
/* predecessors/successors should be sorted */
for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++)
check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++)
check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++)
check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block);
for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++)
check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block);
/* critical edges are not allowed */
if (block.linear_preds.size() > 1) {
for (unsigned pred : block.linear_preds)
check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]);
for (unsigned pred : block.logical_preds)
check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]);
}
}
assert(is_valid);
}
/* RA validation */
namespace {
struct Location {
Location() : block(NULL), instr(NULL) {}
Block *block;
Instruction *instr; //NULL if it's the block's live-in
};
struct Assignment {
Location defloc;
Location firstloc;
PhysReg reg;
};
bool ra_fail(FILE *output, Location loc, Location loc2, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
char msg[1024];
vsprintf(msg, fmt, args);
va_end(args);
fprintf(stderr, "RA error found at instruction in BB%d:\n", loc.block->index);
if (loc.instr) {
aco_print_instr(loc.instr, stderr);
fprintf(stderr, "\n%s", msg);
} else {
fprintf(stderr, "%s", msg);
}
if (loc2.block) {
fprintf(stderr, " in BB%d:\n", loc2.block->index);
aco_print_instr(loc2.instr, stderr);
}
fprintf(stderr, "\n\n");
return true;
}
} /* end namespace */
bool validate_ra(Program *program, const struct radv_nir_compiler_options *options, FILE *output) {
if (!(debug_flags & DEBUG_VALIDATE_RA))
return false;
bool err = false;
aco::live live_vars = aco::live_var_analysis(program, options);
std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size());
std::map<unsigned, Assignment> assignments;
for (Block& block : program->blocks) {
Location loc;
loc.block = █
for (aco_ptr<Instruction>& instr : block.instructions) {
if (instr->opcode == aco_opcode::p_phi) {
for (unsigned i = 0; i < instr->operands.size(); i++) {
if (instr->operands[i].isTemp() &&
instr->operands[i].getTemp().type() == RegType::sgpr &&
instr->operands[i].isFirstKill())
phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp());
}
}
loc.instr = instr.get();
for (unsigned i = 0; i < instr->operands.size(); i++) {
Operand& op = instr->operands[i];
if (!op.isTemp())
continue;
if (!op.isFixed())
err |= ra_fail(output, loc, Location(), "Operand %d is not assigned a register", i);
if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg())
err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i);
if ((op.getTemp().type() == RegType::vgpr && op.physReg() + op.size() > 256 + program->config->num_vgprs) ||
(op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < program->sgpr_limit))
err |= ra_fail(output, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i);
if (!assignments[op.tempId()].firstloc.block)
assignments[op.tempId()].firstloc = loc;
if (!assignments[op.tempId()].defloc.block)
assignments[op.tempId()].reg = op.physReg();
}
for (unsigned i = 0; i < instr->definitions.size(); i++) {
Definition& def = instr->definitions[i];
if (!def.isTemp())
continue;
if (!def.isFixed())
err |= ra_fail(output, loc, Location(), "Definition %d is not assigned a register", i);
if (assignments[def.tempId()].defloc.block)
err |= ra_fail(output, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId());
if ((def.getTemp().type() == RegType::vgpr && def.physReg() + def.size() > 256 + program->config->num_vgprs) ||
(def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < program->sgpr_limit))
err |= ra_fail(output, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i);
if (!assignments[def.tempId()].firstloc.block)
assignments[def.tempId()].firstloc = loc;
assignments[def.tempId()].defloc = loc;
assignments[def.tempId()].reg = def.physReg();
}
}
}
for (Block& block : program->blocks) {
Location loc;
loc.block = █
std::array<unsigned, 512> regs;
regs.fill(0);
std::set<Temp> live;
live.insert(live_vars.live_out[block.index].begin(), live_vars.live_out[block.index].end());
/* remove killed p_phi sgpr operands */
for (Temp tmp : phi_sgpr_ops[block.index])
live.erase(tmp);
/* check live out */
for (Temp tmp : live) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.size(); i++) {
if (regs[reg + i]) {
err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg + i]);
}
regs[reg + i] = tmp.id();
}
}
regs.fill(0);
for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) {
aco_ptr<Instruction>& instr = *it;
/* check killed p_phi sgpr operands */
if (instr->opcode == aco_opcode::p_logical_end) {
for (Temp tmp : phi_sgpr_ops[block.index]) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.size(); i++) {
if (regs[reg + i])
err |= ra_fail(output, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg + i]);
}
live.emplace(tmp);
}
}
for (const Definition& def : instr->definitions) {
if (!def.isTemp())
continue;
live.erase(def.getTemp());
}
/* don't count phi operands as live-in, since they are actually
* killed when they are copied at the predecessor */
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands) {
if (!op.isTemp())
continue;
live.insert(op.getTemp());
}
}
}
for (Temp tmp : live) {
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned i = 0; i < tmp.size(); i++)
regs[reg + i] = tmp.id();
}
for (aco_ptr<Instruction>& instr : block.instructions) {
loc.instr = instr.get();
/* remove killed p_phi operands from regs */
if (instr->opcode == aco_opcode::p_logical_end) {
for (Temp tmp : phi_sgpr_ops[block.index]) {
PhysReg reg = assignments.at(tmp.id()).reg;
regs[reg] = 0;
}
}
if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
for (const Operand& op : instr->operands) {
if (!op.isTemp())
continue;
if (op.isFirstKill()) {
for (unsigned j = 0; j < op.getTemp().size(); j++)
regs[op.physReg() + j] = 0;
}
}
}
for (unsigned i = 0; i < instr->definitions.size(); i++) {
Definition& def = instr->definitions[i];
if (!def.isTemp())
continue;
Temp tmp = def.getTemp();
PhysReg reg = assignments.at(tmp.id()).reg;
for (unsigned j = 0; j < tmp.size(); j++) {
if (regs[reg + j])
err |= ra_fail(output, loc, assignments.at(regs[reg + i]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg + j]);
regs[reg + j] = tmp.id();
}
}
for (const Definition& def : instr->definitions) {
if (!def.isTemp())
continue;
if (def.isKill()) {
for (unsigned j = 0; j < def.getTemp().size(); j++)
regs[def.physReg() + j] = 0;
}
}
}
}
return err;
}
}
|