aboutsummaryrefslogtreecommitdiffstats
path: root/src/amd/compiler/aco_assembler.cpp
blob: ea7295816db9249bd71648ac34d5d05fedea01e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#include <vector>
#include <algorithm>

#include "aco_ir.h"
#include "common/sid.h"
#include "ac_shader_util.h"
#include "util/u_math.h"

namespace aco {

struct asm_context {
   Program *program;
   enum chip_class chip_class;
   std::vector<std::pair<int, SOPP_instruction*>> branches;
   std::vector<unsigned> constaddrs;
   const int16_t* opcode;
   // TODO: keep track of branch instructions referring blocks
   // and, when emitting the block, correct the offset in instr
   asm_context(Program* program) : program(program), chip_class(program->chip_class) {
      if (chip_class <= GFX9)
         opcode = &instr_info.opcode_gfx9[0];
      else if (chip_class == GFX10)
         opcode = &instr_info.opcode_gfx10[0];
   }

   int subvector_begin_pos = -1;
};

void emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
   uint32_t instr_offset = out.size() * 4u;

   /* lower remaining pseudo-instructions */
   if (instr->opcode == aco_opcode::p_constaddr) {
      unsigned dest = instr->definitions[0].physReg();
      unsigned offset = instr->operands[0].constantValue();

      /* s_getpc_b64 dest[0:1] */
      uint32_t encoding = (0b101111101 << 23);
      uint32_t opcode = ctx.opcode[(int)aco_opcode::s_getpc_b64];
      if (opcode >= 55 && ctx.chip_class <= GFX9) {
         assert(ctx.chip_class == GFX9 && opcode < 60);
         opcode = opcode - 4;
      }
      encoding |= dest << 16;
      encoding |= opcode << 8;
      out.push_back(encoding);

      /* s_add_u32 dest[0], dest[0], ... */
      encoding = (0b10 << 30);
      encoding |= ctx.opcode[(int)aco_opcode::s_add_u32] << 23;
      encoding |= dest << 16;
      encoding |= dest;
      encoding |= 255 << 8;
      out.push_back(encoding);
      ctx.constaddrs.push_back(out.size());
      out.push_back(-(instr_offset + 4) + offset);

      /* s_addc_u32 dest[1], dest[1], 0 */
      encoding = (0b10 << 30);
      encoding |= ctx.opcode[(int)aco_opcode::s_addc_u32] << 23;
      encoding |= (dest + 1) << 16;
      encoding |= dest + 1;
      encoding |= 128 << 8;
      out.push_back(encoding);
      return;
   }

   uint32_t opcode = ctx.opcode[(int)instr->opcode];
   if (opcode == (uint32_t)-1) {
      fprintf(stderr, "Unsupported opcode: ");
      aco_print_instr(instr, stderr);
      abort();
   }

   switch (instr->format) {
   case Format::SOP2: {
      uint32_t encoding = (0b10 << 30);
      encoding |= opcode << 23;
      encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
      encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0;
      encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
      out.push_back(encoding);
      break;
   }
   case Format::SOPK: {
      SOPK_instruction *sopk = static_cast<SOPK_instruction*>(instr);

      if (instr->opcode == aco_opcode::s_subvector_loop_begin) {
         assert(ctx.chip_class >= GFX10);
         assert(ctx.subvector_begin_pos == -1);
         ctx.subvector_begin_pos = out.size();
      } else if (instr->opcode == aco_opcode::s_subvector_loop_end) {
         assert(ctx.chip_class >= GFX10);
         assert(ctx.subvector_begin_pos != -1);
         /* Adjust s_subvector_loop_begin instruction to the address after the end  */
         out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos);
         /* Adjust s_subvector_loop_end instruction to the address after the beginning  */
         sopk->imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size());
         ctx.subvector_begin_pos = -1;
      }

      uint32_t encoding = (0b1011 << 28);
      encoding |= opcode << 23;
      encoding |=
         !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ?
         instr->definitions[0].physReg() << 16 :
         !instr->operands.empty() && !(instr->operands[0].physReg() == scc) ?
         instr->operands[0].physReg() << 16 : 0;
      encoding |= sopk->imm;
      out.push_back(encoding);
      break;
   }
   case Format::SOP1: {
      uint32_t encoding = (0b101111101 << 23);
      if (opcode >= 55 && ctx.chip_class <= GFX9) {
         assert(ctx.chip_class == GFX9 && opcode < 60);
         opcode = opcode - 4;
      }
      encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
      encoding |= opcode << 8;
      encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
      out.push_back(encoding);
      break;
   }
   case Format::SOPC: {
      uint32_t encoding = (0b101111110 << 23);
      encoding |= opcode << 16;
      encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0;
      encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
      out.push_back(encoding);
      break;
   }
   case Format::SOPP: {
      SOPP_instruction* sopp = static_cast<SOPP_instruction*>(instr);
      uint32_t encoding = (0b101111111 << 23);
      encoding |= opcode << 16;
      encoding |= (uint16_t) sopp->imm;
      if (sopp->block != -1)
         ctx.branches.emplace_back(out.size(), sopp);
      out.push_back(encoding);
      break;
   }
   case Format::SMEM: {
      SMEM_instruction* smem = static_cast<SMEM_instruction*>(instr);
      bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
      bool is_load = !instr->definitions.empty();

      uint32_t encoding = 0;

      if (ctx.chip_class <= GFX9) {
         encoding = (0b110000 << 26);
         assert(!smem->dlc); /* Device-level coherent is not supported on GFX9 and lower */
         encoding |= smem->nv ? 1 << 15 : 0;
      } else {
         encoding = (0b111101 << 26);
         assert(!smem->nv); /* Non-volatile is not supported on GFX10 */
         encoding |= smem->dlc ? 1 << 14 : 0;
      }

      encoding |= opcode << 18;
      encoding |= smem->glc ? 1 << 16 : 0;

      if (ctx.chip_class <= GFX9) {
         if (instr->operands.size() >= 2)
            encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */
      }
      if (ctx.chip_class == GFX9) {
         encoding |= soe ? 1 << 14 : 0;
      }

      if (is_load || instr->operands.size() >= 3) { /* SDATA */
         encoding |= (is_load ? instr->definitions[0].physReg() : instr->operands[2].physReg()) << 6;
      }
      if (instr->operands.size() >= 1) { /* SBASE */
         encoding |= instr->operands[0].physReg() >> 1;
      }

      out.push_back(encoding);
      encoding = 0;

      int32_t offset = 0;
      uint32_t soffset = ctx.chip_class >= GFX10
                         ? sgpr_null /* On GFX10 this is disabled by specifying SGPR_NULL */
                         : 0;        /* On GFX9, it is disabled by the SOE bit (and it's not present on GFX8 and below) */
      if (instr->operands.size() >= 2) {
         const Operand &op_off1 = instr->operands[1];
         if (ctx.chip_class <= GFX9) {
            offset = op_off1.isConstant() ? op_off1.constantValue() : op_off1.physReg();
         } else {
            /* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an SGPR */
            if (op_off1.isConstant()) {
               offset = op_off1.constantValue();
            } else {
               soffset = op_off1.physReg();
               assert(!soe); /* There is no place to put the other SGPR offset, if any */
            }
         }

         if (soe) {
            const Operand &op_off2 = instr->operands.back();
            assert(ctx.chip_class >= GFX9); /* GFX8 and below don't support specifying a constant and an SGPR at the same time */
            assert(!op_off2.isConstant());
            soffset = op_off2.physReg();
         }
      }
      encoding |= offset;
      encoding |= soffset << 25;

      out.push_back(encoding);
      return;
   }
   case Format::VOP2: {
      uint32_t encoding = 0;
      encoding |= opcode << 25;
      encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
      encoding |= (0xFF & instr->operands[1].physReg()) << 9;
      encoding |= instr->operands[0].physReg();
      out.push_back(encoding);
      break;
   }
   case Format::VOP1: {
      uint32_t encoding = (0b0111111 << 25);
      if (!instr->definitions.empty())
         encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
      encoding |= opcode << 9;
      if (!instr->operands.empty())
         encoding |= instr->operands[0].physReg();
      out.push_back(encoding);
      break;
   }
   case Format::VOPC: {
      uint32_t encoding = (0b0111110 << 25);
      encoding |= opcode << 17;
      encoding |= (0xFF & instr->operands[1].physReg()) << 9;
      encoding |= instr->operands[0].physReg();
      out.push_back(encoding);
      break;
   }
   case Format::VINTRP: {
      Interp_instruction* interp = static_cast<Interp_instruction*>(instr);
      uint32_t encoding = 0;

      if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
         encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */
      } else {
         encoding = (0b110010 << 26);
      }

      assert(encoding);
      encoding |= (0xFF & instr->definitions[0].physReg()) << 18;
      encoding |= opcode << 16;
      encoding |= interp->attribute << 10;
      encoding |= interp->component << 8;
      if (instr->opcode == aco_opcode::v_interp_mov_f32)
         encoding |= (0x3 & instr->operands[0].constantValue());
      else
         encoding |= (0xFF & instr->operands[0].physReg());
      out.push_back(encoding);
      break;
   }
   case Format::DS: {
      DS_instruction* ds = static_cast<DS_instruction*>(instr);
      uint32_t encoding = (0b110110 << 26);
      if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
         encoding |= opcode << 17;
         encoding |= (ds->gds ? 1 : 0) << 16;
      } else {
         encoding |= opcode << 18;
         encoding |= (ds->gds ? 1 : 0) << 17;
      }
      encoding |= ((0xFF & ds->offset1) << 8);
      encoding |= (0xFFFF & ds->offset0);
      out.push_back(encoding);
      encoding = 0;
      unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0;
      encoding |= (0xFF & reg) << 24;
      reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0)  ? instr->operands[2].physReg() : 0;
      encoding |= (0xFF & reg) << 16;
      reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0) ? instr->operands[1].physReg() : 0;
      encoding |= (0xFF & reg) << 8;
      encoding |= (0xFF & instr->operands[0].physReg());
      out.push_back(encoding);
      break;
   }
   case Format::MUBUF: {
      MUBUF_instruction* mubuf = static_cast<MUBUF_instruction*>(instr);
      uint32_t encoding = (0b111000 << 26);
      encoding |= opcode << 18;
      encoding |= (mubuf->lds ? 1 : 0) << 16;
      encoding |= (mubuf->glc ? 1 : 0) << 14;
      encoding |= (mubuf->idxen ? 1 : 0) << 13;
      encoding |= (mubuf->offen ? 1 : 0) << 12;
      if (ctx.chip_class <= GFX9) {
         assert(!mubuf->dlc); /* Device-level coherent is not supported on GFX9 and lower */
         encoding |= (mubuf->slc ? 1 : 0) << 17;
      } else if (ctx.chip_class >= GFX10) {
         encoding |= (mubuf->dlc ? 1 : 0) << 15;
      }
      encoding |= 0x0FFF & mubuf->offset;
      out.push_back(encoding);
      encoding = 0;
      if (ctx.chip_class >= GFX10) {
         encoding |= (mubuf->slc ? 1 : 0) << 22;
      }
      encoding |= instr->operands[2].physReg() << 24;
      encoding |= (mubuf->tfe ? 1 : 0) << 23;
      encoding |= (instr->operands[1].physReg() >> 2) << 16;
      unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg();
      encoding |= (0xFF & reg) << 8;
      encoding |= (0xFF & instr->operands[0].physReg());
      out.push_back(encoding);
      break;
   }
   case Format::MTBUF: {
      MTBUF_instruction* mtbuf = static_cast<MTBUF_instruction*>(instr);

      uint32_t img_format = ac_get_tbuffer_format(ctx.chip_class, mtbuf->dfmt, mtbuf->nfmt);
      uint32_t encoding = (0b111010 << 26);
      assert(!mtbuf->dlc || ctx.chip_class >= GFX10);
      encoding |= (mtbuf->dlc ? 1 : 0) << 15; /* DLC bit replaces one bit of the OPCODE on GFX10 */
      encoding |= (mtbuf->glc ? 1 : 0) << 14;
      encoding |= (mtbuf->idxen ? 1 : 0) << 13;
      encoding |= (mtbuf->offen ? 1 : 0) << 12;
      encoding |= 0x0FFF & mtbuf->offset;
      encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */

      if (ctx.chip_class <= GFX9) {
         encoding |= opcode << 15;
      } else {
         encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */
      }

      out.push_back(encoding);
      encoding = 0;

      encoding |= instr->operands[2].physReg() << 24;
      encoding |= (mtbuf->tfe ? 1 : 0) << 23;
      encoding |= (mtbuf->slc ? 1 : 0) << 22;
      encoding |= (instr->operands[1].physReg() >> 2) << 16;
      unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg();
      encoding |= (0xFF & reg) << 8;
      encoding |= (0xFF & instr->operands[0].physReg());

      if (ctx.chip_class >= GFX10) {
         encoding |= (((opcode & 0x08) >> 4) << 21); /* MSB of 4-bit OPCODE */
      }

      out.push_back(encoding);
      break;
   }
   case Format::MIMG: {
      MIMG_instruction* mimg = static_cast<MIMG_instruction*>(instr);
      uint32_t encoding = (0b111100 << 26);
      encoding |= mimg->slc ? 1 << 25 : 0;
      encoding |= opcode << 18;
      encoding |= mimg->lwe ? 1 << 17 : 0;
      encoding |= mimg->tfe ? 1 << 16 : 0;
      encoding |= mimg->glc ? 1 << 13 : 0;
      encoding |= mimg->unrm ? 1 << 12 : 0;
      if (ctx.chip_class <= GFX9) {
         assert(!mimg->dlc); /* Device-level coherent is not supported on GFX9 and lower */
         assert(!mimg->r128);
         encoding |= mimg->a16 ? 1 << 15 : 0;
         encoding |= mimg->da ? 1 << 14 : 0;
      } else {
         encoding |= mimg->r128 ? 1 << 15 : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */
         encoding |= mimg->dim << 3; /* GFX10: dimensionality instead of declare array */
         encoding |= mimg->dlc ? 1 << 7 : 0;
      }
      encoding |= (0xF & mimg->dmask) << 8;
      out.push_back(encoding);
      encoding = (0xFF & instr->operands[0].physReg()); /* VADDR */
      if (!instr->definitions.empty()) {
         encoding |= (0xFF & instr->definitions[0].physReg()) << 8; /* VDATA */
      } else if (instr->operands.size() == 4) {
         encoding |= (0xFF & instr->operands[3].physReg()) << 8; /* VDATA */
      }
      encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 16; /* T# (resource) */
      if (instr->operands.size() > 2)
         encoding |= (0x1F & (instr->operands[2].physReg() >> 2)) << 21; /* sampler */

      assert(!mimg->d16 || ctx.chip_class >= GFX9);
      encoding |= mimg->d16 ? 1 << 15 : 0;
      if (ctx.chip_class >= GFX10) {
         encoding |= mimg->a16 ? 1 << 14 : 0; /* GFX10: A16 still exists, but is in a different place */
      }

      out.push_back(encoding);
      break;
   }
   case Format::FLAT:
   case Format::SCRATCH:
   case Format::GLOBAL: {
      FLAT_instruction *flat = static_cast<FLAT_instruction*>(instr);
      uint32_t encoding = (0b110111 << 26);
      encoding |= opcode << 18;
      if (ctx.chip_class <= GFX9) {
         assert(flat->offset <= 0x1fff);
         encoding |= flat->offset & 0x1fff;
      } else {
         assert(flat->offset <= 0x0fff);
         encoding |= flat->offset & 0x0fff;
      }
      if (instr->format == Format::SCRATCH)
         encoding |= 1 << 14;
      else if (instr->format == Format::GLOBAL)
         encoding |= 2 << 14;
      encoding |= flat->lds ? 1 << 13 : 0;
      encoding |= flat->glc ? 1 << 16 : 0;
      encoding |= flat->slc ? 1 << 17 : 0;
      if (ctx.chip_class >= GFX10) {
         assert(!flat->nv);
         encoding |= flat->dlc ? 1 << 12 : 0;
      } else {
         assert(!flat->dlc);
      }
      out.push_back(encoding);
      encoding = (0xFF & instr->operands[0].physReg());
      if (!instr->definitions.empty())
         encoding |= (0xFF & instr->definitions[0].physReg()) << 24;
      else
         encoding |= (0xFF & instr->operands[2].physReg()) << 8;
      if (!instr->operands[1].isUndefined()) {
         assert(ctx.chip_class >= GFX10 || instr->operands[1].physReg() != 0x7F);
         assert(instr->format != Format::FLAT);
         encoding |= instr->operands[1].physReg() << 16;
      } else if (instr->format != Format::FLAT) {
         if (ctx.chip_class <= GFX9)
            encoding |= 0x7F << 16;
         else
            encoding |= sgpr_null << 16;
      }
      encoding |= flat->nv ? 1 << 23 : 0;
      out.push_back(encoding);
      break;
   }
   case Format::EXP: {
      Export_instruction* exp = static_cast<Export_instruction*>(instr);
      uint32_t encoding;
      if (ctx.chip_class <= GFX9) {
         encoding = (0b110001 << 26);
      } else if (ctx.chip_class >= GFX10) {
         encoding = (0b111110 << 26);
      }

      encoding |= exp->valid_mask ? 0b1 << 12 : 0;
      encoding |= exp->done ? 0b1 << 11 : 0;
      encoding |= exp->compressed ? 0b1 << 10 : 0;
      encoding |= exp->dest << 4;
      encoding |= exp->enabled_mask;
      out.push_back(encoding);
      encoding = 0xFF & exp->operands[0].physReg();
      encoding |= (0xFF & exp->operands[1].physReg()) << 8;
      encoding |= (0xFF & exp->operands[2].physReg()) << 16;
      encoding |= (0xFF & exp->operands[3].physReg()) << 24;
      out.push_back(encoding);
      break;
   }
   case Format::PSEUDO:
   case Format::PSEUDO_BARRIER:
      unreachable("Pseudo instructions should be lowered before assembly.");
   default:
      if ((uint16_t) instr->format & (uint16_t) Format::VOP3A) {
         VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);

         if ((uint16_t) instr->format & (uint16_t) Format::VOP2) {
            opcode = opcode + 0x100;
         } else if ((uint16_t) instr->format & (uint16_t) Format::VOP1) {
            if (ctx.chip_class <= GFX9) {
               opcode = opcode + 0x140;
            } else {
               /* RDNA ISA doc says this is 0x140, but that doesn't work  */
               opcode = opcode + 0x180;
            }
         } else if ((uint16_t) instr->format & (uint16_t) Format::VOPC) {
            opcode = opcode + 0x0;
         } else if ((uint16_t) instr->format & (uint16_t) Format::VINTRP) {
            opcode = opcode + 0x270;
         }

         uint32_t encoding;
         if (ctx.chip_class <= GFX9) {
            encoding = (0b110100 << 26);
         } else if (ctx.chip_class == GFX10) {
            encoding = (0b110101 << 26);
         }

         encoding |= opcode << 16;
         encoding |= (vop3->clamp ? 1 : 0) << 15;
         for (unsigned i = 0; i < 3; i++)
            encoding |= vop3->abs[i] << (8+i);
         for (unsigned i = 0; i < 4; i++)
            encoding |= vop3->opsel[i] << (11+i);
         if (instr->definitions.size() == 2)
            encoding |= instr->definitions[1].physReg() << 8;
         encoding |= (0xFF & instr->definitions[0].physReg());
         out.push_back(encoding);
         encoding = 0;
         if (instr->opcode == aco_opcode::v_interp_mov_f32) {
            encoding = 0x3 & instr->operands[0].constantValue();
         } else {
            for (unsigned i = 0; i < instr->operands.size(); i++)
               encoding |= instr->operands[i].physReg() << (i * 9);
         }
         encoding |= vop3->omod << 27;
         for (unsigned i = 0; i < 3; i++)
            encoding |= vop3->neg[i] << (29+i);
         out.push_back(encoding);

      } else if (instr->isDPP()){
         /* first emit the instruction without the DPP operand */
         Operand dpp_op = instr->operands[0];
         instr->operands[0] = Operand(PhysReg{250}, v1);
         instr->format = (Format) ((uint32_t) instr->format & ~(1 << 14));
         emit_instruction(ctx, out, instr);
         DPP_instruction* dpp = static_cast<DPP_instruction*>(instr);
         uint32_t encoding = (0xF & dpp->row_mask) << 28;
         encoding |= (0xF & dpp->bank_mask) << 24;
         encoding |= dpp->abs[1] << 23;
         encoding |= dpp->neg[1] << 22;
         encoding |= dpp->abs[0] << 21;
         encoding |= dpp->neg[0] << 20;
         encoding |= dpp->bound_ctrl << 19;
         encoding |= dpp->dpp_ctrl << 8;
         encoding |= (0xFF) & dpp_op.physReg();
         out.push_back(encoding);
         return;
      } else {
         unreachable("unimplemented instruction format");
      }
      break;
   }

   /* append literal dword */
   for (const Operand& op : instr->operands) {
      if (op.isLiteral()) {
         out.push_back(op.constantValue());
         break;
      }
   }
}

void emit_block(asm_context& ctx, std::vector<uint32_t>& out, Block& block)
{
   for (aco_ptr<Instruction>& instr : block.instructions) {
#if 0
      int start_idx = out.size();
      std::cerr << "Encoding:\t" << std::endl;
      aco_print_instr(&*instr, stderr);
      std::cerr << std::endl;
#endif
      emit_instruction(ctx, out, instr.get());
#if 0
      for (int i = start_idx; i < out.size(); i++)
         std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl;
#endif
   }
}

void fix_exports(asm_context& ctx, std::vector<uint32_t>& out, Program* program)
{
   for (int idx = program->blocks.size() - 1; idx >= 0; idx--) {
      Block& block = program->blocks[idx];
      std::vector<aco_ptr<Instruction>>::reverse_iterator it = block.instructions.rbegin();
      bool endBlock = false;
      bool exported = false;
      while ( it != block.instructions.rend())
      {
         if ((*it)->format == Format::EXP && endBlock) {
            Export_instruction* exp = static_cast<Export_instruction*>((*it).get());
            if (program->stage & hw_vs) {
               if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= (V_008DFC_SQ_EXP_POS + 3)) {
                  exp->done = true;
                  exported = true;
                  break;
               }
            } else {
               exp->done = true;
               exp->valid_mask = true;
               exported = true;
               break;
            }
         } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec)
            break;
         else if ((*it)->opcode == aco_opcode::s_endpgm) {
            if (endBlock)
               break;
            endBlock = true;
         }
         ++it;
      }
      if (!endBlock || exported)
         continue;
      /* we didn't find an Export instruction and have to insert a null export */
      aco_ptr<Export_instruction> exp{create_instruction<Export_instruction>(aco_opcode::exp, Format::EXP, 4, 0)};
      for (unsigned i = 0; i < 4; i++)
         exp->operands[i] = Operand(v1);
      exp->enabled_mask = 0;
      exp->compressed = false;
      exp->done = true;
      exp->valid_mask = program->stage & hw_fs;
      if (program->stage & hw_fs)
         exp->dest = 9; /* NULL */
      else
         exp->dest = V_008DFC_SQ_EXP_POS;
      /* insert the null export 1 instruction before endpgm */
      block.instructions.insert(block.instructions.end() - 1, std::move(exp));
   }
}

static void fix_branches_gfx10(asm_context& ctx, std::vector<uint32_t>& out)
{
   /* Branches with an offset of 0x3f are buggy on GFX10, we workaround by inserting NOPs if needed. */
   bool gfx10_3f_bug = false;

   do {
      auto buggy_branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), [&ctx](const auto &branch) -> bool {
         return ((int)ctx.program->blocks[branch.second->block].offset - branch.first - 1) == 0x3f;
      });

      gfx10_3f_bug = buggy_branch_it != ctx.branches.end();

      if (gfx10_3f_bug) {
         /* Insert an s_nop after the branch */
         constexpr uint32_t s_nop_0 = 0xbf800000u;
         int s_nop_pos = buggy_branch_it->first + 1;
         auto out_pos = std::next(out.begin(), s_nop_pos);
         out.insert(out_pos, s_nop_0);

         /* Update the offset of each affected block */
         for (Block& block : ctx.program->blocks) {
            if (block.offset > (unsigned)buggy_branch_it->first)
               block.offset++;
         }

         /* Update the branches following the current one */
         for (auto branch_it = std::next(buggy_branch_it); branch_it != ctx.branches.end(); ++branch_it)
            branch_it->first++;

         /* Find first constant address after the inserted instruction */
         auto caddr_it = std::find_if(ctx.constaddrs.begin(), ctx.constaddrs.end(), [s_nop_pos](const int &caddr_pos) -> bool {
            return caddr_pos >= s_nop_pos;
         });

         /* Update the locations of constant addresses */
         for (; caddr_it != ctx.constaddrs.end(); ++caddr_it)
            (*caddr_it)++;

      }
   } while (gfx10_3f_bug);
}

void fix_branches(asm_context& ctx, std::vector<uint32_t>& out)
{
   if (ctx.chip_class >= GFX10)
      fix_branches_gfx10(ctx, out);

   for (std::pair<int, SOPP_instruction*> &branch : ctx.branches) {
      int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1;
      out[branch.first] |= (uint16_t) offset;
   }
}

void fix_constaddrs(asm_context& ctx, std::vector<uint32_t>& out)
{
   for (unsigned addr : ctx.constaddrs)
      out[addr] += out.size() * 4u;
}

unsigned emit_program(Program* program,
                      std::vector<uint32_t>& code)
{
   asm_context ctx(program);

   if (program->stage & (hw_vs | hw_fs))
      fix_exports(ctx, code, program);

   for (Block& block : program->blocks) {
      block.offset = code.size();
      emit_block(ctx, code, block);
   }

   fix_branches(ctx, code);

   unsigned exec_size = code.size() * sizeof(uint32_t);

   if (program->chip_class >= GFX10) {
      /* Pad output with s_code_end so instruction prefetching doesn't cause
       * page faults */
      unsigned final_size = align(code.size() + 3 * 16, 16);
      while (code.size() < final_size)
         code.push_back(0xbf9f0000u);
   }

   fix_constaddrs(ctx, code);

   while (program->constant_data.size() % 4u)
      program->constant_data.push_back(0);
   /* Copy constant data */
   code.insert(code.end(), (uint32_t*)program->constant_data.data(),
               (uint32_t*)(program->constant_data.data() + program->constant_data.size()));

   return exec_size;
}

}